SOME PROPERTIES OF A CERTAIN SET OF INTERPOLATING POLYNOMIALS

BY

DAVID J. LEEMING

1. Introduction. A Lidstone series provides a (formal) two-point expansion of a given function $f(x)$ in terms of its derivatives of even order at the nodes 0 and 1 and takes the form

$$
f(x)=f(1) \Lambda_{0}(x)+f(0) \Lambda_{0}(1-x)+f^{\prime \prime}(1) \Lambda_{1}(x)+f^{\prime \prime}(0) \Lambda_{1}(1-x)+\cdots
$$

where $\Lambda_{n}(x)$ is a polynomial of degree $2 n+1$ defined by the generating function

$$
\begin{equation*}
\frac{\sinh x t}{\sinh t}=\sum_{n=0}^{\infty} \Lambda_{n}(x) t^{2 n} \tag{1.1}
\end{equation*}
$$

The Lidstone polynomials $\left\{\Lambda_{n}(x)\right\}_{n=0}^{\infty}$ have been studied extensively (see e.g. [9], [10], [11]) and their interpolatory properties are well known. In 1932, J. M. Whittaker showed the relationship between the Lidstone polynomials and the classical Bernoulli polynomials $B_{n}(x)$. In fact, Whittaker [10], proved that

$$
\begin{equation*}
\Lambda_{n}(x)=\frac{2^{2 n+1}}{(2 n+1)!} B_{2 n+1}\left(\frac{1+x}{2}\right) \quad n=0,1, \ldots \tag{1.2}
\end{equation*}
$$

During an investigation of a class of infinite interpolation problems with periodic conditions defined on the nodes $-1,0$ and 1 [4] the polynomial set $\left\{Q_{4 n}(x)\right\}_{n=0}^{\infty}$ defined by the simple generating function

$$
\begin{equation*}
\frac{\cosh x t+\cos x t}{\cosh t+\cos t}=\sum_{n=0}^{\infty} \frac{Q_{4 n}(x) t^{4 n}}{(4 n)} \tag{1.3}
\end{equation*}
$$

exhibited some interesting properties in addition to the anticipated interpolating properties. This led to further investigations which have yielded a particularly interesting relationship between the polynomial set $\left\{Q_{4 n}(x)\right\}$ and the Euler polynomials, stated precisely in Theorem 2.1.

Of additional interest is the fact that the normalized polynomial set $\left\{Q_{4}{ }_{n}^{*}(x)\right\}_{n=0}^{\infty}$ i.e. where

$$
\begin{equation*}
Q_{4 n}^{*}(x)=\frac{Q_{4 n}(x)}{(4 n)!} \tag{1.4}
\end{equation*}
$$

is a generalized Appell set. Such polynomial sets which have been investigated by Osegov [6], and Al-Salaam and Verma [1] can be classified in the following way. Let r be a positive integer. A polynomial set $\left\{P_{n}(x)\right\}$ is in $S^{(r)}$ if there is an operator $J(D)$ of the form $J(D)=\sum_{k=0}^{\infty} a_{k} D^{k+r}\left(a_{0} \neq 0\right)$ where $a_{k}(k \geq 0)$ is independent of x and D is the differential operator, such that

$$
\begin{equation*}
J(D) P_{n}(x)=P_{n-r}(x) \quad(n=r, r+1, \ldots) \tag{1.5}
\end{equation*}
$$

It is easily seen that the normalized polynomial set $\left\{Q_{4 n}^{*}(x)\right\}$ belongs to the class $S^{(4)}$.

Note. We do not use the normalized polynomial set throughout the paper as the results are simpler stated in terms of the polynomials $\left\{Q_{4 n}(x)\right\}$.

In §2 we develop the relationship between the polynomial set $\left\{Q_{4 n}(x)\right\}_{n=0}^{\infty}$ and the Euler polynomials. Defining a sequence of numbers $\left\{Q_{4 n}\right\}_{n=0}^{\infty}$ by setting $Q_{4 n}=Q_{4 n}(0)$, we give, in $\S 3$, some properties of this sequence including an asymptotic estimate for $\left|Q_{4 n}\right|^{1 / n}$. We also obtain a new result on divisibility of certain finite sums of products of Euler numbers. In $\S 4$, some of the properties of the polynomials $Q_{4 n}(x)$ are discussed, including Theorem 4.1 which gives a zero-free interval on the real and imaginary axis.

2. The Polynomials $Q_{4 n}(x)$ and the Euler Polynomials.

Lemma 2.1. $Q_{0}(x) \equiv 1$, and for $n=1,2, \ldots Q_{4 n}(x)$ is a monic polynomial of degree $4 n$ given by

$$
\begin{equation*}
x^{4 n}=\sum_{k=0}^{4 n}\binom{4 n}{4 k} Q_{4 k}(x) \tag{2.1}
\end{equation*}
$$

Furthermore, for $n=0,1,2, \ldots$ we have the "difference equation"

$$
\begin{equation*}
Q_{4 n}(x+1)+Q_{4 n}(x-1)+Q_{4 n}(x+i)+Q_{4 n}(x-i)=4 x^{4 n} \tag{2.2}
\end{equation*}
$$

Proof. From (1.3) we have

$$
\sum_{n=0}^{\infty} \frac{t^{4 n}}{(4 n)!} \sum_{k=0}^{\infty} \frac{Q_{4 k}(x) t^{4 k}}{(4 k)!}=\sum_{n=0}^{\infty} \frac{x^{4 n} t^{4 n}}{(4 n)!} .
$$

Therefore

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{Q_{4 k}(x) t^{4 k}}{(4 k)!} \frac{t^{4 n-4 k}}{(4 n-4 k)!}=\sum_{n=0}^{\infty} \frac{x^{4 n} t^{4 n}}{(4 n)!} \sum_{n=0}^{\infty}\left[\sum_{k=0}^{n}\binom{4 n}{4 k} Q_{4 k}(x)\right] \frac{t^{4 n}}{(4 n)!}=\sum_{n=0}^{\infty} \frac{x^{4 n} t^{4 n}}{(4 n)!}
$$

Equating the coefficients of $t^{4 n}$ yields (2.1).(2.2) follows easily from (2.1) or (1.3). \square
Let $E_{n}(x), n=0,1, \ldots$, denote the Euler polynomial of degree n defined by

$$
\begin{equation*}
\frac{2 e^{x t}}{e^{t}+1}=\sum_{n=0}^{\infty} \frac{E_{n}(x)}{n!} t^{n} \tag{2.3}
\end{equation*}
$$

We shall make use of the following well-known properties of the Euler polynomials. The nth Euler number, E_{n}, is defined by (2.6)

$$
\begin{align*}
E_{n}(x)+E_{n}(1+x) & =2 x^{n}, & & n \geq 0 \tag{2.4}\\
E_{n}(1-x) & =(-1)^{n} E_{n}(x), & & n \geq 0 \tag{2.5}\\
E_{n} & =2^{n} E_{n}\left(\frac{1}{2}\right), & & n \geq 0 . \tag{2.6}
\end{align*}
$$

The first relationship between the two sets of polynomials is given by
Lemma 2.2. For $n \geq 0$, we have

$$
E_{4 n}(x)+E_{4 n}(1+x)=2 \sum_{k=0}^{n}\binom{4 n}{4 k} Q_{4 k}(x) .
$$

Proof. Immediate from (2.1) and (2.4).
We now obtain a representation theorem for the polynomials $Q_{4 n}(x)$ in terms of the Euler polynomials.

Theorem 2.1. For $n \geq 0$ we have

$$
\begin{equation*}
Q_{4 n}(x)=(-4)^{n} \sum_{k=0}^{2 n}\binom{4 n}{2 k}(-1)^{k} E_{2 k}\left(\frac{1+x}{2}\right) E_{4 n-2 k}\left(\frac{1+x}{2}\right) . \tag{2.7}
\end{equation*}
$$

Proof. From (2.3) we have

$$
\begin{equation*}
\frac{2 e^{x t}}{e^{t}+1}=\frac{2 e^{(x-1 / 2) t}}{e^{t / 2}+e^{-t / 2}}=\sum_{n=0}^{\infty} \frac{E_{n}(x) t^{n}}{n!} \tag{2.8}
\end{equation*}
$$

Replacing x by $1-x$ and adding yields

$$
\begin{equation*}
\frac{2 \cosh (x-1 / 2) t}{\cosh t / 2}=\sum_{n=0}^{\infty}\left[E_{n}(x)+E_{n}(1-x)\right] \frac{t^{n}}{n!} . \tag{2.9}
\end{equation*}
$$

Now replacing t by $2 t$ and $2 x-1$ by x in (2.9) and using (2.5) we have

$$
\begin{equation*}
\frac{\cosh x t}{\cosh t}=\sum_{n=0}^{\infty} E_{2 n}\left(\frac{1+x}{2}\right) \frac{(2 t)^{2 n}}{(2 n)} \tag{2.10}
\end{equation*}
$$

Replacing t by it in (2.10) yields

$$
\begin{equation*}
\frac{\cos x t}{\cos t}=\sum_{n=0}^{\infty} E_{2 n}\left(\frac{1+x}{2}\right) \frac{(-1)^{n}(2 t)^{2 n}}{(2 n)!} \tag{2.11}
\end{equation*}
$$

Finally, replacing t by $((1+i) / 2) t$ and $((1-i) / 2) t$ respectively in (2.11) and multiplying, we have

$$
\begin{align*}
& \frac{\cos \left(\frac{1+i}{2}\right) x t \cos \left(\frac{1-i}{2}\right) x t}{\cos \left(\frac{1+i}{2}\right) t \cos \left(\frac{1-i}{2}\right) t} \\
& \text { 2.12) } \quad=\sum_{n=0}^{\infty}(-4)^{n} \sum_{k=0}^{2 n}\left[(-1)^{k}\binom{4 n}{2 k} E_{2 k}\left(\frac{1+x}{2}\right) E_{4 n-2 k}\left(\frac{1+x}{2}\right)\right] \frac{t^{4 n}}{(4 n)!} .
\end{align*}
$$

Using the identity $\cosh t+\cos t=2 \cos ((1+i) / 2) t \cos ((1-i) / 2) t$ in (2.12) gives (2.7).

The first few polynomials $Q_{4 n}(x)$ are:

$$
\begin{aligned}
Q_{0}(x) & =1 \\
Q_{4}(x) & =x^{4}-1 \\
Q_{8}(x) & =\left(x^{4}-1\right)\left(x^{4}-69\right) \\
Q_{12}(x) & =\left(x^{4}-1\right)\left(x^{8}-494 x^{4}+33,661\right) \\
Q_{16}(x) & =\left(x^{4}-1\right)\left(x^{12}-1819 x^{8}+886,211 x^{4}-60,376,809\right)
\end{aligned}
$$

3. The Numbers $\left\{Q_{4 n}\right\}_{n=0}^{\infty}$ and the Euler Numbers. L. Carlitz (see [2], [3]) and other authors have considered the properties of the set of numbers $\left\{S_{2 n}\right\}$ defined by the generating function

$$
\frac{\cosh x}{\cos x}=\sum_{n=0}^{\infty} S_{2 n} \frac{x^{2 n}}{(2 n)}
$$

In particular, Carlitz showed that

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{2 n}{2 k} E_{2 k}=S_{2 n}=2^{n} S_{2 n}^{\prime} \tag{3.1}
\end{equation*}
$$

where $S_{2 n}^{\prime}$ is odd. In (3.1) each term in the sum is positive. The next lemma shows that a similar divisibility property holds for a special sum of products of Euler numbers in which the terms alternate in sign.

Lemma 3.1. For $n \geq 1$, we have

$$
\begin{equation*}
\sum_{k=0}^{2 n}\binom{4 n}{2 k}(-1)^{k} E_{2 k} E_{4 n-2 k}=(-4)^{n} Q_{4 n} \tag{3.2}
\end{equation*}
$$

where $Q_{4 n}$ is odd.
Proof. If we set $x=0$ in (2.7) and define

$$
\begin{equation*}
Q_{4 n}=Q_{4 n}(0), \quad n \geq 0 \tag{3.3}
\end{equation*}
$$

then, using (2.6) and simplifying, we get

$$
\begin{equation*}
Q_{4 n}=(-4)^{-n} \sum_{k=0}^{2 n}\binom{4 n}{2 k}(-1)^{k} E_{2 k} E_{4 n-2 k} \tag{3.4}
\end{equation*}
$$

To prove the lemma we need only show that $Q_{4 n}$ is odd. We have $Q_{0}=1$, and setting $x=0$ in (2.1) yields

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{4 n}{4 k} Q_{4 k}=0 \tag{3.5}
\end{equation*}
$$

Thus, $Q_{4}=-1$, so assume $Q_{4 n-4}$ is odd. Then from (3.5) we have

$$
\begin{equation*}
Q_{4 n}=-1-\binom{4 n}{4}\left(Q_{4}+Q_{4 n-4}\right)-\sum_{k=2}^{n-2}\binom{4 n}{4 k} Q_{4 k} \tag{3.6}
\end{equation*}
$$

Since, under the inductive assumption, the second and third terms in the right-hand member of (3.6) are even, $Q_{4 n}$ must necessarily be odd.

The first seven numbers $Q_{4 n}$ are listed below

$$
\begin{gathered}
Q_{0}=1, \quad Q_{4}=-1, \quad Q_{8}=69, \quad Q_{12}=-33,661, \quad Q_{16}=60,376,809 \\
Q_{20}=-245,454,050,521, \quad Q_{24}=3,019,098,162,602,349
\end{gathered}
$$

Symbolically, we can write

$$
(Q+1)^{4 n}+(Q-1)^{4 n}+(Q+i)^{4 n}+(Q-i)^{4 n}= \begin{cases}4, & n=0 \\ 0, & n>0\end{cases}
$$

where Q^{j} is replaced by Q_{j} after multiplying out, and $Q_{j}=0, j \not \equiv 0(\bmod 4)$.
Theorem 3.1. The numbers $Q_{4 n}$ have the property

$$
\begin{equation*}
(-1)^{n} Q_{4 n}>0, \quad n \geq 0 \tag{3.7}
\end{equation*}
$$

Proof. If we set

$$
\begin{equation*}
Q_{4 n}^{*}=\frac{Q_{4 n}}{(4 n)!} \tag{3.8}
\end{equation*}
$$

then, using (3.5) we get

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{4 n}{4 k}(4 k)!Q_{4 k}=0 \tag{3.9}
\end{equation*}
$$

Thus, $Q_{0}^{*}=1, Q_{4}^{*}=-\frac{1}{24}$. If we show that the sign of $Q_{4 n-4}^{*}$ determines the sign of the sum

$$
\begin{equation*}
\sum_{k=0}^{n-1}\binom{4 n}{4 k}(4 k)!Q_{4 k}^{*} \tag{3.10}
\end{equation*}
$$

then, since the left-hand member of (3.5) is equal to zero, the numbers $Q_{4 n-4}^{*}$ and $Q_{4 n}^{*}$ must have opposite sign. Therefore, we will show by induction that, for $n \geq 2$

$$
\begin{equation*}
\frac{\left|Q_{4 n-4}^{*}\right|}{4!}>69 \sum_{j=2}^{n} \frac{\left|Q_{4 n-4 j}^{*}\right|}{(4 j)!} . \tag{3.11}
\end{equation*}
$$

(Note: 69 is the best constant in the sense that it cannot be replaced by any larger integer.)

Since,

$$
\frac{1}{(4!)^{2}}=\frac{\left|Q_{4}^{*}\right|}{4!}>\frac{69\left|Q_{0}^{*}\right|}{8!}=\frac{69}{8!}
$$

(3.11) is true for $n=2$. Now assume inequality (3.11) is true for $n=k(\geq 2)$. That is,

$$
\begin{equation*}
\frac{\left|Q_{4 k-4}^{*}\right|}{4!}>69 \sum_{j=2}^{k} \frac{\left|Q_{k-4 j}^{*}\right|}{(4 j)} \tag{3.12}
\end{equation*}
$$

We wish to prove that

$$
\begin{equation*}
\frac{\left|Q_{4 k}^{*}\right|}{4!}>69 \sum_{j=1}^{k} \cdot \frac{\left|Q_{4 k-4 j}^{*}\right|}{(4 j+4)} . \tag{3.13}
\end{equation*}
$$

From (3.9) we have

$$
\left\lvert\, \stackrel{*}{\sim 4 k}>\frac{\left|Q_{4 k-4}^{*}\right|}{4!}-\sum_{j=2}^{k} \frac{\left|Q_{4 k-4 j}^{*}\right|}{(4 j)!}\right.
$$

and, using (3.12) yields

$$
\begin{equation*}
\frac{\left|Q_{4 k}^{*}\right|}{4!}>\frac{68}{69} \frac{\left|Q_{4 k-4}^{*}\right|}{(4!)^{2}}>69 \frac{\left|Q_{4 k-4}^{*}\right|}{8!}+\frac{\left|Q_{4 k-4}^{*}\right|}{8!} . \tag{3.14}
\end{equation*}
$$

To complete the proof, we need only show that

$$
\begin{equation*}
\frac{\left|Q_{4 k-4}^{*}\right|}{8!}>69 \sum_{j=2}^{k} \frac{\left|Q_{4 k-4 j}^{*}\right|}{(4 j+4)!} \tag{3.15}
\end{equation*}
$$

Now, (3.15) will be verified if term-by-term comparison with (3.12) yields the inequalities

$$
\begin{equation*}
\frac{\left|Q_{4 k-44}^{*}\right|}{(4 j+4)!}+\frac{4!}{8!} \frac{\left|Q_{4 k-4 j}^{*}\right|}{(4 j)!}, \quad(j=2,3, \ldots, k) \tag{3.16}
\end{equation*}
$$

Inequalities (3.16) are equivalent to

$$
\begin{equation*}
\frac{1}{(4 j+4)(4 j+3)(4 j+2)(4 j+1)}<\frac{1}{8 \cdot 7 \cdot 6 \cdot 5} \tag{3.17}
\end{equation*}
$$

and (3.17) holds for $j=2,3, \ldots, k$ as required. Therefore, inequality (3.15) holds. Substituting (3.15) into (3.14) gives (3.11) for $n=k+1$ and the proof by induction is complete.

A useful result to roughly determine the size of $\left|Q_{4 n}\right|$ is given by
Lemma 3.2. For $n \geq 1$, we have

$$
\begin{equation*}
\frac{68}{69}\binom{4 n}{4}\left|Q_{4 n-4}\right|<\left|Q_{4 n}\right|<\frac{70}{69}\binom{4 n}{4}\left|Q_{4 n-4}\right| . \tag{3.18}
\end{equation*}
$$

Proof. From (3.14) we have

$$
\begin{equation*}
\left|Q_{4 n}^{*}\right|>\frac{68}{69}\left(\frac{1}{4!}\right)\left|Q_{4 n-4}^{*}\right| . \tag{3.19}
\end{equation*}
$$

Using (3.9) and (3.11)

$$
\begin{equation*}
\left|Q_{4 n}^{*}\right|<\frac{\left|Q_{4 n-4}^{*}\right|}{4!}+\sum_{j=2}^{n} \frac{\left|Q_{4 n-4 j}^{*}\right|}{(4 j)!}<\frac{\left|Q_{4 n-4}^{*}\right|}{4!}+\left(\frac{1}{69}\right) \frac{\left|Q_{4 n-4}^{*}\right|}{4!} . \tag{3.20}
\end{equation*}
$$

Combining inequalities (3.19) and (3.20) we have

$$
\left(\frac{68}{69}\right) \frac{\left|Q_{4 n-4}^{*}\right|}{4!}<\left|Q_{4 n}^{*}\right|<\left(\frac{70}{69}\right) \frac{\left|Q_{4 n-4}^{*}\right|}{4!}
$$

which, by (3.8) is equivalent to (3.18).

Repeated application of inequality (3.18) provides an asymptotic estimate for $\left|Q_{4 n}\right|^{1 / n}$. Roughly speaking $\left|Q_{4 n}\right|^{1 / n} \sim \alpha n^{4}$ where $\alpha \approx 0.193$.

Corollary 3.1. For the numbers $\left\{Q_{4 n}\right\}_{n=0}^{\infty}$ defined by (3.3) we have

$$
\begin{equation*}
0.192535<\frac{\left|Q_{4 n}\right|^{1 / 2}}{n^{4}(8 \pi n)^{1 / 2 n}}<0.198198 \quad(n \rightarrow \infty .) \tag{3.21}
\end{equation*}
$$

Proof. Applying inequality (3.18) n times we have

$$
\begin{equation*}
\left(\frac{68}{69}\right)^{n} \frac{(4 n)!}{(4!)^{n}}<\left|Q_{4 n}\right|<\left(\frac{70}{69}\right)^{n} \frac{(4 n)!}{(4!)^{n}} \quad(n \rightarrow \infty) . \tag{3.22}
\end{equation*}
$$

Using Stirling's formula in (3.22) yields

$$
\begin{equation*}
\frac{2176}{207 e^{4}}<\frac{\left|Q_{4 n}\right|^{1 / n}}{n^{4}(8 \pi n)^{1 / 2 n}}<\frac{2240}{207 e^{4}} \quad(n \rightarrow \infty) . \tag{3.23}
\end{equation*}
$$

Approximating the right and left-hand parts of inequality (3.23) to six significant figures we get (3.21).

Remark. If we set $T_{n}=n^{-4}(8 \pi n)^{-1 / 2 n}\left|Q_{4 n}\right|^{1 / n}$ we have

$$
\begin{array}{ll}
T_{1}=0.1994711402 & T_{4}=0.1935040648 \\
T_{2}=0.1949786679 & T_{5}=0.1932707501 \\
T_{3}=0.1939383963 & T_{6}=0.1931265334
\end{array}
$$

4. Some properties of the Polynomial Set $\left\{Q_{4 n}(x)\right\}_{n=0}^{\infty}$. Since the polynomials $Q_{4 n}(x)$ are polynomials in x^{4}, determining the roots for $x>0$, yields all real and pure imaginary roots of $Q_{4 n}(x)$. The first result is given by

Theorem 4.1. The only zeros of the polynomial $Q_{4 n}(x),(n \geq 1)$, in $[-1,1]$ are at the endpoints $x= \pm 1$.

Proof. The polynomials $Q_{4 n}(x)(n \geq 0)$ are defined by the generating function
(1.3). Differentiating successively with respect to x we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{Q_{4 n}^{\prime}(x) t^{4 n}}{(4 n)!}=\frac{t(\sinh x t-\sin x t)}{\cosh t+\cos t} \\
& \sum_{n=1}^{\infty} \frac{Q_{4 n}^{\prime \prime}(x) t^{4 n}}{(4 n)!}=\frac{t^{2}(\cosh x t-\cos x t)}{\cosh t+\cos t} \tag{4.1}\\
& \sum_{n=1}^{\infty} \frac{Q_{4 n}^{\prime \prime \prime}(x) t^{4 n}}{(4 n)!}=\frac{t^{3}(\sinh x t+\sin x t)}{\cosh t+\cos t} \\
& \sum_{n=1}^{\infty} \frac{Q_{4 n}^{(4)}(x) t^{4 n}}{(4 n)!}=\frac{t^{4}(\cosh t+\cos t)}{\cosh t+\cos t}=\sum_{n=1}^{\infty} \frac{Q_{4 n-4}(x) t^{4 n}}{(4 n-4)!} .
\end{align*}
$$

Thus, if we set

$$
(4 n)_{4}=(4 n)(4 n-1)(4 n-2)(4 n-3)
$$

we have

$$
\begin{equation*}
Q_{4 n}^{(4)}(x)=(4 n)_{4} Q_{4 n-4}(x) . \tag{4.2}
\end{equation*}
$$

Setting $x=0$ in (4.1) yields

$$
\begin{equation*}
Q_{4 n}^{\prime}(0)=Q_{4 n}^{\prime \prime}(0)=Q_{4 n}(0)=0, \quad n \geq 1 \tag{4.3}
\end{equation*}
$$

By (3.7) and (4.2), $Q_{4 n}^{(4)}(0)=(4 n)_{4} Q_{4 n-4} \neq 0$.
Since $Q_{4}(x)=x^{4}-1, Q_{8}(x)=\left(x^{4}-1\right)\left(x^{4}-69\right)$, the theorem is true for $n=1$ and $n=2$. Assume it is true for $n-1$ where n is even. Since $Q_{4 n}(x)$ is symmetric in x, we consider only the interval $[0,1]$. Suppose $Q_{4 n}\left(x_{1}\right)=0$ where $0<x_{1}<1$. Since $Q_{4 n}(1)=0, n \geq 1$, applying Rolle's Theorem we get $Q_{4 n}^{\prime}\left(x_{0}\right)=0$ for some x_{0} such that $x_{1}<x_{0}<1$. From (4.3), $Q_{4 n}^{\prime}(x)$ has a zero of order three at $x=0$ and, since n is assumed even, $Q_{4 n}^{(4)}(0)=(4 n)_{4} Q_{4 n-4}<0$ so $Q_{4 n}(x)$ has a (positive) maximum at $x=0$. Therefore, by our assumption, $Q_{4 n}^{\prime}(x)$ has at least four zeros in the interval $[0,1]$. Applying Rolle's Theorem three times, $Q_{4 n}^{\prime}(x)=(4 n)_{4} Q_{4 n-4}(x)$ has at least one zero in the interval $(0,1)$ which contradicts our inductive assumption. The case when n is odd is treated similarly.

Since $Q_{4 n}(x)=\left(x^{4}-1\right) P_{n}(x), n \geq 1$ where $P_{n}(x)$ is a polynomial of degree $4 n-4$, it is obvious that $Q_{4 n}(3)$ is divisible by $80=5 \cdot 4^{2}$ for $n \geq 1$. Lemma 4.1 proves a much stronger result, namely that $Q_{4 n}(3) \equiv 0\left(\bmod 5 \cdot 4^{n+1}\right)$ and that $n+1$ is the highest power of 4 contained in $Q_{4 n}(3)$.

Lemma 4.1. For $n \geq 1, Q_{4 n}(3) \equiv 0\left(\bmod 4^{n+1}\right)$. In fact

$$
\begin{equation*}
Q_{4 n}(3)=4^{n+1}\left[4^{n}+(-1)^{n+1}\right] . \tag{4.4}
\end{equation*}
$$

Proof. Setting $x=3$ in (2.7) yields

$$
Q_{4 n}(3)=(-4)^{n} \sum_{k=0}^{2 n}\binom{4 n}{2 k}(-1)^{k} E_{2 k}(2) E_{4 n-2 k}(2) .
$$

Since $E_{0}(x) \equiv 1$, and $E_{n}(0)=0(n \geq 1)$, setting $x=1$ in (2.4) yields $E_{n}(2)=2(n \geq 1)$ Thus we have

Now, since

$$
\begin{aligned}
Q_{4 n}(3) & =(-4)^{n^{2 n-1}} \sum_{k=1}(-1)^{k}\binom{4 n}{2 k}(2)(2)+2 E_{0}(2) E_{4 n}(2) \\
& =(-1)^{n} 4^{n+1}\left[1+\sum_{k=1}^{2 n-1}(-1)^{k}\binom{4 n}{2 k}\right] \\
& =(-1)^{n} 4^{n+1} \sum_{k=0}^{2 n-1}(-1)^{k}\binom{4 n}{2 k} .
\end{aligned}
$$

we have

$$
\begin{equation*}
\sum_{k=0}^{2 n}(-1)^{k}\binom{4 n}{2 k}=\frac{1}{2}\left[(1+i)^{4 n}+(1-i)^{4 n}\right]=(-4)^{n} \tag{4.6}
\end{equation*}
$$

$$
Q_{4 n}(3)=(-1)^{n} 4^{n+1}\left[(-4)^{n}-1\right]
$$

which is equivalent to (4.5).
Some of the results in $\S 2$ appeared in the author's Doctoral Dissertation at the University of Alberta.

Acknowledgement. I would like to thank Professors A. Sharma and A. Meir for their encouragement, and Mrs. Mary Willard, University of Alberta, Edmonton, for her valuable computing assistance. I would also like to thank the referee for his useful suggestions.

References

1. W. Al-Salaam and A. Verma, Generalized Sheffer polynomials, Duke Math. J. 37 (1970), 361-365.
2. L. Carlitz, Note on the coefficients of $\cosh x / \cos x$, Mathematics Magazine, 32 (1955), 132 and 136.
3. L. Carlitz, The Coefficients of $\cosh x / \cos x$, Monatshefte fur Mathematik, 69 (1965), 129-135.
4. D. J. Leeming, A generalization of completely convex functions and related problems, Ph.D. Thesis, 1969.
5. N. E. Norlund, Vorlesungen uber Differenzenrechnung, Chelsea, New York, 1954.
6. V. B. Osegov, Some extremal properties of generalized Appell polynomials, Soviet Maths. 5 (1964), 1651-1653.
7. S. P. Pethe and A. Sharma, Modified Abel expansion and a subclass of completely convex functions, SIAM J. Math. Anal., 3 (1972), 546-558.
8. H. J. Ryser, Combinatorial Mathematics, published by The Mathematical Association of America, distributed by John Wiley and Sons, Inc., New York, 1963.
9. I. J. Schoenberg, On certain two point expansions of integral functions of exponential type, Bull. Amer. Math. Soc., 42 (1936), 284-288.
10. J. M. Whittaker, On Lidstone series and two point expansions of analytic functions, Proc. London Math. Soc., 36 (1934), 451-469.
11. D. V. Widder, Completely convex functions and Lidstone series, Trans. Amer. Math. Soc. 51 (1942), 387-398.

Department of Mathematics, University of Victoria, Victoria, British Columbia, Canada

