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Abstract

We introduce a new family of real-analytic modular forms on the upper-half plane. They are
arguably the simplest class of ‘mixed’ versions of modular forms of level one and are constructed
out of real and imaginary parts of iterated integrals of holomorphic Eisenstein series. They form an
algebra of functions satisfying many properties analogous to classical holomorphic modular forms.
In particular, they admit expansions in q, q and log |q| involving only rational numbers and single-
valued multiple zeta values. The first nontrivial functions in this class are real-analytic Eisenstein
series.
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1. Introduction

Let H = {z : Im z > 0} be the upper-half plane with its action of SL2(Z):

γ z =
az + b
cz + d

, where γ =
(

a b
c d

)
∈ SL2(Z). (1.1)

We shall say that a real-analytic function

f : H −→ C

is modular of weights (r, s) with r, s ∈ Z if for all γ ∈ SL2(Z), it satisfies

f (γ z) = (cz + d)r (cz + d)s f (z). (1.2)
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In this paper, we construct a space MI E of real-analytic modular functions
on H, which are modular analogues of the single-valued polylogarithms. They
are obtained by taking real and imaginary parts of iterated primitives of the
holomorphic Eisenstein series, which are defined for all even k > 4 by

Gk(q) = −
Bk

2k
+

∑
n>1

σk−1(n)qn, (1.3)

where σ denotes the divisor function. The modular analogues of the
single-valued logarithm log |z|2 are real-analytic Eisenstein series and are
well-known. The modular analogues of the Bloch–Wigner dilogarithm
D(z) = Im (Li2(z)+ log |z| log(1− z)) have already led to completely new
functions with interesting properties [6]. In this paper, we study the entire space
of such functions. Most of our results are summarized here.

THEOREM 1.1. The space of real-analytic functions MI E has the following
properties:

(1) (Expansions). Every f ∈ MI E is modular of weights (r, s) for integers
r, s > 0. It admits a unique expansion, for some N > 0, of the form

f (q) =
N∑

k=−N

Lk

( ∑
m,n>0

a(k)m,nqmqn
)
, (1.4)

where q = e2π i z , L := log |q| = −2π Im(z), and the coefficients a(k)m,n are
single-valued multiple zeta values.

(2) (Filtrations). The space MI E
[L,L−1

] is an algebra over Q, bigraded by
the modular weights (r, s). Furthermore, MI E admits a filtration by length

0 ⊂MI E
0 ⊂MI E

1 ⊂ · · · ⊂MI E
k ⊂ · · ·

and also by motivic weight M, which is conjecturally a grading. (In this
paper, we have chosen to halve the M-weight compared to [6], in keeping
with the standard convention for the weight of multiple zeta values, which
is one half of the Hodge-theoretic weight.) The coefficients in the expansion
(1.4) have M-weight bounded above by the M-weight of f , where L has
M-weight 1.

(3) (Finiteness). The subspaces MwMI E
r,s of motivic weight 6 w, and fixed

modular degree (r, s), are finite-dimensional Q-vector spaces. A function in
such a subspace is uniquely determined by a finite number of coefficients
a(k)m,n .
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(4) (Differential structure). Let ∂ be the differential operator of modular
bidegree (1,−1), which acts on functions of modular weights (r, •) by

∂r = (z − z)
∂

∂z
+ r.

Let ∂ denote its complex conjugate of modular bidegree (−1, 1). These
operators are close variants of the Maass raising and lowering operators.
Then

∂MI E
` ⊂MI E

` +
(
E ×MI E

`−1

)
,

∂MI E
` ⊂MI E

` +
(
E ×MI E

`−1

)
, (1.5)

where E denotes the Q-vector space generated by the product of a
holomorphic Eisenstein series (1.3) with a non-negative power of L. The
terms on both sides of these equations are contained in the space of real-
analytic functions on the upper-half plane. Concretely, the first equation
states that if f ∈MI E

` , we may write

∂ f = f0 +
∑

i>2, j>0

G2iL j fi, j , (1.6)

where f0 ∈ MI E
` and fi, j ∈ MI E

`−1. The functions f0, fi, j are in fact
unique. In particular, for f ∈ MI E

` of length ` and of modular weights
(n, 0), we have

∂ f ∈ E ×MI E
`−1

since the modular weights of MI E lie in the first quadrant. In this case,
the function f0 vanishes in equation (1.6) and ∂ f is built out of functions
of strictly smaller length. Therefore the space MI E is generated by taking
iterated primitives (or antiderivatives) of holomorphic and antiholomorphic
Eisenstein series with respect to ∂, ∂ . Equations (1.5) also imply eigenvector
relations on MI E with respect to the bigraded Laplace–Beltrami operator.

(5) (Orthogonality). For every f ∈ MI E , the function ∂ f is orthogonal to
the space of holomorphic cusp forms with respect to the Petersson inner
product.

(6) (Algebraic structure). Let lw(MI E
) ⊂ MI E denote the subspace of

functions with modular weights (n, 0), that is, satisfying the classical
modular transformation property with no antiholomorphic automorphy
factor (the notation lw stands for ‘lowest weight’ in the sense of sl2-
representations). Then lw(MI E

) is dual to the lowest weight vectors in
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a certain well-known Lie algebra ugeom of geometric derivations on the free
Lie algebra on two generators.

This theorem is not exhaustive. The class of functions MI E has several other
properties which are proved in this paper, and many more which are not. For
example, with every f ∈MI E , we can associate an L-function that is a linear
combination of Dirichlet series. It admits a meromorphic continuation to C and
satisfies a functional equation. We show that this L-function is a single-variable
restriction of the multiple-variable L-functions recently defined in [1].

1.1. Examples

1.1.1. Length zero. In length zero, we have

MI E
0 = Z sv

where Z sv is the weight-filtered Q-algebra of single-valued multiple zeta values,
viewed as constant functions of modular weights (0, 0). A definition is recalled
below. This space is already infinite-dimensional but is finite in each M-weight.
It does not contain any powers of π but contains the odd zeta values

ζ sv(2n + 1) = 2 ζ(2n + 1)

in M-weight 2n+1, for n > 1. The first interesting generator occurs in weight 11:

ζ sv(3, 5, 3) = 2 ζ(3, 5, 3)− 2 ζ(3)ζ(3, 5)− 10 ζ(3)2ζ(5).

The space MI E is an algebra over Z sv and satisfies

M0MI E
0 = M0Z sv

= Q.

1.1.2. Length one. In length one, MI E contains the first interesting functions:

MI E
1
∼=

⊕
r,s

Er,s Z sv,

where the direct sum is over all integers r, s > 0 such that w = r + s > 0 is even
and

Er,s(z) =
w!

(2π i)w+2

1
2

∑
(m,n)∈Z2\(0,0)

L
(mz + n)r+1(mz + n)s+1

(1.7)
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are real-analytic Eisenstein series, which are modular of weights (r, s). The
functions Er,s admit an expansion of the form

Er,s = aw L+ br,s ζ
sv(w + 1)L−w +

(
a series in Q[[q, q]][L−1

]
)
,

where aw, br,s are explicit rational numbers. The elements Er,s and L have M-
filtration equal to 1. One checks that the M-filtration of every term in the previous
expansion is indeed 6 1. The differential structure amounts to the equations

∂ Ew,0 = LGw+2 and ∂ Er,s = (r + 1)Er+1,s−1

for all 1 6 s 6 w, and their complex conjugates. The family of functions Er,s

is associated with a universal mixed elliptic motive [21] whose fibre at the cusp
is a simple extension of mixed Tate motives: namely, Q(−w − 1) by Q, whose
(single-valued) periods are rational multiples of 1 and ζ sv(w+ 1). The completed
L-function Λ(Ea,b, •) associated with Ea,b is proportional to a certain rational
function multiplied by a product of two Riemann zeta functions ζ(•)ζ(•−2w+1).

1.1.3. Higher length. Starting from length two, MI E contains polynomials in
the Er,s together with a large array of completely new functions, some examples
of which were described in [6]. In length two, the enumeration is as follows. To
every pair of Eisenstein series G2m+2, G2n+2 we can take real and imaginary parts
of the double iterated integrals of G2m+2τ

i , G2n+2τ
j for 0 6 i 6 2m, 0 6 j 6 2n

in a prescribed way to obtain a priori (2m + 1)(2n + 1) functions. However, the
condition of orthogonality (5) imposes a constraint (in every relevant modular
bidegree) for every holomorphic cusp form and pushes the dimension of MI E

2
down by that amount. The precise condition involves the critical values of L-
functions of cusp forms, and is related to the existence of nontrivial extensions
of Q by motives of cusp forms (which are governed by noncritical values of
the said L-functions). Thus the space of functions MI E grows approximately
quadratically in length two and cubically in length three. The precise enumeration
in lengths two and three is stated in Section 12.4, but is not known explicitly in
length four or above, and is closely related to deep questions about the structure
of the category of mixed elliptic motives, the Broadhurst–Kreimer conjecture on
depth-graded multiple zeta values, and the existence of ‘higher’ Rankin–Selberg
convolutions.

1.2. Comments

• The class of functionsMI E shares many properties with classical holomorphic
modular forms. Indeed, a key feature of the latter is the fact that a holomorphic
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modular form is uniquely determined by an explicit number of Fourier
coefficients depending on its modular weight. The same property is true for
the subspace of functions in MI E of bounded motivic weight. It would be
very interesting to make this effective and determine an exact bound for the
number of expansion coefficients that determine an element of MI E uniquely.

• It should be relatively straightforward to generalize this theory to higher levels.
In a different direction, MI E is a subspace of a larger class of functions, which
also includes iterated primitives of cusp forms as well as Eisenstein series [2].
For this, one must allow poles at the cusps, for example. The length one part
of this class is the theory of weak harmonic Maass forms and mock modular
forms of level one [7], but involves new functions thereafter.

• The algebra ugeom has occurred in various guises, most notably as the
fundamental representation of the Tannaka Lie algebra of Hain and
Matsumoto’s universal mixed elliptic motives. The space MI E can be
viewed as an elementary realization of this category as a space of functions:
for example, the structure of MI E encodes information about extension data
in that category.

• The functions MI E are expected to contain the modular graph functions
studied in string theory (see below), and in fact general correlation functions for
configurations of points on the universal elliptic curve. If true, then Theorem
1.1 implies most of the open conjectures about this class of functions.

• The Lie algebra ugeom is closely related to combinatorial relations satisfied
by multiple zeta values. In fact, in an earlier work, we showed that it
satisfies linearized versions of the double-shuffle equations, about which
several important conjectures are still open. Items (5) and (6) taken together
therefore imply that these equations are, in a precise sense, orthogonal to cusp
forms. This should shed light on their structure.

1.3. Construction. The functions in MI E are the equivariant sections of
the unipotent fundamental group of the universal elliptic curve. To explain this,
let us recall the construction of single-valued polylogarithms in genus zero [4],
before passing to its elliptic generalization. Consider the following multivalued
function L(z) on C×\{1} taking values in formal power series C〈〈x0, x1〉〉 in
two noncommuting variables x0, x1. It is the unique solution to the Knizhnik–
Zamolodchikov equation

d L(z) = ωK Z L(z), where ωKZ =
dz
z

x0 +
dz

1− z
x1,
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with the initial condition L(
→

10) = 1 (denoting the regularized limit as z → 0
along the real axis with unit speed), where x0, x1 act by left multiplication. It has
a canonical single-valued version L : C×\{1} −→ C〈〈x0, x1〉〉, which satisfies the
identical differential equation and initial condition. It can be viewed as a formal
power series

L =
∑
w

Lw(z)w ∈ C〈〈x0, x1〉〉,

where the sum ranges over all words w in x0, x1. Its coefficients Lw(z) are single-
valued analogues of multiple polylogarithms. Their regularized limits at the point
1 (approached with unit speed from below) are

ζ sv(w) := Lw(−
→

11)

and called single-valued multiple zeta values. They generate Z sv, which is strictly
contained in the algebra of all multiple zeta values. Perhaps surprisingly, the
numbers ζ sv(w) satisfy all motivic relations between ordinary multiple zeta
values.

1.3.1. Genus 1. The universal elliptic KZB equation [8, 9, 16, 19, 25] that we
shall use is

d J (z) = ωJ (z),

where ω is the formal 1-form:

ω = −
dq
q

ad(ε0)+
∑
n>1

2
(2n)!

G2n+2(q)
dq
q
ε2n+2.

It is obtained from the restriction of the full KZB connection first to the moduli
scheme of elliptic curves equipped with a nonzero tangent vector [19, equation
(13.1)] and from that to the zero section of the universal elliptic curve after setting
ε2 to zero (that is, by taking its image in the Lie algebra quotient by the central
derivation ε2. This has the effect of removing a term involving G2 from the KZB
connection. Since ε2 is central, the space of equivariant modular forms we shall
obtain is only marginally smaller than if we had included the term involving G2.)
The coefficients ε2n , for all n > 0 are derivations of the free Lie algebra on two
generators Lie(a,b). They were first written down by Tsunogai [35] in the `-adic
context, and studied by Nakamura [31]. They are uniquely determined by the
formulae ε2n[a, b] = 0, ε2n(a) ∈ [Lie(a,b),Lie(a,b)] and

ε2n(b) = −ad(b)2na.
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They generate (together with an sl2-action) a Lie algebra we denote by ugeom,
and satisfy many interesting quadratic relations associated with cusp forms [32]
(which will be a consequence of the orthogonality condition (5) in Theorem 1.1).
Let U geom denote the affine group scheme whose Lie algebra is the completion of
ugeom. It admits a right action by SL2. The function J is a multivalued function
of z ∈ H taking values in U geom(C). Our first theorem proves the existence of a
genus one analogue of L.

THEOREM 1.2. There exists a real-analytic function

J eqv
: H −→ U geom(C)

which satisfies the equation

∂

∂τ
J eqv
= ωJ eqv

and is equivariant for the action of SL2(Z), that is,

J eqv(γ τ)
∣∣
γ
= J eqv(τ ) for all γ ∈ SL2(Z).

The generating series J eqv, unlike its genus zero counterpart L, is only well-
defined up to right multiplication by an element a ∈ U geom(Z sv)SL2 . The series
J eqv can be viewed as a formal power series in certain coefficients, which are
maps

c(J eqv) : H −→ V2n ⊗Q C,
where V2n =

⊕
r+s=2n X r Y sQ is the space of homogeneous polynomials in X, Y

(corresponding to b and a), equipped with a right action of SL2. The coefficients
c(J eqv) are vector-valued real-analytic modular forms and satisfy

c(J eqv)(γ τ) = c(J eqv)(τ )
∣∣
γ

for all γ ∈ SL2(Z). Any such function can be uniquely written in the form

c(J eqv)(τ ) =
∑

r+s=2n

cr,s(τ )(X − τY )r (X − τY )s,

where cr,s : H→ C are real analytic and modular of weights (r, s).

DEFINITION 1.3. The space MI E is the Z sv-module generated by all
c(J eqv)r,s(τ ). It is independent of the choice of solution J eqv.

One could equivalently set up the theory using vector-valued modular forms
c(J eqv) instead of the constituent functions cr,s . This is merely a matter of choice:
we opted for the latter because of potential applications to physics.
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1.4. Further work. There are a number of questions that we have not
addressed.

(1) A mixed elliptic motive is a mixed Tate motive over Z, equipped with
an action of a certain Lie algebra on, say, its de Rham realization. This
Lie algebra is conjecturally isomorphic to ugeom. One can define motivic
lifts of the functions f ∈ MI E whose coefficients will be single-valued
motivic multiple zeta values. In this precise sense, the functions in MI E are
associated with mixed Tate motives over Z carrying some extra structure. In
particular, they will inherit an action of the motivic Galois group of mixed
Tate motives over Z, whose action on ugeom was studied in [5], and is known
to lowest orders.

(2) The functions in MI E provide kernels for the Rankin–Selberg method. In
lengths zero and one, these can be computed by the unfolding technique. It
would be interesting to extend this to higher lengths.

(3) The functions defined in this paper are constructed out of the action of
the real Frobenius F∞ on the unipotent fundamental group of the universal
elliptic curve. It would be interesting to study p-adic versions, which should
be constructed in a similar manner using the Frobenius at a finite prime.

Classical holomorphic modular forms have algebraic coefficients and admit an
action of the usual Galois group. The modular forms constructed here have
coefficients that are periods [26]. Remark (1) suggests that they admit an action
by a motivic Galois group.

One motivation for this construction was the long-standing problem of defining
a natural class of functions that contain the modular graph functions arising in
genus one closed string perturbation theory [12–14, 18, 37]. This problem was
briefly discussed in [6], and has an extensive literature. In this paper, we construct
the class of functions which we expect to solve this problem completely. Indeed,
a relation between modular graph functions and the class MI E

[L,L−1
] should

follow by a version of the argument given in the author’s thesis. The key point
is that the bar de Rham complex defined in [8] has trivial cohomology. If as
expected, the modular graph functions are indeed contained in MI E

[L,L−1
],

then the properties of this class of functions which are proved in this paper would
immediately imply most of the open conjectures and phenomena that have been
experimentally observed for modular graph functions.

2. Notations and background on the class of functions M

We recall some notations and background from [6, 36].
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2.1. General definitions. We write z = x + iy, q = exp(2π i z) and set

L = log |q| = 1
2 log qq = π i(z − z) = −2πy. (2.1)

Consider the bigraded algebra of real-analytic functions [6]

M =

⊕
r,s

Mr,s,

which are modular of weights (r, s) and admit an expansion of the form (1.4),
where a(k)m,n are arbitrary complex numbers. The quantity w = r + s is called the
total modular weight. The space Mr,s = 0 if w is odd. The constant part of f
(called the Laurent polynomial or zeroth Fourier mode in the physics literature) is
defined to be

f 0
=

∑
k

a(k)0,0L
k
∈ C[L,L−1

].

The subspace of cusp forms S ⊂M is defined to be ker( f 7→ f 0
:M→ C[L,

L−1
]). There is a decreasing filtration by the order of poles in L:

P pM = { f ∈M : a(k)m,n( f ) = 0 if k < p}, (2.2)

which satisfies PaM × PbM ⊂ Pa+bM. In this paper, we shall work in the
subspace ⊕

r,s>0

P−r−sMr,s ⊂M (2.3)

with nonnegative modular weights (r, s), and whose poles in L are bounded by w.

2.2. Differential operators. For all r, s ∈ Z, there exist operators

∂r :Mr,s −→Mr+1,s−1, ∂ s :Mr,s −→Mr−1,s+1,

which are variants of the Maass raising and lowering operators, defined by

∂r = (z − z)
∂

∂z
+ r, ∂ s = (z − z)

∂

∂z
+ s. (2.4)

If we extend the action of ∂r , ∂ s to all of M to be the zero map on all components
Mi, j for i 6= r or j 6= s, respectively, we obtain bigraded differential operators

∂ =
∑

r

∂r :M −→M and ∂ =
∑

s

∂ s :M −→M
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of modular weights (1,−1) and (−1, 1), respectively. Recall that L ∈M−1,−1.
The operators act upon it via ∂(L) = ∂(L) = 0, and generate a copy of sl2 acting
upon M:

[h, ∂] = 2∂, [h, ∂] = −2∂, [∂, ∂] = h, (2.5)

where h :M →M is multiplication by r − s on the component Mr−s of M.
In [6], it is shown that the kernels of the operators ∂, ∂ are the direct sums over
r, s of

ker(∂r :Mr,s →Mr+1,s−1) = L−r M s−r

ker(∂ s :Mr,s →Mr−1,s+1) = L−s Mr−s, (2.6)

where Mn and Mn denote the spaces of holomorphic and antiholomorphic
modular forms, respectively. In particular, ker ∂ ∩ ker ∂ = C[L,L−1

].

2.3. Laplace operator. For any r, s ∈ Z, the Laplace operator ∆r,s :Mr,s →

Mr,s is defined by the equivalent formulae

∆r,s = −∂ s−1∂r + r(s − 1) = −∂r−1∂ s + s(r − 1). (2.7)

The component∆0,0 is the Laplace–Beltrami operator. Let us denote by∆ :M→
M the linear operator that acts by ∆r,s on the component Mr,s .

2.4. Petersson inner product. For any integer n, the map

f × g 7→ 〈 f, g〉 :=
∫
D

f (z)g(z) yn dvol

defines a pairing Mr,s × Sn−s,n−r → C, where

D = {|z| > 1, |Re(z)| < 1
2 } and dvol =

dxdy
y2

are the interior of the standard fundamental domain for the action of SL2(Z) on
H, and the SL2(Z)-invariant volume form on H in its standard normalization.

Restricting to holomorphic cusp forms Sn ⊂ Mn , we deduce pairings

〈 f, g〉 :Mr,s × Sr−s −→ C and 〈 f, g〉 :Mr,s × Ss−r −→ C.

Since the Petersson inner product is nondegenerate on holomorphic cusp forms,
these two pairings are equivalent to a linear map

p = (ph, pa) :Mr,s −→ Sr−s ⊕ Ss−r , (2.8)

whose components are called the holomorphic and antiholomorphic
projections [34].
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THEOREM 2.1. Let f ∈Mr,s . If f = ∂F for some F ∈M, then

〈 f, g〉 = 0 for all g ∈ Sr−s holomorphic. (2.9)

In particular, f is in the kernel of the holomorphic projection (2.8).

This can be written as ph∂ = 0. By taking the complex conjugate, pa∂ = 0.

2.5. Example: real-analytic Eisenstein series. Recall the functions Er,s ∈

P−wMr,s defined in (1.3). They satisfy the system of differential equations

∂ Ew,0 = LGw+2

∂ Er,s − (r + 1)Er+1,s−1 = 0 for all 1 6 s 6 w (2.10)

and

∂ E0,w = LGw+2

∂ Er,s − (s + 1)Er−1,s+1 = 0 for all 1 6 r 6 w. (2.11)

They are eigenfunctions of the Laplacian: ∆Er,s = −w Er,s , with constant part

E0
r,s =

−Bw+2

2(w + 1)(w + 2)
L+

(−1)s

2
w!

2w

(
w

r

)
ζ(w + 1)L−w. (2.12)

This example is fairly atypical—in general, the differential equations with respect
to the holomorphic and antiholomorphic differentials ∂ and ∂ will not be
symmetric. The theory is set up in such a manner as to make the differential
structure with respect to ∂ as simple as possible, at the cost of losing explicit
control over the action of ∂ . This is entirely analogous to the situation in genus
0, since L satisfies a complicated differential equation with respect to ∂

∂z whose
coefficients involve multiple zeta values.

Let us write

E(τ ) =
∑

r+s=2w

Er,s(τ )(X − τY )r (X − τY )s .

It is equivariant: E(γ τ) = E(τ )|γ for all γ ∈ SL2(Z). Consider the equivariant
1-form

E2w+2(τ ) = 2π i G2w+2(τ )(X − τY )2w dτ. (2.13)

Note that the normalization of the power of 2π i in this expression can be
different in different contexts [2]. Equations (2.10) and (2.11) are equivalent to
the differential equation

dE = 1
2

(
E2w+2(τ )+ E2w+2(τ )

)
= Re

(
E2w+2(τ )

)
.
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The functions Er,s are thus obtained from the real part of an indefinite integral of
a holomorphic Eisenstein series. This is the prototype for the general theory.

3. Reminders on SL2-representations

Throughout this paper, all tensors are over Q unless otherwise indicated.

3.1. Definitions. For all n > 0, define V2n =
⊕

r+s=2n X r Y sQ, equipped with
the right action of SL2, and hence SL2(Z), given by

(X, Y )
∣∣
γ
= (aX + bY, cX + dY )

for γ of the form (1.1). There is an isomorphism of SL2-representations

V2m ⊗ V2n
∼= V2m+2n ⊕ V2m+2n−2 ⊕ · · · ⊕ V2|m−n|.

Consider the particular SL2-equivariant projector

δk
: V2m ⊗ V2n −→ V2m+2n−2k (3.1)

defined by

δk
= µ ◦

(
∂

∂X
⊗

∂

∂Y
−

∂

∂Y
⊗

∂

∂X

)k

,

where µ : Q[X, Y ] ⊗Q[X, Y ] → Q[X, Y ] is the multiplication map.
Recall the standard notation for generators of SL2(Z):

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
. (3.2)

3.2. de Rham version. It is convenient to define a de Rham version V d R
2n of

the (Betti) vector space V2n generated by elements denoted by X and Y.
There is a comparison isomorphism

V d R
2n ⊗ C ∼

−→ V2n ⊗ C
(X,Y) 7→ (X, (2π i)−1Y ).

(3.3)

The reason for this is that X and Y will span copies of Q(0) and Q(1), respectively:
for example, X is a Betti basis for Q(0) and X is a de Rham basis.

The vector space V d R
2n admits a (de Rham) action of SL2(Z) on the right via

(X,Y)
∣∣
γ
= (aX+ bY, cX+ dY)
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for γ of the form (1.1). When the context is not clear, we shall denote this copy of
SL2 by SLd R

2 . The comparison isomorphism is an isomorphism of group schemes

compB,d R : SL2 × C ∼

−→ SLd R
2 × C,

which on the level of points is given by conjugation by
(1 0

0 (2π i)−1

)
:

compB,d R

(
a b
c d

)
=

(
a 2π ib

(2π i)−1c d

)
. (3.4)

Consequently, the Betti action of SL2(Z) on V d R
2n ⊗C is twisted by powers of 2π i .

The images of the Betti elements S and T under compB,d R are

S′ =
(

0 −2π i
(2π i)−1 0

)
, T ′ =

(
1 2π i
0 1

)
. (3.5)

If bar denotes complex conjugation, these satisfy S′ = −S′ and T ′ = (T ′)−1.

REMARK 3.1. There is a de Rham version of the projection δd R : V d R
2m ⊗ V d R

2n →

V2n+2m−k defined in an identical manner to (3.1), except that we replace X, Y with
X,Y. Under the comparison isomorphism, δk

d R corresponds to (2π i)kδk .

4. Iterated integrals of Eisenstein series

4.1. Preamble on filtrations. In order to keep the paper as accessible as
possible, we work mostly with Lie algebras and iterated integrals and gloss over
the geometric foundations. From time to time, a paragraph marked with a star
explains the geometric background with references for the interested reader. Only
in Section 7, which is considerably more technical, do we require any substantial
Hodge theory and Tannakian theory of fundamental groups and their completions.
As a result, the objects described in this and later sections are equipped with a
limiting mixed Hodge structure and in particular, possess three filtrations: W,
M and F . Since all mixed Hodge structures considered here are of mixed Tate
type, the monodromy-weight filtration M is split in the de Rham realization by
the Hodge filtration F , and is therefore associated with a grading, which we
call the M-degree. It also determines F , which will not be discussed again. The
geometric weight filtration W plays a relatively minor role in this paper. Indeed, it
is canonically split in the de Rham realization, and the W -degrees can be deduced
from the M-degrees and sl2-weights. It is related to the depth filtration [5], which
is briefly discussed in Section 5.4. For this reason, we shall emphasize the M-
degree, and the interested reader can look up the W -filtrations in [2, 21].
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4.2. A tensor algebra. The generators X,Y of V d R
2n satisfy

degM X = 0, degM Y = −1. (4.1)

Let e2n+2 be a symbol that corresponds to the Eisenstein series of weight 2n+2.
It is assigned an M-degree of−1 (it spans a copy of Q(1)). Our convention is that
typeface in sans serif font denotes elements in a de Rham realization.

DEFINITION 4.1. Let ud R
E denote the free graded Lie algebra generated by

elements

e2n+2Xi Y2n−i for 0 6 i 6 2n

and for all n > 1. Equivalently, it is the free graded Lie algebra generated by
e2n+2V d R

2n , for every n > 1. It is naturally equipped with a right action of SLd R
2 .

The completed Lie algebra ûd R
E is the Lie algebra of a pro-unipotent affine group

scheme U d R
E over Q. We remark straight away that this object is not natural from

a geometric perspective (it is not the de Rham realization of a motive), but will be
very convenient for computational purposes. Its affine ring is the tensor coalgebra

O(U d R
E ) = T c

(⊕
n>1

E2n+2(V̌ d R
2n )

)
,

where E2n+2 are symbols dual to e2n+2, and where for any graded vector space W ,
the tensor coalgebra is defined to be the bigraded vector space

T c(W ) =
⊕
n>0

W⊗n,

equipped with the shuffle product x , and the deconcatenation coproduct

∆ : T c(W ) −→ T c(W )⊗ T c(W )

∆(w1 ⊗ · · · ⊗ wn) =
∑

06i6n

(w1 ⊗ · · · ⊗ wi)⊗ (wi+1 ⊗ · · · ⊗ wn).

The ring O(U d R
E ) and the group scheme U d R

E inherit a left (respectively, right)
action of SLd R

2 . Let us denote also by Û d R
E the completed universal enveloping

algebra of ud R
E . It is the ring of noncommutative formal power series in

e2n+2Xi Y2n−i , for 0 6 i 6 2n. We can view the points of U d R
E as the set of

group-like elements in Û d R
E .
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4.3. Power series connection. Recall (2.13) that

E2n+2(τ ) = 2π i G2n+2(τ )(X − τY )2n dτ
(3.3)
= G2n+2(q)(X− log(q)Y)2n dq

q
. (4.2)

The second expression has only rational coefficients in q, log(q).
Consider the following formal 1-form taking values in Ω1(H) ⊗̂ Û d R

E :

Ω E(τ ) =
∑
n>1

E2n+2(τ )e2n+2. (4.3)

It is equivariant with respect to the (Betti) action of SL2(Z):

Ω E(γ τ)
∣∣
γ
= Ω E(τ ) for all γ ∈ SL2(Z).

Here, and throughout this section, the (Betti) action of SL2(Z) on the de Rham
group U d R

E (C) is via the comparison map (3.4). Consider the trivial vector bundle
Û d R

E ⊗̂C over H, equipped with the connection

∇ : Û d R
E ⊗̂C −→ Ω1(H) ⊗̂ Û d R

E

defined by ∇ = d +Ω E , where the elements e2n+2 act on Û d R
E by concatenation

on the left. This connection is integrable since d Ω E
= Ω E

∧Ω E
= 0.

PROPOSITION 4.2. There exists a canonical horizontal section,

I E
: H −→ Û d R

E (C)

which is regularized at the unit tangent vector
→

1∞ at the cusp (equivalently, the
tangent vector ∂/∂q of length one in the coordinate q = e2π iτ at the origin of the
q-disk). It is given explicitly by the generating series of iterated integrals

I E(τ ) = 1+
∫ →

1∞

τ

Ω E
+

∫ →

1∞

τ

Ω EΩ E
+ · · ·

=

∑
r>0

∑
n1,...,nr>1

e2n1+2 . . . e2nr+2

∫ →

1∞

τ

E2n1+2(τ ) . . . E2nr+2(τ ), (4.4)

where we integrate from the left. It satisfies the following properties:

(i) d I E(τ ) = −Ω E(τ )I E(τ ),
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(ii) I E(
→

1∞) = 1,
(iii) I E(τ ) ∈ U d R

E (C) for all τ ∈ H.

Furthermore, the coefficient of e2n1+2 . . . e2nr+2Xi1Y2n1−i1⊗· · ·⊗Xir Y2nr−ir in I E(τ )

is an element of the ring C[[q]][log(q)], and more precisely is a polynomial in
log(q) of degree at most 2(n1 + · · · + nr ) + r whose coefficients are convergent
power series in q.

Proof. The definition of the tangential base point
→

1∞ is given in [2, Section 2],
as well as a concrete explanation of the regularized iterated integrals. Parts (i),
(ii) and (iii) are proved in [2, Propositions 1 and 2]. Only the last part remains to
be proven. For this, observe that the space of multivalued functions in the q-disk
admitting a convergent expansion in the ring C[[q]][log(q)] is closed under f 7→∫

f q−1dq , that is, if f ∈ C[[q]][log(q)], then there exists F ∈ C[[q]][log(q)]
such that d F = q−1 f dq. The series F converges, and defines a multivalued
holomorphic function on the q-disk. Furthermore, a primitive of q i log j(q) dq
is again a polynomial in q and log q of degree at most j + 1 in log(q). Since the
coefficients of E2n+2(τ ) lie in C[[q]][log(q)]dq and have degree at most 2n in
log q , the statement follows.

Properties (i) and (ii) in the previous proposition determine I E(τ ) uniquely.
Property (iii) is equivalent to a shuffle product relation between iterated integrals
of Eisenstein series, which is spelt out in [2, (3.8)].

COROLLARY 4.3. For every γ ∈ SL2(Z), there is a unique CE
γ ∈ U d R

E (C) such
that

I E(γ τ)
∣∣
γ
CE
γ = I E(τ ) (4.5)

for all τ ∈ H. It satisfies the cocycle equation

CE
gh = CE

g

∣∣
hC

E
h for all g, h ∈ SL2(Z). (4.6)

Proof. This is identical to [2, Lemma 5.1], bearing in mind that the right action
of SL2(Z) on U d R

E (C) is given by (3.4).

The map γ 7→ CE
γ defines a non-Abelian cocycle

CE
∈ Z 1(SL2(Z),U d R

E (C)).

Since SL2(Z) is finitely presented, and generated by the two elements T, S, any
cocycle C is uniquely determined [2, Lemma 5.5] by its values CS and CT , which
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satisfy

CS

∣∣
S CS = 1

CU

∣∣
U 2 CU

∣∣
U CU = 1,

where U = T S and CU = CT

∣∣
SCS . The series CE

T was computed explicitly in
[2, Section 6], and its coefficients involve only powers of 2π i . The coefficients of
CE

S are numbers which we called multiple modular values in [2].

4.3.1. Geometric background*. The affine group scheme U d R
E is not a good

object in the sense that it does not admit a natural mixed Hodge structure (see
[22, Remark 19.5]). A closely related object is the de Rham relative completion
of the fundamental group of M1,1 with respect to the unit tangent vector at the
cusp [2, 23]. The group scheme U d R

E is a quotient of it (but not in the category
of mixed Hodge structures). The reason for working with U d R

E is for simplicity
of exposition, since under the monodromy homomorphism, discussed below, all
generators of relative completion that correspond to cusp forms act trivially,
leaving only the Eisenstein series. These are artificially captured by U d R

E .

4.4. Totally holomorphic iterated integrals. For the meaning of ‘totally
holomorphic’, see [2, Section 13.7]. In this section, we work over the ring of
complex numbers, and all tensors are over C. Consider the tensor coalgebra

T c

(⊕
n>1

M2n+2(C)⊗ V̌2n

)
,

where M2n+2(C) denotes the complex vector space of holomorphic modular forms
of weight 2n+ 2. Elements in this coalgebra define ‘totally holomorphic’ iterated
integrals on H. They are linear combinations of the following iterated integrals∫ τ0

τ

ω1 . . . ωr , (4.7)

where ωk are of the form (2π i)τmk fk(τ ) dτ with fk ∈ M2nk+2(C) and 0 6
mk 6 2nk . For τ0 a finite base point, these were considered by Manin [28, 29].
Expression (4.7) is the coefficient of ±X 2n1−m1 Y m1 ⊗ · · · ⊗ X 2nr−mr Y mr in∫ τ0

τ

f1(τ ) . . . fr (τ ),

where for any modular form f ∈ M2n+2(C) of weight 2n + 2, we write

f (τ ) = 2π i f (τ )(X − τY )2n dτ.
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A different normalization of the power of 2π i was used in the first chapter of [2].
From the definition of iterated integrals, one has

d
dτ

∫ τ0

τ

ω1 . . . ωr = −ω1

∫ τ0

τ

ω2 . . . ωr .

The corresponding integrals regularized with respect to a tangent vector at the
cusp were studied in [2, Section 4].

PROPOSITION 4.4. Let τ0 be any (possibly tangential) base point on H. The
iterated integration homomorphism (with respect to the shuffle product on the
tensor coalgebra)∫ τ0

τ

: T c

(⊕
n>1

M2n+2(C)⊗ V ∨2n

)
−→ holomorphic functions of τ ∈ H

is injective. It follows that iterated integrals are linearly independent over the ring
M[τ ] generated by holomorphic modular forms and the function τ .

We give two different proofs of linear independence. The first is conceptual
and uses properties of relative completion. It is a generalization to vector-
valued iterated integrals of a well-known theorem on the linear independence
of iterated integrals due to Chen [10]. The second proof is elementary but more
computational. (Since writing this paper, a third approach appeared in [30], which
treats the case of quasimodular forms for SL2(Z).)

We first deduce the second part of the proposition from the linear independence.

Proof. Since the space M of holomorphic modular forms is an algebra, we can
multiply any linear relation amongst iterated integrals with coefficients in the ring
M[τ ] of polynomials in M and τ by a nonzero modular form of sufficiently large
weight to obtain a relation of the form∑

I=(i1,...,in)

λIωi1

∫ τ0

τ

ωi2 . . . ωin = 0,

where λI ∈ C and every ωi is of the form τ k f (τ ) where k + 2 is bounded above
by the weight of f . This in turn implies, by integrating, a linear relation of the
form ∑

I=(i1,...,in)

λI

∫ τ0

τ

ωi1ωi2 . . . ωin = λ,

where λ ∈ C. Since the right-hand side is a multiple of the empty iterated integral
1, this is a relation between iterated integrals. Using the fact that they are linearly
independent, we deduce that all coefficients λ vanish.
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The following corollary follows immediately from the proposition by applying
it term by term in q, τ .

COROLLARY 4.5. Let I ⊂ C[[q]][τ ] denote the C-vector space generated by the
iterated integrals (4.7). Then the following natural map is an injection:

I ⊗ M[τ ] ⊗ I ⊗ M[τ ] −→ C[[q, q]][τ, τ ].

4.4.1. General proof of linear independence using relative completion. Suppose
that ω ∈ T c(

⊕
n>1 M2n+2(C)⊗ V ∨2n) such that∫ τ0

τ

ω = 0

for all τ ∈ H. In particular, for any γ ∈ SL2(Z), the integral from τ = γ −1τ0 to
τ0 also vanishes. It follows that ω vanishes on π1(M1,1(C), x0) ∼= SL2(Z), where
M1,1(C) is the orbifold quotient of H by the action of SL2(Z), and x0 is the image
of τ0. But

T c

(⊕
n>1

M2n+2 ⊗ V ∨2n

)
⊂ O(π rel,d R

1 (M1,1(C), x0)),

where π rel
1 denotes the de Rham version of relative completion [2, 22, 23]. The

topological fundamental group π top
1 (M1,1(C), x0) is Zariski-dense in its group-

theoretic relative completion, which is the Betti realization of the de Rham
relative completion, and isomorphic to it over C via the comparison isomorphism.
Thus SL2(Z) is Zariski-dense in the latter, and we have ω = 0, that is, iterated
integrals are linearly independent. Note that the proof works more generally for
the whole of the affine ring of de Rham relative completion, and not just for totally
holomorphic iterated integrals.

4.4.2. An elementary proof of linear independence. For the benefit of the reader
not familiar with relative completion, we spell out the above proof of linear
independence of iterated integrals in elementary terms. It only uses the Eichler–
Shimura theorem.

Fix τ0 ∈ H. Given a modular form f of weight w and 0 6 i 6 w − 2, the
differential one-form τ i f (τ ) dτ on H defines a function

γ 7→

∫ τ0

γ−1τ0

τ i f (τ ) dτ : SL2(Z) −→ C,

where γ denotes the geodesic path from γ −1τ0 to τ0.
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LEMMA 4.6. Let f1, . . . , fn be linearly independent holomorphic modular forms
of weights w1, . . . , wn . Then the functions τ i f j(τ ) dτ : SL2(Z)→ C, where 1 6
j 6 n and 0 6 i 6 w j − 2, are linearly independent over C.

Proof. An element g ∈ SL2(Z) defines an automorphism of H. By functoriality of
integration with respect to automorphisms (change of variables formula), a linear
combination of 1-forms of the above type ω vanishes on all γ ∈ SL2(Z) if and
only if the same is true of g∗ω. Now observe by modularity of f that

S∗( f (τ ) dτ) = τw−2 f (τ ) dτ
T ∗(τ i f (τ ) dτ) = (τ + 1)i f (τ ) dτ,

where w is the weight of f , and T τ = τ + 1, Sτ = −τ−1. It follows that

(T ∗ − id)(τ i f (τ ) dτ) = iτ i−1 f (τ ) dτ + terms of lower order in τ j f (τ ).

Equivalently, the complex vector space spanned by the τ i f (τ ) dτ for 0 6 i 6
w − 2 is an irreducible SL2(Z)-representation, and any nonzero vector in
it generates the entire space under the action of S and T . The following
arguments are easily translated into representation-theoretic language, but we
give a long-winded account for explicitness. Suppose that there exists an ω =∑
λi jτ

i f j(τ ) dτ that vanishes on SL2(Z) for some λi j ∈ C not all zero. By
applying (T ∗ − id)N for a sufficiently large N , we can assume that all powers of
τ are zero, that is, λi j = 0 for i > 0. By applying S∗, and once again (T ∗ − id)N ′

for some N ′, we can assume in addition that all f j have the same weight w. Thus
we can write ω =

∑
λ j f j(τ ) dτ , where λ j ∈ C are not all zero. Via the action of

g∗ for g ∈ SL2(Z), we deduce that τ iω vanishes as a function on SL2(Z) for all
0 6 i 6 w − 2. The same is therefore true of the formal linear combination∑

j

λ j f j(τ )(X − τY )w−2 dτ,

which has coefficients in V2n . But this is equivalent to the statement∑
j

λ j C f j = 0,

where for f ∈ M2n+2(C) holomorphic, C f ∈ Z 1(SL2(Z), V2n ⊗C) is the cocycle

C f = γ 7→

∫ τ0

γ−1τ0

f (τ )(X − τY )w−2

associated with f . But the Eichler–Shimura theorem [15, 27, 33] implies that the
map

f 7→ [C f ] : M2n+2(C) −→ H 1(SL2(Z), V2n ⊗ C)
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is injective, so a fortiori the cocycles C f j are independent. Hence λ j = 0 for all j ,
a contradiction.

The following lemma is an easy exercise, but it is included for completeness.

LEMMA 4.7. Given any linearly independent functions φ1, . . . , φm : S → C,
where S is a set, there exist x1, . . . , xm ∈

⊕
s∈S Cs such that φi(x j) = δi j for all

1 6 i, j 6 m, where the functions φi are extended linearly to linear combinations
in S.

Proof. Consider the matrix-valued function P = (φ j(si))i, j on Sm . Its determinant
is not identically zero on Sm . For otherwise, a row expansion would yield a
relation

∑m
i=1 λiφi(sm) = 0, for all sm , where the λi are minors of P . By linear

independence, the λi vanish. The same argument can then be applied to each
minor of P , and we eventually deduce by induction on the size of P that every
entry φ j(si) vanishes for all si , a contradiction. Let s1, . . . , sm ∈ S such that
det(P) 6= 0. Let ek be the column vector with a 1 in the kth row and zeros
elsewhere. Let λk , for 1 6 k 6 m, denote the vector in Cm such that λT

k P = ek . Set
xk = (s1, . . . , sm).λk ∈

⊕
s∈S Cs. By construction, it satisfies φi(x j) = δi j .

Suppose that we have a nontrivial relation of minimal length n for all τ ∈ H:∑
I

λI

∫ τ0

τ

ωi1 . . . ωin +
(
iterated integrals of length 6 n − 1

)
= 0,

where the ωi j ∈ {ω1, . . . , ωN }, a set of linearly independent 1-forms of the kind
τ i f (τ ) dτ where 0 6 i 6 w, where f ∈ Mw+2(C). Composition of paths for
iterated integrals [10] states that∫

αβ

ωi1 . . . ωin =

n∑
k=0

∫
α

ωi1 . . . ωik

∫
β

ωik+1 . . . ωin ,

where α, β are two composable paths, and αβ denotes the path α followed by
β. By linearity, it holds more generally for α any linear combination of paths
that can be composed with β. By the previous two lemmas, there exist elements
xi ∈ C[SL2(Z)] for 1 6 i 6 N , where SL2(Z) are classes of paths based at τ ,
such that ∫

x j

ωi = δi j .

Apply the composition of paths formula with β a path from τ to τ0, and α =
x j . Since αβ is a linear combination of paths from points in the SL2(Z)-orbit
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of τ to τ0 and since the above linear combination of iterated integrals vanishes
along each such path, we deduce N relations, for each 1 6 i 6 N , of the form∑

I

λI δi1 j

∫ τ0

τ

ωi2 . . . ωin +
(
iterated integrals of length 6 n − 2

)
= 0,

which have length 6 n − 1. By minimality, the coefficients λI such that i1 = j
vanish. Since this holds for all j = 1, . . . , N , we conclude that the λI all vanish,
a contradiction.

5. A Lie algebra of geometric derivations

5.1. Geometric context*. The de Rham fundamental group π d R
1 (E×∂/∂q,

→

10) of
the punctured first-order smoothing of the Tate curve [21, 23], with the base point
given by a (choice of) unit tangent vector at the origin, is the de Rham realization
of a mixed Tate motive over Z [20]. This last fact is not strictly required for this
paper and could be circumvented at the cost of complicating some arguments. The
affine ring of the de Rham realisation is canonically weight-graded, and one has
an isomorphism

Π ∼= π
d R
1 (E×∂/∂q,

→

10), (5.1)

where Π is the pro-unipotent affine group scheme whose Lie algebra is the
completion of the bigraded Lie algebra Lie(a,b) discussed below.

5.2. Derivations. Consider the free bigraded Lie algebra Lie(a,b) on two
generators a,b. We shall only be concerned with its M-grading, which satisfies

degM(a) = −1, degM(b) = 0.

Recall that this is one half of the M-grading in [2, 21].
Let DerΘLie(a,b) denote the Lie algebra of derivations

δ : Lie(a,b) −→ Lie(a,b),

which annihilate the element Θ = [a,b] ∈ Lie(a,b), that is,

[δ(a),b] + [a, δ(b)] = 0.

PROPOSITION-DEFINITION 5.1. There exists a distinguished family of
derivations [21, 31, 32, 35] for every n > 0:

ε∨2n+2 ∈ DerΘLie(a,b), (5.2)
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which are uniquely determined by the property ε∨2n+2Θ = 0, the formula

ε∨2n+2(a) = ad(a)2n+2(b),

and the fact that ε∨2n+2(b) is of degree > 1 in b. Their action on b is given by

ε∨2n+2(b) =
1
2

∑
i+ j=2n+1

(−1)i [ad(a)i b, ad(a) j b],

where i, j > 0. These derivations were first written down by Tsunogai [35].

The Lie algebra Lie(a,b) admits a right action by SLd R
2 :

Lie(a,b)× SLd R
2 (Z) −→ Lie(a,b)

(a,b)
∣∣
γ
= (d a+ c b, b a+ a b), (5.3)

where γ is given by (1.1). The infinitesimal version of this action gives rise to an
action of the Lie algebra sl2 via the following derivations:

ε0 = −a
∂

∂b
, ε∨0 = b

∂

∂a
.

The notation is consistent with (5.2) since ε∨0 is indeed the case n = −1 of (5.2).
Since they annihilate Θ , they generate a copy of sl2 inside DerΘLie(a,b) via

[ε0, ε
∨

0 ] = h, [h, ε0] = −2ε0, [h, ε∨0 ] = 2ε∨0 ,

where h ∈ DerΘLie(a,b) is multiplication by degb− dega. The derivation algebra
DerΘLie(a,b) therefore admits an inner action of sl2. With our conventions, a
derivation x ∈ DerΘLie(a,b) is a lowest weight vector if and only if it satisfies
[ε0, x] = 0. It is a highest weight vector if and only if [ε∨0 , x] = 0. Alternatively,
one can simply assign an sl2-weight of 1 to b and −1 to a.

LEMMA 5.2. The elements ε∨2n+2 are highest weight vectors and generate an
irreducible representation of sl2 of dimension 2n + 1, with the basis adi(ε∨0 )ε

∨

2n+2

for 0 6 i 6 2n. In particular, ad2n+1(ε∨0 )(ε
∨

2n+2) = 0.

Proof. These facts are well known and easily verified from the definitions.

Let us denote by ε2n+2 the operators obtained from ε∨2n+2 by conjugating by
the element S, where (a,b)

∣∣
S = (−b,a). These are lowest weight vectors and

satisfy
ε2n+2(b) = −ad(b)2n+2(a).
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5.3. (de Rham) Lie algebra of geometric derivations

DEFINITION 5.3. Define a Lie subalgebra

ugeom 6 DerΘLie(a,b)

to be the bigraded Lie subalgebra generated by the ε∨2n+2 for n > 1, under the
action of sl2. By the previous lemma, it is the bigraded Lie subalgebra generated
by the derivations ad(ε∨0 )

iε∨2n+2 for all n > 1 and 0 6 i 6 2n.

With this definition, which differs slightly from the version given in [5], ugeom

does not contain the element ε∨2 = ε2, which plays a limited role, and commutes
(as one may verify) with all elements of ugeom. Therefore the Lie algebra generated
by ε0 and all derivations ε∨2n+2 for n > −1 is isomorphic to

ε2Q⊕ (sl2 n ugeom).

DEFINITION 5.4. Let U geom denote the (de Rham) pro-unipotent affine group
scheme whose Lie algebra is the completion of ugeom. It admits a right action
of SLd R

2 (Z).

The complex points U geom(C) can be described relatively explicitly as follows.
They consist of the group-like elements in the completed universal enveloping
algebra of ugeom tensored with C. These can be represented as certain formal
power series ∑

r>0

∑
06mi6ni

∑
n1,...,nr>1

am1,...,mr
n1,...,nr

ε
(m1)
2n1+2ε

(m2)
2n2+2 . . . ε

(mr )
2nr+2 (5.4)

with am1,...,mr
n1,...,nr

∈ C, where ε(m)2n+2 corresponds to a generator adm(−ε0)ε2n+2 of ugeom.
Note that there are relations in ugeom, so this representation is not unique.

5.4. Relations. The elements ε2n+2 satisfy many nontrivial relations, which
were first studied by Pollack [32] following a suggestion of Hain (in Pollack’s
notation, the notations ε and ε∨ are reversed). One shows that the elements

[εi
0ε2a+2, ε

j
0ε2b+2] where 0 6 i 6 2a, 0 6 j 6 2b (5.5)

are linearly independent when a, b > 1 and a+b 6 4, but starting from M-degree
6 −12, Pollack showed that there are relations

[ε∨10, ε
∨

4 ] − 3[ε∨8 , ε
∨

6 ] = 0
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2[ε∨14, ε
∨

4 ] − 7[ε∨12, ε
∨

6 ] + 11[ε∨10, ε
∨

8 ] = 0, (5.6)

which are the first two in an infinite sequence of quadratic and higher order
relations. There are several different proofs of these relations in the literature.
We shall derive a new and elementary interpretation of these relations via the
orthogonality of equivariant iterated integrals of Eisenstein series to cusp forms
(Theorem 12.3).

5.5. Embeddings. One way to think of the Lie algebra ugeom is as a quotient of
a certain free Lie algebra generated by Eisenstein symbols (see the next section).
Another way is to embed it inside the free Lie algebra Lie (a,b).

Let us write H = Qa⊕Qb. The natural map

Der Lie(a,b) −→ Hom(H,Lie(a,b))

is injective, since a derivation δ is uniquely determined by δ(a), δ(b). Hence

ugeom
−→ H∨ ⊗Q Lie(a,b)

is also injective. In fact, more is true. It is straightforward to show that, as a
consequence of the relation δ(Θ) = 0, the action of a derivation on either a or b
defines a pair of injective linear maps

evx : δ 7→ δ(x) : ugeom
−→ Lie(a,b), (5.7)

where x = a or b. These maps do not respect the Lie algebra structure but can be
used to write down elements in O(U geom). We shall only use them in Section 12.4.

6. Monodromy homomorphism

6.1. Geometric preamble*. Let Gd R

1,
→

1
denote the de Rham relative completion

[2, 22] of the fundamental group of the moduli scheme of elliptic curves equipped
with a nonzero Abelian differential, with base point the unit tangent vector at the
cusp. The monodromy action defines a canonical homomorphism

Gd R

1,
→

1
−→ Aut(π d R

1 (E×∂/∂q,
→

10)).

After choosing suitable splittings of the weight filtrations, it gives rise to a
morphism from the graded Lie algebra of Gd R

1,
→

1
to ε2Q⊕ ugeom (ε2 is central). One

deduces the existence of a homomorphism

Gd R
1,1 −→ U geom,
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where Gd R
1,1 is the de Rham relative completion of the fundamental group of M1,1.

One knows [2, 21] that the previous map factors through its quotient U d R
E , that is,

all generators corresponding to cusp forms map to zero.

6.2. Description of the map µ. The isomorphism

(X,Y) 7→ (b,a) : QX⊕QY ∼

−→ Qb⊕Qa

respects the action of SLd R
2 on both sides. This induces an isomorphism of the de

Rham Lie algebras sl2, which act on ud R
E and ugeom, respectively:

X
∂

∂Y
7→ ε∨0 and − Y

∂

∂X
7→ ε0. (6.1)

DEFINITION 6.1. There is a unique morphism of Lie algebras satisfying

µ : ud R
E −→ ugeom

e2n+2X2n
7→

2
(2n)!

ε2n+2 (6.2)

for all n > 1, which is equivariant for the respective actions of sl2 on both sides.
In particular, µ(

(2n
i

)
X2n−i Yi

=
2

(2n)!
(−1)i

i ! ad(ε0)
iε2n+2. It respects the M grading.

The map µ is surjective. It induces a surjective (faithfully flat) homomorphism
of affine group schemes

µ : U d R
E −→−→ U geom.

On the level of complex points, it sends a group-like formal power series of the
form ∑

r>0

ai1,...,ir
n1,...,nr

(
e2n1+2Xi1Y2n1−i1 ⊗ · · · ⊗ e2nr+2Xir Y2nr−ir

)
,

where ai1,...,ir
n1,...,nr

∈ C, to a series of the form (5.4) by applying µ ⊗ · · · ⊗ µ (r
times) to each term of length r . For a series of the above type to be group-like is
equivalent to certain shuffle product equations amongst the coefficients ai1,...,ir

n1,...,nr
.

These are spelt out explicitly in [2, Section 3.6], where we used the slightly
different ‘multivariable’ notation e2n1+2 . . . e2nr+2X

i1
1 Y2n1−i1

1 . . .Xir
r Y2nr−ir

r instead
of a tensor product of the form

(
e2n1+2Xi1Y2n1−i1 ⊗ . . .⊗ e2nr+2Xir Y2nr−ir

)
.
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6.3. The generating series J

DEFINITION 6.2. Let J denote the composition µI E . It defines an analytic
function

J : H −→ U geom(C)

whose coefficients are certain linear combinations of iterated integrals of G2n ,
n > 2. For the explicit shape of J (τ ), see equations (6.5) and the lines that follow.
Note that only some, but not all, iterated integrals of Eisenstein series actually
appear in J because of the existence of relations in ugeom.

The following proposition is perhaps known to one or two experts, but is not
stated explicitly in the literature to our knowledge.

PROPOSITION 6.3. The function J is the unique solution to the differential
equation

d J = −ωJ (6.3)

taking the value 1 at the tangent vector ∂/∂q at q = 0, where ω is the formal
1-form

ω = −ad(ε0)
dq
q
+

∑
n>1

2
(2n)!

ε2n+2G2n+2(q)
dq
q
. (6.4)

Proof. We shall use the following easily verified identity:

(X− log(q)Y)n = exp
(
− log(q)Y

∂

∂X

)
Xn.

The map µ induces a map µ⊗ id : ud R
E ⊗Ω

1(H) −→ ugeom
⊗Ω1(H), which by

definition (6.2) of µ and (4.2) of E2n+2(τ ) gives

(µ⊗ id)(e2n+2 E2n+2(τ )) =
2

(2n)!
exp

(
log(q)ad(ε0)

)
ε2n+2G2n+2(q)

dq
q

=
2

(2n)!

∑
m>0

1
m!
(log q)mad(ε0)

mε2n+2G2n+2(q)
dq
q

=
2

(2n)!

∑
m>0

ε
(m)
2n+2

( ∫ →

1∞

q

dq
q
. . .

dq
q︸ ︷︷ ︸

m

)
G2n+2(q)

dq
q
,

where for simplicity we write ε(m)2n+2 for (ad(−ε0))
mε2n+2. These elements vanish

whenever m > 2n as a consequence of Lemma 5.2.
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The tangential base point
→

1∞ corresponds, in the q-disk, to ∂

∂q , the unit tangent
vector at the origin. From formula (4.4) for I E as an iterated integral transposed
to the q-disk, we see that its image µI E has the form

J = µI E
=

∑
r>0

∑
n1,...,nr>1

∑
m1,...,mr>0

J m1,...,mr
n1,...,nr

(q), (6.5)

where

J m1,...,mr
n1,...,nr

(q) =
2

(2n1)!
. . .

2
(2nr )!

ε
(m1)
2n1+2 . . . ε

(mr )
2nr+2

×

∫ ∂
∂q

q

( dq
q
. . .

dq
q︸ ︷︷ ︸

m1

G2n1+2(q)
dq
q

)
. . .
( dq

q
. . .

dq
q︸ ︷︷ ︸

mr

G2nr+2(q)
dq
q

)
. (6.6)

It follows from the formula for the derivative of an iterated integral that

d J m1,...,mr
n1,...,nr

(q) = ad(ε0)
dq
q

J m1−1,m2,...,mr
n1,n2,...,nr

(q)

if m1 > 1, and

d J 0,m2,...,mr
n1,...,nr

(q) = −
2

(2n1)!
ε2n1+2G2n1+2(q)

dq
q

J m2,...,mr
n2,...,nr

(q)

otherwise. Therefore J is the unique solution to the differential equation (6.3),
which takes the value 1 at the unit tangent vector at the origin.

The image of CE under the homomorphism µ is a non-Abelian cocycle

G := µ CE
∈ Z 1(SL2(Z),U geom(C)),

where SL2(Z) acts via the Betti action (3.4). The function J satisfies

J (γ τ)
∣∣
γ
Gγ = J (τ ) (6.7)

for all τ ∈ H, and Gγ satisfies the cocycle equation

Ggh = Gg

∣∣
hGh (6.8)

for all g, h ∈ SL2(Z).
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7. Action of complex conjugation

Complex conjugation acts via q 7→ q on the unit disk, and corresponds on the
upper-half plane to the involution τ 7→ −τ .

It acts on U geom(C) by complex conjugation on the coefficients. It is important
to note that it does not respect the cocycle relation (6.8), since

Ggh = Gg

∣∣
h Gh

and h is not in general equal to h since the (Betti) action of SL2(Z) on U geom(C) is
via (3.4), which involves powers of 2π i (see (3.5)). To remedy this, we compose
the action of complex conjugation with the element −1 ∈ Gm(Q), where Gm is
the multiplicative group corresponding to the M-grading.

More precisely, consider the involution

(a,b) 7→ (−a,b) : L(a,b) −→ L(a,b).

It has the effect of multiplying terms of M-degree m by (−1)m . This induces
an involution (−1) : ugeom

→ ugeom on the Lie subalgebra ugeom, and hence an
involution (−1) : U geom

→ U geom on affine group schemes.

DEFINITION 7.1. Consider the homomorphism of groups

sv : U geom(C) −→ U geom(C), (7.1)

which is obtained by composing (−1) : U geom
→ U geom with the action of complex

conjugation on coefficients, in either order (they commute).

It follows that the involution sv now preserves the cocycle relation

svGgh = sv
(
Gg

∣∣
h

)
sv (Gh)

for all g, h ∈ SL2(Z), and hence svG ∈ Z 1(SL2(Z),U geom(C)). It was shown
in [2] that the space of cocycles is a torsor over a certain automorphism group,
and the technical heart of this paper is to relate G and svG via this automorphism
group. To state this, recall that Z sv

⊂ R denotes the ring of single-valued
multiple zeta values. The following theorem involves a considerable amount of
the machinery constructed in [2], and may be taken as a black box.

THEOREM 7.2. There exist elements

bsv
∈ U geom(Z sv) and φsv

∈ Aut(U geom)SL2(Z sv)
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such that, for all γ ∈ SL2(Z), we have

(bsv)−1
∣∣
γ
φsv(svGγ )bsv

= Gγ . (7.2)

The pair of elements (bsv, φsv) is well-defined up to replacing it with (absv,

aφsva−1), where a ∈ U geom(Z sv)SL2 . Furthermore, the automorphism

(bsv)−1φsvbsv
∈ Aut(U geom)(Z sv)

is induced by an automorphism ψ sv
∈ Aut(Π)(Z sv) of Π (defined in (5.1)).

The group Aut(U geom)SL2 denotes the SL2-invariant automorphisms of U geom,
that is, automorphisms φ : U geom ∼

→ U geom satisfying φ(xg) = φ(x)g for all g ∈
SLd R

2 , with the de Rham action on U geom. Therefore, an element φ ∈ Aut(U geom)SL2

commutes with the (Betti) image of SL2(Z) in SLd R
2 (C) under the comparison

map (3.4).

7.1. Further properties. Before turning to the proof, we state a number of
further properties satisfied by the elements bsv, φsv of the theorem.

(i) The elements bsv, φsv are, respectively, exponentials of elements

βsv
∈ ugeom(Z sv) and δsv

∈ Der(ugeom)sl2(Z sv),

where the derivation δsv has the property that

[δsv, ε0] = 0 and [δsv, ε∨0 ] = 0,

which is equivalent to saying that δsv is sl2-invariant.
(ii) There exists a derivation

ψψψ sv
= Lieψ sv

∈ DerΘLie(a,b)(Z sv)

which preserves ugeom(Z sv) and whose restriction to ugeom(Z sv) satisfies

ψψψ sv
∣∣
ugeom(Zsv)

= ad(βsv)+ δsv.

This is a highly nontrivial constraint. For example, it expresses the nonobvious
fact that the derivation on the right-hand side is uniquely determined by its action
on a single element a (or b). Conversely, the fact that ψψψ sv in turn normalizes the
image of all geometric derivations ugeom is equivalent to an infinite sequence of
combinatorial constraints of the form

[ψψψ sv, ε2n+2] ∈ ugeom(Z sv)
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for every n > 1. It is far from obvious that there exist any solutions to
these equations but follows from the Tannakian theory implicit in the proof of
Theorem 7.2 (we know that ‘motivic’ derivations must satisfy a similar property).

(iii) Equation (7.2), in the case γ = T , is equivalent to the ‘inertial relation’

[βsv, ε0] + [β
sv, N+] + δsv(N+) = 0,

where the element N+ ∈ ugeom is the element of M-degree −1 given by

N+ =
∑
n>1

B2n+2

4n + 4
2

(2n)!
ε2n+2

and is the unipotent part of the logarithm of (T,GT ) ∈ SL2 n U geom(C). The
inertial relation ties together βsv and δsv: information about βsv can be deduced
from information about δsv and vice versa. Equation (7.2) is uniquely determined
by its two instances γ = T and γ = S. In other words, (bsv, φsv) are uniquely
determined (up to twisting by a ∈ (U geom)SL2 via (b, φ) 7→ (absv, aφsva−1)), by
the inertial relation and

(bsv)−1
∣∣

Sφ
sv(svGS)bsv

= GS.

(iv) It follows as a consequence of [2, Section 18] that to lowest order

b ≡ 1+
∑
n>1

ζsv(2n + 1) ε∨2n+2 (mod [ugeom(Z sv), ugeom(Z sv)])

is canonical, where ζsv(2n + 1) = 2ζ(2n + 1). The element φsv is also known to
lowest order by [2, Theorem 16.9] via the inertial relation. In particular,

[δsv, ugeom(Z sv)] ⊂ [ugeom(Z sv), ugeom(Z sv)].

The element ψψψ sv satisfies ψψψ sv(a) ≡ a and ψψψ sv(b) ≡ b modulo terms of degree
> 3 in b.

(v) The weights of the coefficients of a, bsv, φsv are determined by the M-
filtration. In fact, much more is true: replacing bsv, φsv with their ‘motivic’
versions as in [2, Section 18.3], the action of the de Rham motivic Galois group of
MT (Z) on their coefficients is determined by its action on (bsv, φsv). Restricting
to the subgroup Gm implies that the weights of the motivic multiple zeta values
are induced by the M-grading on O(U geom).

(vi) Since complex conjugation is an involution, the elements sv and hence
(bsv, φsv) satisfy an involution equation, which we will not write down.
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REMARK 7.3. The element ψ sv
∈ AutΠ(C) is the image of the single-valued

element sv defined below, and could be computed independently via the
periods of Π . In particular, it is compatible [2] with the Hain morphism Φ

from the motivic fundamental group of the projective line minus three points
P1
\{0, 1,∞}. The image of sv in its group of automorphisms was computed in

[4] and involves single-valued multiple zeta values. This provides yet another
constraint, and hence a method to obtain information about bsv and φsv, which we
will not exploit here.

In conclusion, the elements bsv, φsv are very heavily constrained and it should
in principle be possible to compute them explicitly to higher orders.

7.2. Proof of Theorem 7.2. The proof follows closely the argument given in
[2, Section 18], with some minor differences. We summarize the main ingredients,
and refer to loc. cit. for further details.

(1) The objects Gd R
1,1 , π

d R
1 (E×∂/∂q,

→

10) are affine group schemes over Q whose
affine rings are the de Rham components of Ind-objects in a category H
of realizations. The objects in H consist of triples (MB,Md R, c), where
MB,Md R are finite-dimensional Q-vector spaces and c is an isomorphism
Md R ⊗Q C ∼

→ MB ⊗Q C. In addition, MB,Md R are equipped with an
increasing weight filtration (in our situation, the M-filtration) compatible
with c, and Md R has a decreasing filtration F such that MB , equipped
with the weight filtration and the filtration c(F) ⊗ C on MB ⊗Q C, is a
graded polarizable Q-mixed Hodge structure. The final piece of data is a real
Frobenius involution F∞ : MB

∼

→ MB compatible with c and with complex
conjugation on both MB ⊗ C and Md R ⊗ C.

(2) By a Tannakian argument [21, Appendix B], one can choose splittings of
the weight and Hodge filtrations M and F in the de Rham realization of
H. They are compatible with the monodromy homomorphism µ. Therefore

we can identify π d R
1 (E×∂/∂q,

→

10) with Π (see (5.1)). The image of U d R
1,1 , the

unipotent radical of Gd R
1,1 , under µ is by definition U geom:

µ : U d R
1,1 −→ U geom 6 Aut(Π).

(3) Let Gd R
H denote the group of tensor automorphisms of the fibre functor on

the category H, which sends (MB,Md R, c) to Md R . It is an affine group
scheme over Q. Consider the composition of isomorphisms

Md R ⊗ C c
−→ MB ⊗ C F∞

−→ MB ⊗ C c−1

−→ Md R ⊗ C.
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Since it is functorial in M , it defines a canonical element

s ∈ Gd R
H (C).

Thus for every object X in H, we deduce the existence of s ∈ Aut(X d R)(C),
which is compatible with all morphisms in H, and compute the action of
the real Frobenius F∞ in the de Rham realization.

(4) The element s is canonical, but it is convenient to modify it as follows.
Here our presentation differs slightly from that of [2, Section 19]. The
action of Gd R

H on the de Rham component of the Lefschetz object Q(−1) =
(Q,Q, 1 7→ 2π i) in H defines a morphism π : Gd R

H → Aut(Q) = Gm . The
image of s under π is −1 ∈ C× = Gm(C). Now, the choice of splitting
of the weight filtration M is equivalent to an action of the multiplicative
group Gm on the de Rham component of objects of H, that is, a splitting
of the homomorphism π : Gd R

H → Gm . We now multiply s by the image of
−1 ∈ Gm(Q) under this splitting to obtain a modified element sv = (−1)s ∈
Gd R

H (C), which now acts by the identity on Q(−1). The element sv depends
on the choice of splitting.

Note that since π1(E×∂/∂q,
→

10) has a mixed Tate Hodge structure, its M-
filtration is canonically split in the de Rham realization by F , and the action
of sv upon its complex points is canonical. The same applies for U geom,
and so the statement of the theorem depends in no way on the choices of
splittings.

(5) We therefore deduce the existence of an element

sv ∈ Aut(Gd R
1,1)(C)× Aut(Π)(C),

which is compatible with µ. It is the image of the element sv ∈ Gd R
H ,

which acts compatibly on both Gd R
1,1(C) and Π(C). On the other hand, in [2,

Section 10], we gave an explicit description of the group of automorphisms
of Gd R

1,1 . We showed that, for any choice of splitting Gd R
1,1
∼= SL2 n U d R

1,1 , any
automorphism of Gd R

1,1 that acts trivially on SL2 defines a pair

b ∈ U d R
1,1 (C) and φ ∈ Aut(U d R

1,1 )
SL2(C).

They are well-defined up to twisting by an element a ∈ (U d R
1,1 )

SL2(C). The
(right) action of (b, φ) on (g, u) ∈ (SL2nU d R

1,1 )(C) is (g, b−1
∣∣

gφ(u)b). There
exists, by the argument of [21, Appendix B], a splitting Gd R

1,1
∼= SL2 n U d R

1,1
compatible with the choice of M-splittings. We deduce that the image of sv
under the monodromy homomorphism µ is represented by a pair

bsv
∈ U geom(C) and φsv

∈ Aut(U geom)SL2(C),
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which are well-defined up to twisting by a ∈ (U geom)SL2(C). It follows from
the compatibility of sv with µ that the image of sv ∈ Aut(U geom)(C) is
given by the automorphism (bsv)−1φsvbsv. It is induced by the automorphism
sv ∈ Aut(Π)(C), which we call ψ sv in the statement of the theorem.

(6) Now let us apply the element sv to the ‘canonical cocycle’. The Betti
component GB

1,1 of the relative completion G1,1 admits a natural map

π
top
1 (M1,1(C),

→

1∞) = SL2(Z) −→ GB
1,1(Q).

This is one of the defining properties of relative completion. We deduce a
map

SL2(Z) −→ GB
1,1(Q)

c
−→ Gd R

1,1(C) ∼= SLd R
2 (C)n U d R

1,1 (C),

where c denotes the comparison isomorphism, compB,d R for short. The
image of γ ∈ SL2(Z) is (cγ, Cγ ), where cγ is the image of γ under (3.4) and
Cγ ∈ U d R

1,1 (C) is called the canonical cocycle. Its image under µ is precisely
Gγ ∈ U geom(C). Since γ is Betti-rational, the action of F∞ corresponds,
via the comparison isomorphism, to complex conjugation on coefficients of
c(γ ). This action is computed by the element s. The element sv computes
complex conjugation composed with the map −1 ∈ Gm (7.1). Since the
affine ring of SL2 is pure Tate, the latter action is trivial on SL2 and hence
sv acts trivially on γ (this is the reason for preferring sv over s, which does
not). It follows that the (right) action of sv satisfies the equation

(γ, svGγ ) ◦ sv = (γ,Gγ ).
Writing sv in terms of (bsv, φsv) above, we deduce that

(bsv)−1
∣∣
γ
φsv(svGγ )bsv

= Gγ .

(7) It remains to compute the coefficients of sv. For this, we need the fact that
the motivic fundamental group of the punctured Tate elliptic curve (or rather,
the image of G1,1 under the monodromy homomorphism µ) is a mixed Tate
motive over Z [20]. It then follows from the results of [4] that, for any mixed
Tate motive M over Z, the coefficients of sv in Aut(Md R)(R) are single-
valued multiple zeta values.

The idea of this proof applies in a much more general setting. It may be possible
to circumvent the final step (7), which appeals to deep results about the category of
mixed Tate motives over Z by a direct argument following the procedure outlined
in Remark 7.3. However, it is likely that this would forfeit some of the constraints
described in Section 7.1, which would become conjectures given the current state
of knowledge.
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8. Equivariant iterated Eisenstein integrals

We can now define modular-equivariant iterated integrals of Eisenstein series.

DEFINITION 8.1. Let (bsv, φsv) be as in Theorem 7.2. Then define

J eqv(τ ) = J (τ )(bsv)−1φsv(svJ (τ )−1).

It is well-defined up to right multiplication by an element a ∈ (U geom)SL2(Z sv).

THEOREM 8.2. The series J eqv defines a real-analytic function

J eqv
: H −→ U geom(C),

which is equivariant for the action of SL2(Z) :

J eqv(γ τ)
∣∣
γ
= J eqv(τ ).

Proof. Using the monodromy equation (6.7), we compute

J eqv(γ τ)
∣∣
γ
= J (γ τ)

∣∣
γ
(bsv)−1

|γ φ
sv(svJ (γ τ)−1

∣∣
γ
)

= J (τ )G−1
γ (bsv)−1

|γ φ
sv(svGγ sv J (τ )−1)

= J (τ )G−1
γ

(
(bsv)−1

|γ φ
sv(svGγ )bsv

)
(bsv)−1φsv(sv J (τ )−1)

= J (τ )(bsv)−1φsv(sv J (τ )−1)

= J eqv(τ ).

The cancellation of terms going from the third to the fourth equation follows from
the defining property (7.2).

The series J eqv is of the form

J eqv
= J (τ ) (svJ (τ ))−1

+ correction terms,

since bsv and φsv are to lowest order equal to 1 and the identity, respectively.
Therefore, to leading orders, the coefficients of J eqv are the real or imaginary parts
of iterated integrals of Eisenstein series of the appropriate length. The correction
terms involve linear combinations of products of real and imaginary parts of
iterated integrals of Eisenstein series of lower lengths with single-valued multiple
zeta value coefficients.
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8.1. A digression: ‘single-valued’ versus ‘equivariant’. The series J eqv(τ )

does not quite correspond to a naive ‘single-valued version’ of J (τ ), which is

J sv(τ ) := J (τ )(bsv)−1φsv(sv J (τ )−1)bsv
= J eqv(τ )bsv.

Unlike J eqv, it is canonically defined, that is, does not depend on the choice of
representative (bsv, φsv). Its value at the unit tangent vector at the cusp is 1:

J sv(
→

1∞) = 1.

The generating function J sv(τ ) is not modular-equivariant. In fact, by the previous
theorem, it satisfies

J sv(γ τ)
∣∣
γ
= J eqv(γ τ)

∣∣
γ
bsv
∣∣
γ

= J eqv(τ )bsv
∣∣
γ

= J sv(τ )(bsv)−1bsv
∣∣
γ
.

Thus if we define

Gsv
γ = (b

sv)−1bsv
∣∣
γ
∈ Z 1(SL2(Z),U geom(C))

to be the single-valued cocycle, the single-valued generating series J sv satisfies

J sv(γ τ)
∣∣
γ
= J sv(τ )Gsv

γ .

The coefficients of Gsv
γ are single-valued multiple zeta values since this is true for

bsv. A key point is that the cocycle Gsv is a coboundary. It is for this reason that
it can be trivialized (noncanonically) to produce a modular-equivariant function
J eqv(τ ).

8.2. Properties of J eqv. Let (bsv, φsv) be as in Theorem 7.2.

COROLLARY 8.3. The generating function J eqv satisfies the differential equation

d J eqv
= −ωJ eqv

+ J eqvφsv(svω). (8.1)

It is the unique solution whose value at the tangent vector of length one at the
cusp is

J eqv(
→

1∞) = (bsv)−1.
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Proof. The differential equation follows from Definition 8.1 together with the
observation that J−1 satisfies the equation d J−1

= J−1ω. This follows from
differentiating the equation J−1 J = 1, which implies that (d J−1)J − J−1ωJ = 0,

and by multiplying on the right by J−1. The formula for the value of J eqv at
→

1∞ is

a consequence of the definition, the fact that J (
→

1∞) = 1, and the fact that φsv, sv
are group homomorphisms, and therefore preserve the identity in U geom(Z sv).

In particular, the holomorphic component of the differential equation( ∂
∂τ

J eqv
)

dτ = −ωJ eqv

is canonical, but the antiholomorphic part( ∂
∂τ

J eqv
)

dτ = J eqvφsv(svω)

depends on the choice of φsv. The right-hand side is J eqvsvω to leading order, and
so d J eqv

≡ −ωJ eqv
+ J eqvsvω modulo lower order terms.

LEMMA 8.4. Complex conjugation acts on J eqv via the formula

sv(bsv J eqv) = φ̃sv(J eqvbsv)−1,

where φ̃sv
= svφsvsv.

Proof. The element K = sv J eqv satisfies the equation

d K = −sv(ω)K + K φ̃sv(ω)

and hence
d K−1

= −φ̃sv(ω)K−1
+ K−1sv(ω).

The element F = φ̃sv(J eqv) satisfies the equation

d F = −φ̃sv(ω)F + F φ̃sv(φsv(sv(ω))).

Since the holomorphic components of these two differential equations agree, it
follows that F = K−1 A, for some A : H→ U geom(C) that satisfies

A(γ τ)
∣∣
γ
= A(τ ) and

∂A
∂τ
= 0.

Its modular equivariance follows from the equivariance of φsv and the fact
that sv preserves SL2(Z). Consider any coefficient a : H → V2n ⊗ C of A.
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It defines a holomorphic section a ∈ Γ (SL2(Z)\\H;V2n), where V2n denotes the
vector bundle associated with V2n , which is analytic at the cusp. Such sections
correspond to modular forms of weight 2n. On the other hand, from A = K F ,
we see that the coefficients of A are linear combinations of iterated integrals of
modular forms and their complex conjugates. By Corollary 4.5, A is constant. We
deduce that

sv(J eqv) = Aφ̃sv(J eqv)−1.

Multiplying by sv(bsv) on the left and changing the constant A, this is equivalent
to

sv(bsv J sv(bsv)−1) = A′φ̃sv(J sv)−1,

where J sv
= J eqvbsv. But J sv(

→

1∞) = 1, which implies that A′ = 1.

The previous result can also be deduced from the fact that complex conjugation
and hence the elements s and sv in the proof of Theorem 7.2 are involutions. This
implies a cumbersome identity involving bsv, φsv and sv, which we chose to omit.

9. Definition of a class of real-analytic modular forms

Having defined a modular-equivariant function J eqv, we can extract real-
analytic modular forms from its coefficients, which in turn generate the space
MI E .

9.1. Coefficients of J eqv. For every τ ∈ H, we view J eqv(τ ) ∈ U geom(C) as a
homomorphism O(U geom)→ C.

DEFINITION 9.1. We call a coefficient function an SL2-equivariant Q-linear map

c : V̌ d R
2n −→ O(U geom). (9.1)

Given such a function, consider the composite (all tensor products are over Q)

H
J eqv

−→ Hom(O(U geom),C) c
−→ Hom(V̌ d R

2n ,C) ∼= V2n ⊗ C

which we call the ‘coefficient of c in J eqv’. The last isomorphism is induced by
the comparison V d R

2n ⊗ C ∼= V2n ⊗ C (3.3). The coefficient of c is a real-analytic
map

c(J eqv) : H −→ V2n ⊗ C.
Since J eqv is equivariant, it follows that for all γ ∈ SL2(Z),

c(J eqv)(γ τ)
∣∣
γ
= c(J eqv).
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9.2. Equivariant sections. The following result was proved in [6, Section 7].

PROPOSITION 9.2. A real-analytic section f : H→ V2n ⊗ C

f (τ ) =
∑

r+s=2n

f r,s(τ )X r Y s

can be uniquely written in the form

f (τ ) =
∑

r+s=2n

fr,s(τ )(X − τY )r (X − τY )s, (9.2)

where fr,s(τ ) : H → C are real analytic. Then f is equivariant if and only if
the coefficients fr,s(τ ) are modular of weights (r, s) for all r, s. If in addition the
f r,s(τ ) admit expansions in the ring C[[q, q]][τ, τ ], then fr,s ∈ P−(r+s)Mr,s .

The proposition follows from applying the invertible change of variables

X 7→
τ

τ − τ
(X − τY )−

τ

τ − τ
(X − τY )

Y 7→
1

τ − τ
(X − τY )−

1
τ − τ

(X − τY ). (9.3)

In the de Rham basis of V d R
2n , this corresponds to

X 7→
log(q)

2L
(X+ log(q)Y)+

log(q)
2L

(X− log(q)Y)

Y 7→
1

2L
(X+ log(q)Y)−

1
2L
(X− log(q)Y). (9.4)

9.3. Definition of the space MI E . Define the modular components
cr,s(J eqv) of a coefficient function c to be the functions defined in the manner of
Proposition 9.2. They are the unique functions satisfying∑

r+s=2n

cr,s(J eqv)(X − τY )r (X − τY )s = c(J eqv)(X, Y ).

We shall show in Theorem 10.6 below that the cr,s(J eqv) lie in Mr,s .

DEFINITION 9.3. Let MI E
⊂ M denote the Z sv-module generated by all

modular components cr,s(J eqv) of all coefficients of J eqv.
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The space MI E is well-defined, that is, independent of the choices bsv, φsv.
This follows because J eqv is unique, by Theorem 7.2, up to multiplying on the
right by an element a ∈ (U geom)SL2(Z sv). The operation of multiplying on the
right by such an element a is equivalent to modifying the coefficients c by
linear combinations, with coefficients in Z sv, of coefficient functions of smaller
length. Since MI E is a Z sv-module, it follows that the space generated by the
coefficients of J eqv is unaffected by this procedure.

10. First properties of MI E

Since the space MI E is generated by coefficients (9.1), it inherits a number of
structures from the affine ring O(U geom). Some first examples are discussed here.

10.1. Multiplicative structure

PROPOSITION 10.1. The space MI E
[L,L−1

] is closed under multiplication.

Proof. Since O(U geom) is a commutative ring, any two SL2-equivariant maps

c : V̌ d R
2m −→ O(U geom) and c′ : V̌ d R

2n −→ O(U geom)

can be multiplied together via

V̌ d R
2m ⊗ V̌ d R

2n
c⊗c′
−→ O(U geom)⊗O(U geom) −→ O(U geom),

where the second map is the multiplication on O(U geom). By composing with the
inclusion of an isotypical factor in an SL2-equivariant decomposition

V̌ d R
2m+2n−2k ↪→ V̌ d R

2m+2n ⊕ · · · ⊕ V̌ d R
2|m−n|

∼= V̌ d R
2m ⊗ V̌ d R

2n

of the left-hand side, we deduce that the product of coefficients c, c′ can be
decomposed as a linear combination of coefficients of the form

c′′k : V̌
d R

2m+2n−2k −→ O(U geom)

for 0 6 k 6 min{m, n}. Since, furthermore, transformation (9.4) is linear with
coefficients in Q[L,L−1, log q, log q], it follows that every product cr,s .c′r ′,s′
of modular components (Section 9.3) can in turn be expressed as a linear
combination, with coefficients in Q[L,L−1, log q, log q], of c′′r+r ′,s+s′ . In fact, the
coefficients must lie in Q[L,L−1

], because any modular form satisfying (1.1) is
translation-invariant, and so the coefficients in this formula must lie in the T -
invariant subspace of Q[L,L−1, log q, log q], which is exactly Q[L,L−1

] (see [6,
Lemma 2.2]).
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In particular, for any r, s, r ′, s ′ > 0, multiplication on the space of real-analytic
functions on the upper-half plane induces a map

MI E
r,s ×MI E

r ′,s′ ⊂MI E
[L,L−1

]r+r ′,s+s′ . (10.1)

In other words, the product of two functions in MI E is again a linear combination
of functions in MI E with coefficients in Q[L,L−1

] of the appropriate modular
weights. Note that MI E itself is not an algebra. The examples in [6, Section 9.3]
illustrate why powers of L are necessary. The two functions F (0)

2,2 = E2,0E0,2 +
1
2E

2
1,1 and F (2)

0,0 = L2(E2,0E0,2 −
1
4E

2
1,1) lie in MI E and are linear combinations of

products of functions in MI E of length one, but to solve for E2
1,1, for example,

one must invert L.

10.2. Complex conjugation. The space MI E is stable under the action of
complex conjugation. This follows from the definition and Lemma 8.4, since the
coefficients of bsv and φsv lie in the ring Z sv

⊂MI E .

10.3. Length filtration. The affine ring O(U geom) is equipped with an
increasing length filtration L , which is dual to the lower central series on ugeom.

DEFINITION 10.2. This induces an increasing filtration

MI E
` = 〈cr,s : Im (c) ⊆ L`O(U geom)〉Zsv .

Elements in MI E
` are generated by the real and imaginary parts of iterated

integrals of Eisenstein series of length less than or equal to `. The length filtration
is compatible with the multiplicative structure defined above, since Lu Lv ⊂ Lu+v.

10.4. M-grading. The affine ring O(U geom) is nonnegatively graded by the
M-degree, and furthermore, the M-degree is compatible with the action of SL2.
In particular, the generators (6.1) of sl2 have M-degrees 1,−1, respectively.

Likewise, the space V d R
2n inherits an M-grading with degrees 0,−1, . . . ,−2n

from (4.1). Its dual V̌ d R
2n has M-degrees 0, 1, . . . , 2n.

LEMMA 10.3. Every nonzero coefficient function

c : V̌ d R
2n −→ O(U geom)

is a map of M-graded SL2-modules of degree m, for some m > 0. It follows that
its modular components cr,s inherit an M-grading from O(U geom) satisfying

degM cr,s = degM c = m for all r, s > 0.
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Proof. The fact that a coefficient function respects the M-grading follows from
the compatibility between the M-grading and SL2-action: any coefficient function
is generated, under the action of SL2, by its image on a lowest weight vector. Since
O(U geom) is concentrated in nonnegative M-degrees, and V̌ d R

2n has a component
in M-degree 0, it follows that any coefficient function must have degree m > 0.

Finally, we define degM 2π iτ = degM 2π iτ = 1. This implies that

degM L = 1. (10.2)

With these definitions, the terms in (9.4) are homogeneous of degree zero, since
degM X = 0 and degM Y = −1. Therefore degM cr,s = degM cr,s

= degM c.

Note that the M-degree of L is compatible with the Hodge-theoretic weight of
the function 2 log |q|, which is the single-valued period of a family of Kummer
extensions, and has Hodge-theoretic weight 2. Recall that M is normalized to
be one half of the Hodge-theoretic weight. The motivic Lefschetz period that is
associated with 2π i also has Hodge-theoretic weight 2, so these definitions are
forced upon us from the fact that τ and τ have M-degree zero.

DEFINITION 10.4. The M-grading defines an increasing filtration in the usual
manner, and induces an M-filtration on MI E , where the M-filtration on Z sv is
half the usual Hodge-theoretic weight filtration (the multiple zeta value weight).

The M-filtration is well-defined (independent of the choice of representatives
bsv, φsv in Theorem 7.2) since it is induced by the M-filtration on O(U geom).
Another way to say this is that the coproduct on O(U geom) dual to multiplication
in U geom is compatible with the M-filtration, so twisting by an element a, as in
Theorem 7.2, only modifies the coefficient functions by elements of lower M-
weight.

REMARK 10.5. Conjecturally, the weight filtration is a grading on Z sv. One
way to exploit this is to work with motivic periods instead of real numbers,
since motivic single-valued multiple zeta values are indeed weight-graded. This
amounts to replacing bsv, φsv with their ‘motivic’ versions, defined in [2]. Then
the weight grading on the motivic periods is precisely dual to the M-grading on
O(U geom). It remains to verify that this grading is not disturbed when extracting
coefficients and modular components (Section 9.3). To see this, note that the
comparison isomorphism (3.3) must be replaced with the universal comparison
isomorphism in which one replaces 2π i by its motivic version (2π i)m, which is
Tate, and M-graded of degree 1. The motivic version of the change of variables
(9.4), in which one replaces 2π i by (2π i)m, is therefore homogeneous of total
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degree 0, which implies that degM cr,s = degM c. It follows that the M-grading on
O(U geom) induces an M-grading on all coefficient functions. This leads to a class
of ‘motivic’ modular forms, which are formal expansions (1.4) whose coefficients
are motivic periods (in this case, motivic single-valued multiple zeta values).
Their images under the period homomorphism are genuine modular forms in
M. This will be discussed elsewhere. Note that the M-grading can be used to
determine the powers of L on the right-hand side of (10.1).

Since the generators of ugeom have strictly negative M-degrees and since
M0Z sv ∼= Q, we deduce that M0MI E

= Q.

10.5. Expansions and coefficients

THEOREM 10.6. Every element of MI E admits an expansion in the ring

Z sv
[[q, q]][L,L−1

],

that is, its coefficients are single-valued multiple zeta values. An element of total
modular weight w has poles in L of order at most w.

Proof. By Theorem 7.2, the coefficients of bsv, φsv are in the ring Z sv. It follows
from the definition of J eqv that its coefficients are Z sv-linear combinations of real
and imaginary parts of the coefficients of J . By Proposition 4.2, the latter are
iterated integrals with expansions in the ring Q[[q]][log q]. Finally, the change
of variables (9.4) is defined over Q[L,L−1, log q, log q]. This proves that every
element of MI E admits an expansion in

Z sv
[[q, q]][L,L−1, log q, log q].

A modular form is translation-invariant, so its expansion lies in the subring of
T -invariants, which is precisely Z sv

[[q, q]][L,L−1
] (see [6, Lemma 2.2]). The

bound on the order of poles in L follows from the definition of the coefficients
and (9.4).

10.6. Finiteness

THEOREM 10.7. The subspace of elements of MI E of total modular weight w
and M-degree 6 m is finite-dimensional for every m, w.

Proof. It is enough to show that the dimension of each SL2-isotypical component
of grM

m O(U geom), or equivalently grM
−mu

geom, is finite-dimensional. Since the latter

https://doi.org/10.1017/fms.2020.24 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.24


A class of nonholomorphic modular forms II 45

is a quotient of ud R
E , it is enough to prove it for the free Lie algebra on e2n+2V d R

2n .
Note in passing that since grM e2n+2 = −1, the space grM

−mu
d R
E only involves Lie

words of bounded length in the e2n+2V d R
2n . Now the inclusion of an isotypical

component
V d R

2` −→ V d R
2n1
⊗ · · · ⊗ V d R

2nr

has M-degree ` − (n1 + · · · + nr ). This follows from the fact that the map δk
d R

defined in (3.1) has M-degree k, so its dual has M-degree−k, where k = n1+· · ·+

nr − `. The integer ` is constrained by the modular weight: ` = w. The statement
follows from the fact that the number of strictly positive integers n1, . . . , nr whose
sum is bounded above is finite, and that the subring of Z sv of bounded weight is
finite-dimensional.

10.7. Compatibilities. The above structures are all mutually compatible: for
example, the length filtration and M-filtration are compatible with the algebra
structure.

11. Differential structure of MI E

The ordinary differential equations satisfied by J eqv are equivalent to a system
of differential equations involving the operators ∂ and ∂ satisfied by its modular
components. These in turn give rise to inhomogeneous Laplace eigenvalue
equations.

11.1. Vector-valued differential equations

PROPOSITION 11.1. Let F, A, B : H → V2n ⊗ C be real analytic. Then the
equation

∂F
∂z
=

2π i
2

A(z) (11.1)

is equivalent to the following system of equations:

∂F2n,0 = LA2n,0

∂Fr,s − (r + 1)Fr+1,s−1 = LAr,s if s > 1, (11.2)

for all r + s = 2n, and r, s > 0. In a similar manner,

∂F
∂z
=

2π i
2

B(z) (11.3)

https://doi.org/10.1017/fms.2020.24 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.24


F. Brown 46

is equivalent to the following system of equations:

∂F0,2n = LB0,2n

∂Fr,s − (s + 1)Fr−1,s+1 = LBr,s if r > 1. (11.4)

The proof is a straightforward computation [6, Section 7].

LEMMA 11.2. Suppose that A : H→ V2n ⊗ C and set

F =
δk

d R

(k!)2

(
(X − zY )2m

⊗ A
)
.

Then F : H→ V2m+2n−2k ⊗ C vanishes if k > 2n or k > 2m, and its components
satisfy

Fr,s = (2L)k
(

2m
k

)(
s + k

k

)
Ar−2m+k,s+k, (11.5)

where we set Ap,q = 0 for p < 0 or q < 0. Therefore Fr,s vanishes if r < 2m − k,
or equivalently, s + k > 2n.

Proof. The statement with δd R replaced by δ is given in [6, Section 7]. Use
δd R = 2π iδ.

11.2. Differential structure of MI E . Recall that the graded Q[L]-vector
space generated by Eisenstein series is denoted by

E =
⊕

m>1,n>0

G2m+2LnQ.

The terms G2m+2 are assigned an M-degree of zero.

THEOREM 11.3. Every modular component cr,s of a coefficient function c satisfies

∂cr,s − (r + 1)cr+1,s−1 ∈ E ×MI E
k−1, (11.6)

where we define cr,s to be zero if r or s is negative. Similarly,

∂cr,s − (s + 1)cr−1,s+1 ∈ E ×MI E
k−1 . (11.7)

In both these equations, the products on the right-hand sides denote their images
under multiplication inside the ring of real-analytic functions on the upper-half
plane.

Proof. Let c : V̌ d R
2n →O(U geom) be a coefficient. Embed O(U geom) ⊂O(U d R

E ) via
µ∗, where µ is the monodromy homomorphism. We shall also denote the induced
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SL2-equivariant map µ∗c : V̌ d R
2n → O(U d R

E ) by c and view a coefficient function
as taking values in O(U geom) or O(U d R

E ) as appropriate. If we choose any splitting
O(U d R

E )→ O(U geom) as SL2-modules, we can write J eqv via Definition 8.1 in the
form

J eqv(τ ) = µ
(
I E K

)
for some antiholomorphic function K : H → U geom(C), which is viewed as a
function taking values in Û d R

E (C) via our choice of splitting. Therefore

∂

∂τ
c(J eqv) = −c

(
µ(Ω̃ E I E K )

)
,

where
Ω̃ E
= 2π i

∑
n>1

e2n+2 G2n+2(τ )(X − τY )2n,

which follows from the differential equation d I E
= −Ω E I E and (4.3). The

coproduct
∆ : O(U d R

E ) −→ O(U d R
E )⊗O(U d R

E )

dual to the multiplication law in U d R
E is SL2-equivariant. In particular, it induces

a coproduct on coefficient functions c : V̌ d R
2n → O(U d R

E ) in the following form
(using a variant of Sweedler’s notation):

∆ c =
∑
k>0

(c′ ⊗ c′′)(δk
d R)
∨,

where (δk
d R)
∨
: V̌ d R

2n ⊂ V̌ d R
→ V̌ d R

⊗ V̌ d R is the dual of δk
d R : V

d R
⊗V d R

→ V d R ,
and V d R

=
⊕

n>0 V d R
n = Q[X,Y]. Let 〈, 〉 denote the pairing between the points

of U geom and O(U geom). We can rewrite our differential equation in the form

∂

∂τ
c(J eqv) = −〈c,m(µ⊗ µ)(Ω̃ E

⊗ I E K )〉,

where m denotes multiplication, and Ω̃ E is viewed as a section of L1O(U d R
E ). By

the duality between coproducts and multiplication, this equals

∂

∂τ
c(J eqv) = −〈∆c, (µ⊗ µ)(Ω̃ E

⊗ I E K )〉

= −

∑
k>0

〈(c′ ⊗ c′′)(δk
d R)
∨, Ω̃ E

⊗ J eqv
〉

= −

∑
k>0

δk
d R

(
(c′ ⊗ c′′)(Ω̃ E

⊗ J eqv)
)
,
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where in the second line, we view c′′ as a coefficient function on O(U geom) and
c′ as a coefficient function on O(U d R

E ). Restricted to L1O(U d R
E ), the map c′ is a

linear combination of the maps that send one e2r+2 to 1 and all other e2r ′+2 to 0.
We conclude that

∂

∂τ
c(J eqv) = 2π i A,

where A : H→ V2n ⊗ C is a Q-linear combination of terms of the form

δk
d R

(
G2m+2(τ )(X − τY )2m

⊗ c′′(J eqv)
)
,

where c′′ is a coefficient function of strictly smaller length than c, since the
coproduct ∆ is compatible with the length filtration. The first part of the theorem
follows on applying Proposition 11.1 and Lemma 11.2. The second part follows
from the first using the fact that MI E is stable under complex conjugation.

Since MI E is generated by coefficient functions, we deduce the following
corollary.

COROLLARY 11.4. The space MI E has the following differential structure:

∂
(
MI E

k

)
⊂MI E

k + E ×MI E
k−1

∂
(
MI E

k

)
⊂MI E

k + E ×MI E
k−1.

The operators ∂, ∂ respect the M-filtration.

Proof. The first part is immediate from the previous theorem. The statement about
the M-filtration follows since the coproduct∆ respects the M-grading on O(U d R

E ),
the Eisenstein series G2m+2 lie in M-degree zero, and the fact that in Lemma 11.2,
the M-degree of the powers of L matches the M-degree of δk

d R .

By (2.6), an element ξ ∈Mr,s is uniquely determined by ∂ξ and ∂ξ , up to a
possible multiple of L−r in the case r = s. When ξ ∈MI E , this constant is an
element of Z sv, whose M-weight can be determined from the M-grading.

REMARK 11.5. By the independence of iterated integrals (Corollary 4.5), the
sums on the right-hand side in the previous corollary are direct, and so we may
write

∂
(
MI E

k

)
⊂MI E

k ⊕
(
E ×MI E

k−1

)
and similarly for ∂ . This is because E does not contain any constant functions.
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11.3. Reconstruction of vector-valued modular forms. Given an element
fm,n ∈MI E

k of modular weights m, n > 0, we can use the splitting of Remark
11.5 to define functions fr,s ∈MI E

k for all m + n = r + s and r, s > 0 via

∂ fr,s = (r + 1) fr+1,s−1 (mod E ×MI E
k−1)

whenever s > 1 (since r + 1 6= 0) and via

∂ fr,s = (s + 1) fr−1,s+1 (mod E ×MI E
k−1)

whenever r > 1 (since s + 1 6= 0). That these equations are consistent follows
from [∂, ∂] = h. The function

F(τ ) =
∑
r,s

fr,s(X − τY )r (X − τY )s

is then a vector-valued modular form, and can be reconstructed from any one of
its individual modular components fm,n .

11.4. Laplace operator for vector-valued functions. The following lemma
explains the existence of Laplace eigenvalue equations in a general setting.

LEMMA 11.6. Let F : H→ V2n ⊗ C be real analytic satisfying the equation

d F =
(2π i)

2

(
Adz + B dz

)
for some A, B : H→ V2n ⊗ C. Then

−
(
∆+ r + s

)
Fr,s = L

(
∂Ar,s + (r + 1)Br+1,s−1

)
= L

(
∂Br,s + (s + 1)Ar−1,s+1

)
, (11.8)

where Ar,s, Br,s are understood to be zero if any subscript r or s is negative.

Proof. The differential equation d2 F = 0 implies that ∂B
∂z −

∂A
∂z = 0. By

Proposition 11.1, this is equivalent to the equation

∂Br,s − (r + 1)Br+1,s−1 = ∂Ar,s − (s + 1)Ar−1,s+1

for all r + s = 2n, This shows that the two expressions (11.8) are equivalent.
Again by Proposition 11.1 and the relation [∂,L] = 0, we verify that

∂∂Fr,s = (r + 1)∂Fr+1,s−1 + L ∂Ar,s

= (r + 1)s Fr,s + L ∂Ar,s + (r + 1)L Br+1,s−1.

The statement follows from the definition of the Laplacian (2.7).
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11.5. Laplace operator structure for MI E .

COROLLARY 11.7. Every element F ∈MI E
k of modular weights (r, s) satisfies

an inhomogeneous Laplace equation of the following form:

(∆+ r + s) F ∈ (E + E)×MI E
k−1 + E E ×MI E

k−2,

where the eigenvalue is minus the total modular weight. Recall that E is the Q
vector space spanned by LiG2m+2 for i > 0,m > 1 and E is its complex conjugate.
The space E E is generated by LiG2m+2G2n+2 for i > 0,m, n > 1.

Proof. This follows from the previous lemma and equations (11.6) and (11.7) (or
by direct application of the definition of the Laplace operator, using these same
two equations and the Leibniz rule).

The sum on the right-hand side is direct by Corollary 4.5. It could be written as

(E ×MI E
k−1)⊕ (E ×MI E

k−1)⊕ (E E ×MI E
k−2).

12. Algebraic structure of MI E

In this section, we delve more deeply into the algebraic structure of MI E .
Since the space MI E is generated from the coefficients of O(U geom), its structure
is closely related to that of the geometric Lie algebra ugeom. Although the precise
structure of the latter is not completely known, we can use the relationship
with MI E to transfer information back and forth between modular forms and
derivations in ugeom.

12.1. Algebraic structure and dimensions. Let us denote the subspace of
lowest weight vectors for SL2 in O(U geom) by

lw(O(U geom)) ⊂ O(U geom).

It is a subalgebra of O(U geom), filtered by length, and graded with respect to M .
On the other hand, consider

M•,0 =
⊕
n>0

Mn,0,

which defines a subalgebra of M. It consists of functions that transform like
classical modular forms (with no antiholomorphic factor of automorphy). Let us
define

lw(MI E
) =MI E

∩M•,0,
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and call the elements lowest weight vectors. Although the Lie algebra sl2 does
not act on MI E per se, the terminology is justified since images of elements in
lw(MI E

) behave like lowest weight vectors in the context of Section 11.3.

THEOREM 12.1. The subspace

lw(MI E
) ⊂MI E

is closed under multiplication.
There is a canonical Z sv-linear isomorphism of algebras

grL
•

lw(O(U geom))⊗Z sv ∼

−→ grL
•

lw(MI E
). (12.1)

It respects the M-filtration on both sides of the isomorphism.

Proof. Fix a choice of elements (bsv, φsv) as in Theorem 7.2 and define J eqv(τ )

according to Definition 8.1. A nontrivial lowest weight vector v ∈ lw(O(U geom))

of SL2-weight n generates, under the action of SL2, an irreducible SL2-submodule

cv : V̌ d R
n ⊂ O(U geom),

and furthermore, every irreducible SL2-submodule arises in this way. Taking the
coefficient cv(J eqv) and extracting the term (cv)n,0 in the manner of Proposition
9.2 defines a modular form in MI E of modular weights (n, 0). It is given
explicitly by

χ(v) = L−2ncv(J eqv)
∣∣

X=π i z, Y=π i ∈MI E
∩Mn,0. (12.2)

This extends to a Z sv-linear map

χ : lw(O(U geom))⊗Z sv
−→ lw(MI E

),

which respects the M and L filtrations. It depends on the choice of (bsv, φsv).
By the definition of MI E , every modular form of weights (n, 0) arises in this
way, and χ is surjective. To prove injectivity, it is enough to show that the
associated graded of χ with respect to the length filtration is injective. For this,
consider lowest weight vectors v1, . . . , vn in LkO(U geom), which are linearly
independent in grL

k O(U geom). They define linearly disjoint SL2-submodules cv1,

. . . , cvn of O(U geom). The dual of the monodromy homomorphism (6.1) defines
an embedding

O(U geom) ↪→ O(U d R
E ) = T c

(⊕
n>1

E2n+2V̌ d R
2n

)
.
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By the linear independence of iterated integrals (Corollary 4.5), the corresponding
modular forms χ(v1), . . . , χ(vn) are linearly independent modulo iterated
integrals of length 6 k − 1, since by the remarks following Theorem 8.2, their
leading terms are real and imaginary parts of iterated integrals of independent
Eisenstein series. This proves injectivity.

We next show that χ is a homomorphism. Let v1, v2 ∈ lw(O(U geom)) of SL2-
weights n1, n2. Then cv1v2 is defined via the commuting diagram

V̌ d R
n1

⊗ V̌ d R
n2

←− V̌ d R
n1+n2

↓cv1
↓cv2

↓cv1v2

O(U geom) ⊗ O(U geom)
m
−→ O(U geom)

↓ ↓ ↓

C ⊗ C m
−→ C

where the map along the top is dual to δ0
d R : V

d R
n1
⊗V d R

n2
→ V d R

n1+n2
, the vertical maps

in the bottom square are given by the homomorphism J eqv(τ ) : O(U geom)→ C,
and m denotes multiplication. The reason that the top square commutes is because
the corresponding square with O(U geom) replaced with O(U d R

E ) commutes, and
the monodromy map µ∗ : O(U geom) ⊂ O(U d R

E ) is SL2-equivariant and respects
multiplication. It follows that

cv1v2(J
eqv) = δ0

d R(cv1(J
eqv)cv2(J

eqv)).

From the definition of χ , we obtain χ(v1v2) = χ(v1)χ(v2). Since χ is
an isomorphism, this also implies that lw(MI E

) ⊂ MI E is stable under
multiplication.

Finally, isomorphism (12.1) is obtained by replacing χ with its associated
graded for the length filtration. It is well-defined since modifying J eqv by J eqva,
for a ∈ (U geom)SL2(Z sv) changes χ by terms of lower length. This is because
multiplication is trivial on the associated graded for the lower central series.

Note that the action of sl2 on O(U geom) does not correspond to the action of the
differential operators ∂, ∂ on MI E .

REMARK 12.2. Note that there are elements in lw(MI E
) which are polynomials

in elements of MI E of lower length, but which do not necessarily lie in
lw(MI E

). These relations are not captured by the previous theorem.

12.2. Orthogonality to cusp forms. It follows from Theorem 2.1 that the
composite

lw(MI E
)

∂
−→M•,−1

ph

−→ S,
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where S is the complex vector space of holomorphic cusp forms, is the zero map.
This sheds some light on the structure of O(U geom), and makes it clear that the
generators of ugeom have infinitely many relations coming from every cusp form.

More precisely, consider the linear map

P :
(
E ⊗MI E)

•,−1 −→ S[L]

Lk+1Ga ⊗ Fb,k 7→ Lk ph(Ga Fb,k), (12.3)

where Fb,k ∈MI E has modular weights (b, k). Then Theorem 2.1 implies that

∂
(
lw(MI E

)
)
⊂ ker(P),

which provides, via Theorem 12.1, a possible constraint on lw(O(U geom)) for
every f Ld

∈ S[L], where f is a cuspidal eigenform and d > 0.

12.3. Relations in ugeom via orthogonality. Pollack’s relations (Section 5.4)
were initially proved in [32] in a certain quotient of ugeom (except for the relations
of depth two, which hold in ugeom itself) by direct combinatorial computation.
As a corollary of the analytic computations in [2], which rely on the Rankin–
Selberg method, one can prove that the relations lift to ugeom. This makes heavy
use of either the Tannakian formalism or Beilinson–Deligne cohomology. The
reason for the existence of these relations is the presence of nontrivial extensions
of the trivial motive Q by Tate twists of the motives of Hecke eigen cusp forms
V f (w+d) inside the relative completion of the fundamental group of M1,1, where
w is the weight of f and d > 0.

Here we suggest a much simpler conceptual explanation for these relations,
which only makes use of the construction of the previous paragraph: every relation
comes about because of orthogonality to cusp forms. The role of Tate twists
is played by the powers of L on the right-hand side of (12.3). Thus, for every
cuspidal Hecke eigenform f and integer d , the term f Ld

∈ S[L] potentially gives
rise to a new relation and corresponds to an extension of Q by V f (w + d) of the
kind described above.

More precisely, one has the following theorem, which, using Theorem 12.1,
explains the source of relations in ugeom from orthogonality.

THEOREM 12.3. There is an exact sequence

0 −→ lw(grL
2 MI E

)
∂
−→

(
E ⊗ grL

1 MI E)
•,−1

P
−→ S[L].

This theorem is a consequence of the results in [2]. The last map is well-
defined because L1MI E ∼= Z sv

⊕ grL
1 MI E is split. The injectivity of the first
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map follows from (2.6). Since grL
1 MI E is generated by real-analytic Eisenstein

series Er,s , the holomorphic projections can be computed [2, Section 9], using the
Rankin–Selberg method, and give special values of L-functions of cusp forms.
One deduces that the last map in the above sequence is surjective after tensoring
with C. The exactness in the middle follows from computing dimensions: the left-
most space is dual to a subquotient of ugeom whose dimensions were computed in
[32]. One has to only show that there are no other relations in length two, and the
point is that it is enough to work in the same subquotient of ugeom, which is much
easier than working in the full Lie algebra ugeom.

EXAMPLE 12.4. Let us illustrate with an example in weight 12 (see also [6,
Example 9.8]). Let ∆ denote the Ramanujan cusp form of weight 12. The
functions

f2 = LG4E8,0, f4 = LG6E6,0, f6 = LG8E4,0, f8 = LG10E2,0

span (E ⊗ grL
1 MI E

)11,−1. Their holomorphic projection is given by the Rankin–
Selberg method [2, Corollary 9.14], which shows that 〈 f2a,L∆〉 is proportional
to a product of L-values L(∆, 2a + 1)L(∆, 12), which are nonzero. By Manin’s
period polynomial relations, the odd critical L-values L(∆, 2a+1) for 1 6 a 6 4
are proportional to each other over Q, and one deduces that the kernel of P has
dimension 3. By the computations in the next paragraph, where we explicitly give
the dimensions of ugeom in low weights, we know that there exists, in addition
to the two products of real-analytic Eisenstein series E2,0E8,0 and E4,0E6,0, an
irreducible modular equivariant function F ∈ MI E

2 . Its image under ∂ lies in
the kernel of P , and satisfies

∂F = 9( f2 − f8)+ 14( f4 − f6).

This equation is dual to the first of Pollack’s equations (5.6) (multiply ε∨2n by
(2n − 2)! in (5.6) to reproduce the coefficients 9 and 14). See [2, Example 22.3],
for precise details and the connection with double-shuffle equations.

REMARK 12.5. One could try to avoid the Rankin–Selberg method altogether
by computing the holomorphic projection P directly from the Fourier expansion
using a formula of Sturm [34]. Diamantis (personal communication) has
shown using Sturm’s formula how to derive the first Pollack relation using
the holomorphic double Eisenstein series considered in [11].

12.4. Linearized double-shuffle equations. A connection between ugeom and
linearized double-shuffle equations was described in [5]. We briefly recall the
statement.
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The evaluation map (5.7), for x = a, provides an embedding

ugeom ↪→ Lie(a,b) ⊂ T c(a,b).

The tensor coalgebra T c(a,b) is graded by the degree in b. Consider the linear
map

ρ : grr
b T c(a,b) −→ Q(x1, . . . , xr )

ai0bai1b . . . bair 7→
x i1

1 . . . x
ir
r

x1(x1 − x2) . . . (xr−1 − xr )xr

for r > 1. The space pls =
⊕

r>1 pls
r was defined in [5] to be a bigraded Lie

algebra of homogeneous rational functions f in the variables x1, . . . , xr , for all
r > 2 with the property

x1(x1 − x2) . . . (xr−1 − xr )xr f ∈ Q[x1, . . . , xr ],

which satisfy the linearized double-shuffle equations. It is equipped with a version
of the linearized Ihara Lie bracket, which involves symmetrization of rational
functions over the action of a dihedral group. The space pls2 is described by the
solutions to

f (x1, x2)+ f (x2, x1) = 0
f (x1, x1 + x2)+ f (x2, x1 + x2) = 0

and for r = 3, these equations take the form

f (x1, x2, x3)+ f (x2, x1, x3)+ f (x2, x3, x1) = 0
f (x1, x12, x123)+ f (x2, x12, x123)+ f (x2, x23, x123) = 0,

where xi j = xi + x j and x123 = x1+ x2+ x3. The space pls is in addition equipped
with an action of sl2.

THEOREM 12.6 [5]. The linear map ρ, when restricted to ugeom, defines an
injective map of bigraded Lie algebras

ρ : ugeom
−→ pls,

which commutes with the action of sl2 on both sides.

By Theorem 12.1, we deduce a canonical surjection

gr•L lw(O(P))⊗Z sv
−→ gr•L lw(MI E

),
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where P denotes the affine group scheme corresponding to the graded Lie algebra
pls.

The b-degree on ugeom coincides with the grading r on pls. In [5], we proved
the following theorem.

THEOREM 12.7. The map ρ : ugeom
→ pls is an isomorphism in b-degrees 6 3.

If
uk(s) =

∑
n∈Z

sn dimQ(grB
k grM

2nu
geom)

denotes its Poincaré series, then

u1(s)=
s

1− s2
, u2(s)=

s2

(1− s2)(1− s6)
, u3(s)=

s
(1− s2)(1− s4)(1− s6)

.

Note that in [5], we included ε0 in the definition of ugeom, which led to a
marginally different formula for u1(s).

REMARK 12.8. The bigraded Lie subalgebra

ls =
⊕
r>1

pls ∩Q[x1, . . . , xr ]

of solutions to linearized double-shuffle equations in polynomials (that is, with
no poles) is related to the structure of depth-graded motivic multiple zeta values
[3, 24]. It follows from Theorem 12.1 that the structure of MI E is intimately
connected to the structure of depth-graded multiple zeta values. It would be
interesting to compare with [17].

13. L-functions associated with modular forms in MI E

Hecke associated an L-function with every classical holomorphic modular
form. One can do the same for functions in MI E .

DEFINITION 13.1. Let f ∈ MI E and let f 0 denote its constant part. Its
completed L-function is defined for Re(s) large by the regularized Mellin
transform:

Λ( f ; s) =
∫
∞

0

(
f (iy)− f 0(iy)

)
ys dy

y
.

The integral converges more precisely for Re(s) > w + k, where w is the weight
of f and k is the maximum of 0 and the largest k such that the coefficient
a(k)0,0( f ) is nonzero. This follows from (13.1) and Theorem 10.6, which implies
that a(k)0,0( f ) = 0 for k < −w.
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The definition applies to a much more general class of modular functions [6,
Section 9.4].

PROPOSITION 13.2. If f has modular weights (α, β), the function Λ( f ; s)
admits a meromorphic continuation to C and satisfies the functional equation

Λ( f ; s) = i hΛ( f ;w − s),

where w = α + β and h = α − β. It has at most simple poles of the form∑
k

(−2π)ka(k)0,0

(
i h

s − w − k
−

1
s + k

)
, (13.1)

where f 0
=
∑

k a(k)0,0Lk is the constant part of f . Furthermore, it can be expressed
in terms of Dirichlet series as follows. Let

L (k)( f ; s) =
∑

m,n>0
m+n>1

a(k)m,n

(m + n)s
,

where a(k)m,n are the expansion coefficients of (1.4) of f . Then

Λ( f ; s) =
∑

k

(−1)k(2π)−sΓ (s + k)L (k)( f ; s + k).

Since the functions in MI E are naturally associated with universal mixed
elliptic motives, their L-functions are liable to contain interesting arithmetic
information. We do not know the values of Λ( f ; s) for integers s > w, even
when f is a product of two real-analytic Eisenstein series.

13.1. Compatibility with the differential structure

LEMMA 13.3. The following relation holds for all s ∈ C, where w = α + β:

Λ(∂ f ; s)+Λ(∂ f ; s)+ (2s − w)Λ( f ; s) = 0.

Proof. Set z = iy, where y ∈ R. For Re(s) sufficiently large, take the regularized
Mellin transform from 0 to ∞ (see [1] for the definition) of both sides of the
following equation, which follows from the definition of ∂α, ∂β :

d ( f ys) =

(
y
∂ f
∂y
+ s f

)
ys−1 dy =

1
2

(
∂α f + ∂β f − w f

)
ys−1 dy + s f ys−1 dy.
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Conclude by analytic continuation for all s ∈ C. Alternatively, one can simply
apply [6, Lemma 2.6], which relates the expansion coefficients a(k)m,n of f, ∂ f and
∂ f , and substitute into the formula for the Dirichlet series L (k)(•, s).

EXAMPLE 13.4. Using Lemma 13.3 and the differential equations (Section 2.5)
for Eα,β , one obtains equations which one can solve to express the L-functions
of real-analytic Eisenstein series in terms of Hecke L-functions of holomorphic
Eisenstein series. This follows from the proof of the theorem 13.5. More precisely,
one finds that

Λ(Eα,β; s) =
π Pα,β(s)

s(s − 2) . . . (s − w − 2)(s − w)
Λ(Gw+2; s + 1),

where w = α + β, and Pα,β(s) ∈ Q[s] has degree less than w/2 and satisfies

Pα,β(w − s) = Pα,β(s).

For any f with real Fourier coefficients, Λ( f ; s) = Λ( f ; s). Therefore
Λ(Eα,β; s) = Λ(Eβ,α; s) and so Pα,β is symmetric in α, β. The functionΛ(Eα,β; s)
has simple poles at s = −1, w + 1 with rational residues, and at 0, w with
residues proportional to ζ(w + 1). Some examples are

Λ(E2,0; s) = Λ(E0,2; s) =
(s − 1)π
s(s − 2)

Λ(G4, s + 1)

Λ(E1,1; s) =
−2π

s(s − 2)
Λ(G4, s + 1),

where Λ(G2n; s) = (2π)−sΓ (s)ζ(s)ζ(s − 2n + 1). In general, the middle term
Pk,k ∈ Q is constant. In fact, we claim that one obtains

(−4π)k Λ(Ek,k; s) =
(2k − 1)!
(k − 1)!

ξ(s + 1)ξ(s − 2k),

where ξ(s) = π−s/2Γ (s/2)ζ(s) is the completed Riemann zeta function.

13.2. Relation between nonholomorphic and mixed L-functions. In [1], we
defined L-functions in several variables as iterated Mellin transforms of theta
functions.

THEOREM 13.5. Let F ∈MI E
` have modular weights α, β > 0, withw = α+β.

Then
s(s − 1) . . . (s − w)Λ(F; s)
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is a Z sv
[π, s]-linear combination of the mixed L-functions defined in [1]:

Λ( f1, . . . , fk; a1, . . . , ak−1, ak + s),

where k 6 `, f1, . . . , fk are holomorphic Eisenstein series, and a1, . . . , ak are
integers such that 1 6 ai 6 weight( fi)− 1 for all 1 6 i 6 k − 1.

Proof. By Theorem 11.3, MI E
k is generated by families of functions Fα,β

satisfying

∂Fα,β − (α + 1)Fα+1,β−1 ∈ E ×MI E
k−1

∂Fα,β − (β + 1)Fα−1,β+1 ∈ E ×MI E
k−1,

where we write F−1,∗ = F∗,−1 = 0, and E denotes the graded Q[L]-vector space
generated by holomorphic Eisenstein series. Let α + β = w and write Λα,β =

Λ(Fα,β; s) and Λ−1,∗ = Λ∗,−1 = 0. Lemma 13.3 implies that

(α + 1)Λα+1,β−1 + (2s − w)Λα,β + (β + 1)Λα−1,β+1 ≡ 0

modulo regularized Mellin transforms of elements in (E + E) ×MI E
k−1. We

first need to check that this system of equations can be solved for the Λα,β . This
is obviously true for generic s since the determinant of this system of linear
equations defines a polynomial in s and has finitely many zeros. In fact, one easily
verifies that the matrix

Mw =



2s − w 1
w 2s − w 2

w − 1 2s − w 3
. . .

. . .

2 2s − w w

1 2s − w


has determinant det(Mw) = 2w+1 s(s − 1) . . . (s − w). To see this, note that Mw

is the matrix of D + (2s − w), where D = x ∂

∂y + y ∂

∂x acting on the space⊕
i+ j=w x i y jC of homogeneous polynomials of degreew. The eigenvectors for D

are the set of polynomials (x+ y)i(x− y) j , where i+ j = w, and have eigenvalue
i − j . Therefore det(Mw) vanishes at w − 2s = i − j , or equivalently, s = j , for
j = 0, . . . , w. A row expansion of Mw shows that the leading coefficient of s in
det(Mw) is 2w+1.

We deduce that
s(s − 1) . . . (s − w)Λ(Fα,β; s)
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is a Z sv
[π, s]-linear combination of regularized Mellin transforms [1]

∫ →

1∞

0
f (iy)A(iy) ys+p dy

y
(13.2)

and their complex conjugates, where f ∈ E , A ∈ MI E
k−1, p ∈ N. By the

definition of J eqv, the restriction of A to the imaginary axis can be expressed
as a linear combination over Z sv

[π, s] of regularized iterated integrals of length
at most k−1 of holomorphic Eisenstein series fi(τ )τ

ri , where 0 6 ri 6 ni−2 if fi

is of weight ni , since complex conjugation introduces at most a sign. Substituting
into (13.2) gives exactly the quantityΛ( f1, . . . , fk−1, f ; r1, . . . , rk−1, p+ s).

This result holds for more general modular iterated integrals, but can also
be made more precise in this situation: indeed, the linear combination in the
statement of the theorem is effectively computable.

Acknowledgements

This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement no. 724638) and was written during a stay at the IHES. Many
thanks are due to Richard Hain for ongoing discussions about relative completion
and mixed elliptic motives and to Nils Matthes, for corrections. Many thanks
also go to Andrey Levin, who suggested several years ago that double elliptic
polylogarithms could be orthogonal to cusp forms.

Conflict of Interest: None.

References

[1] F. Brown, A multi-variable version of the completed Riemann zeta function and other L-
functions, https://arxiv.org/abs/1904.00190.

[2] F. Brown, Multiple modular values and the relative completion of the fundamental group of
M1,1, arXiv:1407.5167.

[3] F. Brown, Depth-graded motivic multiple zeta values, arXiv:1301.3053.
[4] F. Brown, ‘Polylogarithmes multiples uniformes en une variable’, C. R. Math. Acad. Sci. Paris

338(7) (2004), 527–532.
[5] F. Brown, ‘Zeta elements in depth 3 and the fundamental Lie algebra of the infinitesimal Tate

curve’, Forum Math. Sigma 5 (2017), doi:10.1017/fms.2016.29, arXiv:1504.04737.
[6] F. Brown, ‘A class of non-holomorphic modular forms I’, Res. Math. Sci. 5 (2018), 7, https://

doi.org/10.1007/s40687-018-0130-8, (https://arxiv.org/abs/1710.07912).

https://doi.org/10.1017/fms.2020.24 Published online by Cambridge University Press

https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
https://arxiv.org/abs/1904.00190
http://www.arxiv.org/abs/1407.5167
http://www.arxiv.org/abs/1407.5167
http://www.arxiv.org/abs/1407.5167
http://www.arxiv.org/abs/1407.5167
http://www.arxiv.org/abs/1407.5167
http://www.arxiv.org/abs/1407.5167
http://www.arxiv.org/abs/1407.5167
http://www.arxiv.org/abs/1407.5167
http://www.arxiv.org/abs/1407.5167
http://www.arxiv.org/abs/1407.5167
http://www.arxiv.org/abs/1407.5167
http://www.arxiv.org/abs/1407.5167
http://www.arxiv.org/abs/1407.5167
http://www.arxiv.org/abs/1407.5167
http://www.arxiv.org/abs/1407.5167
http://www.arxiv.org/abs/1301.3053
http://www.arxiv.org/abs/1301.3053
http://www.arxiv.org/abs/1301.3053
http://www.arxiv.org/abs/1301.3053
http://www.arxiv.org/abs/1301.3053
http://www.arxiv.org/abs/1301.3053
http://www.arxiv.org/abs/1301.3053
http://www.arxiv.org/abs/1301.3053
http://www.arxiv.org/abs/1301.3053
http://www.arxiv.org/abs/1301.3053
http://www.arxiv.org/abs/1301.3053
http://www.arxiv.org/abs/1301.3053
http://www.arxiv.org/abs/1301.3053
http://www.arxiv.org/abs/1301.3053
http://www.arxiv.org/abs/1301.3053
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
https://doi.org/10.1017/fms.2016.29
http://www.arxiv.org/abs/1504.04737
http://www.arxiv.org/abs/1504.04737
http://www.arxiv.org/abs/1504.04737
http://www.arxiv.org/abs/1504.04737
http://www.arxiv.org/abs/1504.04737
http://www.arxiv.org/abs/1504.04737
http://www.arxiv.org/abs/1504.04737
http://www.arxiv.org/abs/1504.04737
http://www.arxiv.org/abs/1504.04737
http://www.arxiv.org/abs/1504.04737
http://www.arxiv.org/abs/1504.04737
http://www.arxiv.org/abs/1504.04737
http://www.arxiv.org/abs/1504.04737
http://www.arxiv.org/abs/1504.04737
http://www.arxiv.org/abs/1504.04737
http://www.arxiv.org/abs/1504.04737
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://doi.org/10.1007/s40687-018-0130-8
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://arxiv.org/abs/1710.07912
https://doi.org/10.1017/fms.2020.24


A class of nonholomorphic modular forms II 61

[7] F. Brown, ‘A class of non-holomorphic modular forms III: real analytic cusp forms’, Res.
Math. Sci. 5 (2018), 34, https://doi.org/10.1007/s40687-018-0151-3, (https://arxiv.org/abs/17
10.07912).

[8] F. Brown and A. Levin, Multiple elliptic polylogarithms, arXiv:1110.6917.
[9] D. Calaque, B. Enriquez and P. Etingof, ‘Universal KZB equations: the elliptic case’, in

Algebra, Arithmetic, and Geometry: in honour of Yu. I. Manin, Vol. I, Progress in Mathematics,
269 (Springer, Birkhäuser Boston, 2009), 165–266.

[10] K. T. Chen, ‘Iterated path integrals’, Bull. Amer. Math. Soc. 83 (1977), 831–879.
[11] N. Diamantis and C. O’Sullivan, ‘Kernels for products of L-functions’, Algebra Number

Theory 7(8) (2013), 1883–1917.
[12] E. D’Hoker and M. Green, ‘Identities between modular graph forms’, J. Number Theory 189

(2018), 25–88.
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Norm. Supér. 31 (1998), 47–92.
[23] R. Hain, ‘The Hodge-de Rham theory of modular groups’, in Recent Advances in Hodge

Theory, London Mathematical Society Lecture Note Series, 427 (Cambridge University Press,
Cambridge, 2016), 422–514.

[24] K. Ihara, M. Kaneko and D. Zagier, ‘Derivation and double shuffle relations for multiple zeta
values’, Compos. Math. 142 (2006), 307–338.

[25] A. Levin and G. Racinet, Towards multiple elliptic polylogarithms, arXiv:math/0703237.
[26] M. Kontsevich and D. Zagier, ‘Periods’, in Mathematics Unlimited- 2001 and Beyond

(Springer, Berlin, 2001), 771–808.
[27] Y. Manin, ‘Periods of parabolic points and p-adic Hecke series’, Math. Sb. (1973), 371–393.
[28] Y. Manin, ‘Iterated Shimura integrals’, Moscow Math. J. 5 (2005), 869–881.
[29] Y. Manin, ‘Iterated integrals of modular forms and non-commutative modular symbols’, in

Algebraic Geometry and Number Theory, Progress in Mathematics, 253 (Springer, Birkhäuser
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