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SOME INEQUALITIES INVOLVING
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1. Introduction

We firstly introduce some notation. Let a(l) Gfi" then we denote by a(l) a
rearrangement of a(I) in non-decreasing order. We write am<aG) if

S a J ' ^ i " ! 2 ' for fc = l , 2 , . . . , n - l
i = l i = l

and

If the second condition is replaced by 2"=1 a\l) =s S?=1 af
2) we write a(1) -̂  a<2).

We shall also use Er to denote the rth elementary symmetric function and
Cr the r"1 completely symmetric function. In (3) Daykin proved the following
result.

Theorem 1. Let a and b be n-tuples of non-negative real numbers and S
an integer such that 2 *£ S « n. If a <b then

^Es(b) (1.1)
but

Cs(b)^Cs(a). (1.2)

Equality holds in (1.1) if and only if either both sides are zero or a is a
rearrangement of b whilst equality holds in (1.2) if and only if a is a
rearrangement of b.

Over the years there has been considerable interest in inequalities
involving Er and C, (see (7), pp. 95-107) and the referee has pointed out that
the above theorem can be obtained from known results as follows. If a < b
there is a doubly stochastic matrix M with b = Ma ((4), Theorem 46). Further
the set of (n x n) doubly stochastic matrices is a convex polyhedron with
permutation matrices as vertices (1). But E\'r is concave (5) and C]!r is convex
(13) so, when they are denned on a convex polyhedron, min E\tr and max C\tr

are realised at vertices of the polyhedron. Hence

E\'\b) = El'XMa) > E'JXP.a) = Er'\a)
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and
C\tr{b) = C\'XMa) *s Cllr(P2a) = Cl,"(a)

where P, and P2 are suitable permutation matrices.
In this note we investigate how the theorem can be generalised and obtain

simple proofs for generalisations of inequalities by Daykin, Mine and
Oppenheim.

2. Generalisation of Theorem 1

When the condition a < b of Theorem 1 is replaced by a<b, (1.2) will
clearly not hold in general; on the other hand (1.1) will continue to hold, for let
Ci = ah i = 1 , . . . , n - 1 and cn = an +2?=, b, - 2 " = l a, then clearly Es(a) =s
£s(c) and, since c <b, Es{c) =s Es(b) by Theorem 1. When we have a -̂  b in
place of a < b however, the following theorem shows that we can obtain an
inequality corresponding to (1.2) and a sharper inequality than (1.1).

Theorem 2. Let a and b be n-tuples of non-negative real numbers,
a = 2"=, ah b = 2"=1 bx and S an integer such that 2=eS=£n. If a~zb then

(i) bEs(a) « aEs(b),
(ii) anSCs(b)^bnSCs(a).

In both cases there is equality if and only if both sides are zero or a is a
rearrangement of b.

Proof. We may clearly suppose b, =s b2^ • • • =s bn. Let c0 = 0 and for
r = 0 , ! , . . . , « — 1 define

cr+I = mm
t=0

n - r)\

then (cf) is a non-decreasing sequence such that S"=1 ct = a. Let x{ = c,,
i = 1 , . . . , n — 1 and xn = cn + b — a. Since a <c and x < b we have by
Theorem 1

Es(o)« Es(c) Es(x)«Es(fc), (2.1)

Cs(o) ^ CS(O Cs{x) ^ Cs(b). (2.2)

(i) Let x' = (x i , . . . , xn_j) then, with the convention that £„(*') = 0, we have

aEs(x) - bEs(c) = (a - &)Es(x') + n(b - a + cn)£s_,(x') - bcnEs_,(x')
= (b - a){(x, + • • • + x ^ E s - . d ' ) - Es(x')} > 0 (2.3)

Thus b£s(a)«b£s(<;)^aEs(^)^a£s(' ') as required.
Suppose bEs(a) = aEs{b) ^ 0 then equalities hold in (2.1) and we must

have that a is a rearrangement of c and b a rearrangement of x. Now
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Es(c) & Es(a) > 0 so Es-i(*') > 0 and, from (2.3), b£s(c) = aEs(x) can hold
only if b = a, i.e. x = c and the equality condition for (i) is established,
(ii) Now bnCi 5* anx, for i = 1 , . . . , « - 1. Further

b"cn - anxn = bncn - anb + an + 1 - ancn

= (b- a){(bn-1 + b"'2a + ••• + a"-')cn - a"}

since cn s= ajn because (cn) is a non-decreasing sequence.
Thus bnci^a"xi (i = l , . . . , n ) so Cs(b"c)^ Cs(a"x) i.e. b"sCs(c)>

a"sCs(x) so from (2.2) b"sCs(a)^ a"sCs(b).
The equality condition for (ii) can now be checked in a similar way

to (i).

Remarks on Theorem 2. (1) (i) is a generalisation of a result of
Oppenheim (8).

(2) The conclusion of (i) cannot be improved to bl+s£s(o)=s a1+s£s(fc)
where S > 0, for let a, = 1 = bfi = 1 , . . . ,n - l,an = 1 and bn = 1 + X, where X
is large, then ai+sEs(b)lbl+sEs(a) = 0((HX)S).

(3) The conclusion of (ii) can almost certainly be strengthened to
a'Cs(b) =s brCs(a) where r<Sn and it would be of some interest to know
the best possible value for r.

(4) The referee has pointed out that (i) follows from the fact that EJEr-{ is
concave (5) and a result in (2).

3. An inequality of Oppenheim

Oppenheim (9) has shown that Theorem 2 (i) can be improved in the
special case S = n = 3 and max, b, « max, ar His result is a special case of
the following theorem.

Theorem 3. Let a and b be n-tuples of non-negative real numbers,
a = S"=, a, and b = S"=1 bt. If a ~*b and max, b; =s max, ab then

Equality holds if and only if either both sides are zero or a is a rear-
rangement of b.

Proof. We may clearly suppose that a and b are arranged in non-
decreasing order. Let u GRn+2 and v eR"+ 2 be non-decreasing rear-
rangements of (a, \b, \b) and (b, \a, ja) respectively. Clearly S"=,2 u{ = 2"=,2 v,.
Since an_, « an, 2an_, « a =£ b so an_, =£ \b and M, = a, (i = 1 , . . . , n - 1).

For A =0,1 ,2 let Gr(A) = a, + • •• + an-r-bt-b2 bn_r_A - Aa/2,
then, for k = 1 , . . . , n - 1, 2?=1 (ut - vt) = Gn_t(A) for some A = 0,1 or 2. For
r ^ l w e clearly have Gr(A)=s0 for A =0, 1 or 2 so 2?=1 M , « 2 ? = I U, for
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(i) Suppose vn+2 = \a then vn+2 =£ \b =£ un+2 and vn+i + vn+1 = a =£ b *£
Mn +, + Mn+2.

(ii) Suppose un+2 = bn then vn+2 =s an =s un+2 and un+, + vn+2 =
bn + max (&„_,, ^a) =s an +\b « «n+1 + «n+2.

Thus in both cases u<v. Hence, by Theorem 1, En+2(u)« En+2(v) i.e.
b2En(a)«a2£n(ft) as required.

Suppose En+2{u) = En+2(v) ^ 0 then, by Theorem 1, M, = t;17
t0 i =

1 , . . . , n + 2. Thus un_, = «„_! = an_, =s ^a so b, = M, = a, for i = 1 , . . . , n - 1.
But M; = vt (i = n, n -I-1, n + 2) now gives \a = ̂ b and the theorem follows.

Remarks on Theorem 3. (1) The conclusion of Theorem 3 cannot be
improved to b2+8En(a)=s a2+8En(b) where 8 > 0 , for let af = b, = 1 i =
1 , . . . , n - 2, an_] = X — 1 and an = X = bn_i = bn, where X is large, then

1

(2) Under the conditions of Theorem 3 we do not in general have
b2Es(a)^a2Es(b) when 2«S=£n, for let a, = b, = 1, a2 = 3, a3 = 4 = b2 =
b3 then b2E2(a) = 1539 but a2£2(J>) = 1536.

4. Inequalities of Ruderman, Mine and Daykin

We remind the reader that a(0 denotes a rearrangement of a(0 in
non-decreasing order.

Theorem 4. // a<0 (f = l , . . . , m ) are n-tuples of non-negative real
numbers, a, = 2̂ =1 a?\ a; = 2̂ =1 a\° and S an integer satisfying 2 « S « n ,
then

£s(a)«£s(a)

where a = (a;) and a = (a,). Equality holds if and only if either both sides
are zero or a(1)+ • • • +a(m) is a rearrangement of a(1) + • • • + a(m).

Proof. Without loss of generality we may suppose that a, ̂  a 2 « • • • «
an. Clearly a(,°+ ha<°« aS°+ • • • + a<° for l « t « m a n d l« r*£n . Thus
2f=1 a, ^2f=i a, and hence a <a. The result now follows by Theorem 1.

Remarks on Theorem 4. (1) When S = n we have an inequality of
Ruderman (10). Mine (6) later re-proved the inequality and obtained the
conditions for equality.

(2) Daykin's Theorem 2 in (3) is a special case of this theorem with the
a(0 (f = 1,. . . , m) just rearrangements of a single n-tuple a, since Hall's
Theorem on distinct representatives (see (11)) ensures that his result can be
put in this form.

We now require:
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Lemma. If a and b are n-tuples such that a, ^ a2 3= • • -5* an > 0 and
bi3=a,, b | b 2 ^ a l a 2 , . . •, i»ib2. . . bn 2= asa2 • • • an then for p > 0 and r =
1 , . . . , n , b p + bp

2 + • • • + b p ^ a p + a \ + • • • + a"r.
Equality holds if and only if a, = b, (i = 1,..., n).

Proof. The lemma clearly follows from the special case p = 1, r = n
which is well-known (see (12) pp. 145-146).

Theorem 5. If a(l) (f = l , . . . , m ) are n-tuples of non-negative real
numbers, a, = 11̂ =, aj", a, = njl, ajr) and p > 0 then

Equality holds if and only if (af) is a rearrangement of (af).

Proof. Without loss of generality we may suppose that a, ^ a2 ^ • • • ^
an. For l « t « m and 0^r<n « i V - i • • - a ^ ^ f l i V - i • • • ai-r so
anan-, ... an_r > anan-t... an_r. Let a, be the first non-zero a, (i = 1 , . . . , n)
then, by the lemma, a"n + «£_, + • • • + «£ 5= a"n + • • • + a"q = SJ*=1 al and the
required inequality follows.

Suppose S"=, a"i =2"=, a ' then, for q as defined above, we must have
a, = 0 for i < q and a"n + • • • + ap

q = a"n + • • • + a"q which implies a, = a, for
q « i « n by the lemma and the theorem follows.

Remark on Theorem 5. When p = 1 we have an inequality of Ruder-
man (10). Mine (6) later re-proved the inequality and obtained the con-
ditions for equality.

From the following theorem we can deduce immediately Theorems 3, 4
and 5 of Mine (6).

Theorem 6. / / a(l) E. R" (t=l,...,m) and (m,) and (M,) are rear-
rangements in non-decreasing order of (min, a-") and (max, a-") respectively
then m, « min, a,-" and M, =? max, aj" (i = 1 , . . . , n).

Proof. Suppose there is a k with 1 s£ k =s n such that mk > min, at". Let
â T) = min, af so that mk > a(

k
T\ Since a|T)« ak

r) for 1 « i « k at least k of the
mj must be less than or equal to a[T) so there is a j> k such that
nij « a£T) < mk and we have a contradiction.

The inequality M, s* max, a'" follows by a similar argument.
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