A partial evaluator for the untyped lambda-calculus

CARSTEN K. GOMARD AND NEIL D. JONES
gomard@diku.dk, neil@diku.dk
DIKU, Department of Computer Science, Universily of Copenhagen

Abstract

This article describes theoretical and practical aspects of an implemented self-applicable partial evaluator for the untyped lambda-calculus with constants and a fixed point operator. To the best of our knowledge, it is the first partial evaluator that is simultaneously higher-order, nontrivial, and self-applicable.

Partial evaluation produces a residual program from a source program and some of its input data. When given the remaining input data the residual program yields the same result that the source program would when given all its input data. Our partial evaluator produces a residual lambda-expression given a source lambda-expression and the values of some of its free variables. By self-application, the partial evaluator can be used to compile and to generate stand-alone compilers from a denotational or interpretive specification of a programming language. An essential component in our self-applicable partial evaluator is the use of explicit binding time information. We use this to annotate the source program, marking as residual the parts for which residual code is to be generated and marking as eliminable the parts that can be evaluated using only the data that is known during partial evaluation. We give a simple criterion, wellannotatedness, that can be used to check that the partial evaluator can handle the annotated higher-order programs without committing errors. Our partial evaluator is simple, is implemented in a side-effect free subset of Scheme, and has been used to compile and to generate compilers and a compiler generator. In this article we examine two machine-generated compilers and find that their structures are surprisingly natural.

Capsule review

For many years, partial evaluation has been ever more promising as an optimization tool. Its ability to achieve some level of automatic compilation has been known for two decades, and its potential through self-application for obtaining compilers and compiler generators for more than one. That potential was first realized five years ago at DIKU in Copenhagen. At that time, only a small subset of pure, first-order, statically-scoped LISP could be handled but, by a double self-application of the partial evaluator to its own text, a compiler generator was obtained. Since then, research has focused on developing the capabilities of partial evaluators, including allowing them to handle function-valued arguments. This article is the first to describe a self-applicable partial evaluator for the untyped lambda-calculus, the canonical higher-order language. Traditionally, evaluation of lambda-terms is achieved by predetermined reduction strategies; in contrast, partial evaluation of lambda-terms is achieved by program-
dependent reduction strategies. The choice of reduction strategy is determined by a binding time analysis. The analysis is based upon a non-standard type system, instead of (as is more usual) upon abstract interpretation. The article demonstrates automatic compiling and the automatic production of compilers and compiler generators, and introduces a proof of correctness.

Contents

Preface231 Introduction 23
1.1 Background 23
1.2 Prerequisites, overview and outline 25
1.3 Partial evaluation and the Futamura projections 25
2 Partial evaluation using a two-level lambda-calculus 28
2.1 An untyped lambda-calculus 29
2.2 Two-level syntax 30
2.3 Two-level semantics 31
2.4 As bird's eye view of how mix works 33
2.5 'Well-annotated programs do not go wrong' 33
2.6 The mix equation revisited 37
3 Aspects of binding time analysis by type inference 38
3.1 BTA: type analysis of untyped programs? 38
3.2 Viewing binding time analysis as type inference 39
3.3 Finiteness of partial evaluation 40
3.4 Code duplication 41
4 Experiments with mix 42
4.1 A self-interpreter 42
4.2 An interpreter for a Tiny imperative language 47
4.3 An example of compiler generation 49
5 Perspectives and conclusions 51
5.1 Related work 51
5.2 Future work 54
5.3 Conclusion 56
Appendices
A A mix session 57
B T annotated 60
C The generated self-compiler 61
D The generated compiler generator 62
E Tiny interpreter 64
F The generated Tiny compiler 65
Acknowledgements 66
References 66

Preface

This article develops a simple self-applicable partial evaluator for a higher-order language, the lambda-calculus. Examples demonstrate that the partial evaluator can be used automatically to generate a language implementation in the form of a compiler, given as input a language definition in the form of a denotational semantics.

Self-applicable partial evaluators for first-order languages had been around for four years before this project was begun. The goal was to generalize the techniques that worked well for first-order languages to include the higher-order languages with their higher expressive power. We have succeeded in performing higher-order partial evaluation, but the techniques used are somewhat different - and simpler!-than those used in earlier partial evaluation projects.

To read this article, a superficial knowledge of denotational semantics, typed programming languages and type inference systems will be beneficial.
(An extended abstract of this article has appeared in the proceedings of the IEEE Conference on Programming Languages: Jones et al., 1990.)

1 Introduction

1.1 Background

A language's implementation should be guided by its precise semantic definition. It seems an impossible task to implement a realistic language correctly on the basis of a loose idea of how it should work. Even with a precise - formal or informal semantic description it is neither a small nor an easy task to implement a compiler correctly.

Therefore the mechanical derivation of a language implementation from a semantic definition has received great attention as an area of research during the last ten years. The goal is clear: from a language definition expressed in a not-too-cumbersome formalism automatically to derive an efficient implementation that is faithful to the semantic definition.

An important formalism for assigning meanings to programs is denotational semantics (Stoy, 1977; Schmidt, 1986) founded by Scott and Strachey. A denotational definition assigns to each program a lambda-expression denoting the input-output function computed by the program. Denotational semantics was intended to be the mathematical theory of programming languages, saying what the meaning of a program is, but nothing about how to compute it. How to compute it was considered irrelevant to understanding the meaning of a program.

Since the lambda-calculus can be implemented [Lisp, Scheme, ML, Miranda, etc. are all based on the lambda-calculus], a denotational definition of a programming language can actually run directly on a machine. We may thus view a denotational definition as an interpreter for the defined language, meaning that we have for free a language implementation derived (without doing anything) from a formal language definition. Could we ask for more? Yes, we ask for efficiency.

A denotational semantics defines the meanings of programs in a programming language by translating them into the lambda-calculus. The lambda-expression resulting from the translation has very large computational overhead; for efficient implementation, it is necessary to simplify the expression before it is applied to the program input and executed. This was the strategy used in SIS: the Semantics Implementation System of Mosses (1979), the first in a long series of systems to derive implementations from denotational definitions. To our knowledge none of these systems is so powerful (or so simple) that one could consider using the system to construct its own components. All are quite complex, with many stages of processing and intermediate languages. In contrast, the partial evaluator presented here involves only one language (with annotations), and all components are derived from a single program, 'mix'.

Partial evaluation is another approach to the generation of language implementations. Partial evaluation is a program transformation technique which specializes programs with respect to given, incomplete input data. During the seventies it was realized independently in Japan and the Soviet Union (Futamura, 1971; Turchin, 1980; Ershov, 1978) that given a self-applicable partial evaluator it was possible to generate a compiler for a language, given as input an operational definition in the form of an interpreter. It was not, however, until 1984 that the first non-trivial self-application was realized on the computer (Jones et al., 1985, 1989).

The language used in that project was for first-order recursion equations. Since then partial evaluators have been developed for various other first-order languages, but until now no higher-order solution has been developed. Partial evaluation of higher-order languages is clearly desirable because of their expressive power and elegance.

When a compiler is generated by self-application of a partial evaluator, the partial evaluator is the only program involved apart from the language definition. Furthermore, a partial evaluator is usually a relatively small program. It is thus much easier to prove the generated compiler correct (meaning: faithful to the input language definition) because 'all' it takes is to prove the partial evaluator correct. Once this is done (and it has been done: see Gomard, 1989, every generated compiler will be faithful to the language definitions from which they were derived. This completely obviates the need for the difficult intellectual work involved in proving individual compilers correct (Goguen et al., 1977; Morris, 1973).

In this article we merge the two threads of development sketched above. We construct a self-applicable partial evaluator for the lambda-calculus with unrestricted use of higher-order functions and apply it to some small example denotational definitions of programming languages. The emphasis will be on what the partial
evaluator does, including self-application, and on how it is done, via the two-level lambda-calculus and binding time analysis.

1.2 Prerequisites, overview and outline

The reader should be familiar with denotational semantics (e.g. Schmidt, 1986) and should have some knowledge of partial evaluation.

After a summary of this article's contents, the rest of section 1 is devoted to a review and overview of the basic theory of partial evaluation and compiler generation (more details may be found in Jones et al., 1985, 1989).

A central part of the article is section 2 where the syntax and semantics of our oneand two-level lambda-calculi are presented. The task of partial evaluation is split into two: first we add annotations to the one-level (normal) lambda-expression to obtain a two-level expression, and then evaluate the annotated expression. A type system that assures the partial evaluation against type errors is derived from the semantics of the two-level lambda-calculus.

Section 3 demonstrates how the notion of 'type analysis of untyped programs' provides a convenient framework for doing binding time analysis.

Section 4 reports the results of experiments with out partial evaluator. We use an interpreter for a small imperative language to demonstrate compiling and compiler generation, and describe experiments with a metacircular interpreter for the lambdacalculus itself. We investigate the structure of the target programs, the generated compiler, and the generated compiler generator, all of which turn out to be very natural. Finally the run times of our experimental program executions are given.

Section 5 discusses related work and natural work to follow after this. Finally we summarize the achievements of this article.

In the appendices a Scheme session shows how the implemented partial evaluator works. Various program texts and generated residual programs may also be found there.

1.3 Partial evaluation and the Futamura projections

The concept of partial evaluation and the possibility of compiler generation by selfapplication of a partial evaluator have been exploited in a number of papers (e.g. Futamura, 1971; Jones et al., 1985, 1989). In the following we review the basic definitions.

In partial evaluation we treat programs as data objects and it is therefore natural to use a universal domain D from which we draw both programs and their data. We identify a programming language \mathbf{L} with it semantic (partial) function $D \xrightarrow{\Re} D \xrightarrow{R} D$ which maps each valid \mathbf{L}-program into its input-output function. From now on \mathbf{L} is the lambda-calculus and D contains the set of all Lisp S-expressions. An expression is identified with its representation as a list, for example, ($\operatorname{lam} x(@ x x)$) for $\lambda x . x . x @ x$ (a notational convention known at MIT as ‘Cambridge Polish').

We supply the input to a lambda-calculus program p through its free variables $\left\{x_{1}, \ldots, x_{m}\right\}$ so the input to the program is thus m values, $v_{1} \ldots v_{m}$. We define

$$
\mathbf{L} p\left[v_{1}, \ldots, v_{m}\right]
$$

to be equal to $\mathscr{E} \llbracket p \rrbracket \rho$ (the semantic evaluation function \mathscr{E} will be formally defined in section 2.1), where $\rho=\left[\mathrm{x}_{1} \mapsto v_{1}, \ldots, \mathrm{x}_{m} \mapsto v_{m}\right]$. Consider, for example, the following exponentiation program with free variables n and x. (This program, called power, is written in an informal notation; properly it should be in Cambridge Polish.)

$$
\begin{aligned}
& \text { letrec } p n^{\prime} x^{\prime}=\text { if } n=0 \\
& \\
& \\
& \quad \begin{array}{l}
\text { then } 1 \\
\\
\text { else } x^{\prime} * p\left(n^{\prime}-1\right) x
\end{array} \\
& \text { in } p n x .
\end{aligned}
$$

Calling the program power and letting $\rho=[\mathrm{n} \mapsto 2, \mathrm{x} \mapsto 3]$, we have

$$
\mathbf{L} \text { power }[2,3]=\mathscr{E} \llbracket \text { power } \rrbracket \rho=9 .
$$

1.3.1 Partial evaluation

Suppose now that p is a lambda-calculus program with two free variables. Then $\mathbf{L} p[d 1, d 2]$ denotes the value of p with input $d 1$ and $d 2$ substituted for the free variables. If only $d l$ is available, application of the semantic function $\mathbf{L} p d l$ does not make sense, as the result is likely to depend on $d 2$. However, $d l$ might be used to perform some of the computations in p, yielding as result a transformed, optimized version of p, We use the term partial evaluation for the process of doing such computations on basis of incomplete input data. Its outcome is a program, so 'partial evaluation' is really a form of program specialization (or transformation).

A residual program of an \mathbf{L}-program p with respect to partial data $d l$ is a program $p_{d l}$ such that for all $d 2$ the following holds (where ' $=$ ' denotes equality of partial values):

$$
\mathbf{L} p[d 1, d 2]=\mathbf{L} p_{d 1} d 2
$$

A partial evaluator is a program mix that given p and the partial data $d l$ produces the residual program $p_{d l}$. This is captured by the mix equation for all p and $d l$:

$$
\mathbf{L} p[d 1, d 2]=\mathbf{L}(\mathbf{L} \operatorname{mix}[p, d l]) d 2
$$

This is just a restatement of Kleene's S_{n}^{m} theorem from recursive function theory, with $m=n=1$. If p is a lambda-expression, the free variable in it bound to $d l$ is called static, while that bound to $d 2$ is called dynamic. Generalization to other values of m and n is straightforward.

Existence of mix is classically proved in a rather trivial way. For example, if p is the power program and $d l=2$ is the value of free variable n, the classical residual program L mix [p,2] would be:

$$
\begin{aligned}
\text { letrec } p n^{\prime} x^{\prime}= & \text { if } n^{\prime}=0 \\
& \text { then } 1 \\
& \text { else } x^{\prime} * p\left(n^{\prime}-1\right) x
\end{aligned}
$$

$\operatorname{inp} 2 x$.

For our purposes we want more efficient residual programs in which all computations depending on $d l$ have been done by mix. A better residual power program for $d l=2$ can be obtained by unfolding applications of the function p and doing the computations involving n , yielding the residual program:

$$
x *(x * 1)
$$

1.3.2 The Futamura projections

Let \mathbf{S} and \mathbf{T} be programming languages, perhaps (but not necessarily) different from L. An \mathbf{S}-interpreter int written in \mathbf{L} is a program that fulfils

$$
\mathbf{S} \text { pgm data }=\mathbf{L} \text { int }[p g m, \text { data }]
$$

for all data. An S-to-T-compiler comp written in \mathbf{L} is a program that fulfils

$$
\mathbf{S} p g m \text { data }=\mathbf{T}(\mathbf{L} \text { comp pgm }) \text { data }
$$

for all $p g m$ and data.
The Futamura projections (Futamura, 1971; Ershov, 1978) state that given a partial evaluator mix and an interpreter int it is possible to compile programs, and even to generate stand-alone compilers and compiler generators, by self-applying mix. The three Futamura projections are:

$$
\begin{aligned}
\mathbf{L} \text { mix }[\text { int }, \text { source }] & =\text { target } \\
\mathbf{L} \text { mix }[\text { mix }, \text { int }] & =\text { compiler } \\
\mathbf{L} \text { mix }[\text { mix, mix }] & =\text { compiler generator } .
\end{aligned}
$$

Program target is a specialized version of L-program int and thus is itself an Lprogram, so translation has occurred from the interpreted language to the language in which the interpreter itself is written. That the target program is faithful to its source is easily verified using the definitions of interpreters, compilers and the mix equation:

$$
\begin{aligned}
\text { output } & =\mathbf{S} \text { source input } \\
& =\mathbf{L} \text { int }[\text { source, input }] \\
& =\mathbf{L}(\mathbf{L} \text { mix }[\text { int }, \text { source }]) \text { input } \\
& =\mathbf{L} \text { target input } .
\end{aligned}
$$

Verification that program compiler correctly translates source programs into equivalent target programs is also straightforward:

$$
\begin{aligned}
\text { target } & =\mathbf{L} \text { mix }[\text { int }, \text { source }] \\
& =\mathbf{L}(\mathbf{L} \text { mix }[\text { mix } x \text { int }] \text { source } \\
& =\mathbf{L} \text { compiler source } .
\end{aligned}
$$

Finally, we can see that cogen transforms interpreters into compilers by the following:

$$
\begin{aligned}
\text { compiler } & =\mathrm{L} \text { mix }[\operatorname{mix}, \text { int }] \\
& =\mathrm{L}(\mathrm{~L} \text { mix }[\text { mix, mix }]) \text { int } \\
& =\mathrm{L} \text { cogen int } .
\end{aligned}
$$

These proofs and a more detailed discussion can be found in Jones et al. (1989).

2 Partial evaluation using a two-level lambda-calculus

To do partial evaluation of a lambda-expression p it is tempting to insert the partial input data in p, and apply one of the usual reduction strategies, modified not to reduce when insufficient information is available. But the standard call-by-name and call-by-value reduction strategies (as defined for example in Plotkin, 1975) do not reduce inside the bodies of abstractions. This approach yields trivial results in practice.

It is no solution either to reduce indiscriminately inside abstractions since this can lead to infinite reduction if the expression contains a fixed point operator, or the Ycombinator written as a lambda-expression. The point is that for partial evaluation to succeed, some but not all of the redexes in the expression should be reduced. Many, so as little work as possible will be left to be done by the residual program; but not so many as to risk non-termination. Thus our main task is to determine which ones to reduce to yield efficient residual programs without risking non-termination.

The classical deterministic reduction orders are uniform (meaning: independent of the program being evaluated). This is insufficient for our purposes since the best reduction order may be program-dependent. A solution is to use a non-uniform reduction strategy, one which selects redexes in a way depending on the particular program being partially evaluated. A simple technique is to mark parts of the program as 'residual', so these will not be reduced but the remaining ones will.

We therefore perform partial evaluation of lambda-expressions in two phases. In the first phase, we determine which redexes should be reduced at compile-time and which ones should be residual, meaning that they should be suspended until run-time. This determination, which is done before knowing the static data, is called binding time analysis, henceforth called BTA for short. Its importance for efficient selfapplication is discussed in Bondorf et al. (1988). The result of applying the BTA to an expression exp is an annotated expression $\exp ^{\mathrm{ann}}$ in a two-level lambda-calculus. In exp ${ }^{\text {ann }}$ the BTA has marked the parts of exp that should not be reduced at partial evaluation time.

In the second phase we blindly obey the annotations, reducing redexes not marked as residual, and generating residual target code (also a lambda-expression) for the operations marked residual. The reduction phase is performed by applying a semantic function \mathscr{T} - which is an extension of the usual evaluation function \mathscr{E} - to the annotated expression. \mathscr{T} maps residual operators to code pieces for execution at runtime and non-residual operators to their 'usual' meanings.

2.1 An untyped lambda-calculus

We develop a partial evaluator for a very simple language, the classical lambdacalculus. Such a simple language allows a more complete description than would be possible for a larger and more practical language, and makes it possible to carry out proofs of correctness and optimality. The lambda-calculus forms the basis of modern functional programming languages (e.g. Scheme, ML, Miranda, Haskell), so the results obtained here should not be too hard to adapt to more practical frameworks. The fact that we use an untyped language makes it easier to write interpreters (and thus partial evaluators) and it also allows complete removal of a level of interpretation overhead. We will return to this in section 4.1.1.

2.1.1 Syntax

A lambda-calculus program is an expression with free variables. The program takes its input through its free variables whose values are supplied by an initial environment. This environment is also expected to map base function names, such as cons, to the corresponding functions (syntactically these are predefined variables). First-order base values include natural numbers and S-expressions and are written const basevalue.

The expression abstract syntax is as follows, where @ denotes application and fix the least fixed point operator.

$$
\exp ::=\text { var|exp@exp| } \lambda v a r . \exp \mid \text { if exp exp exp|fix exp|const base-value. }
$$

Since we use lambda-calculus both as a programming language and as a metalanguage, we need to distinguish notationally lambdas that appear in source programs from lambdas that denote functions. Syntactic (source program) lambdaexpressions are printed in sans serif type: exp@exp, λ var.exp, fix exp..., and the meta-language is in italics: exp@exp, λv var.exp, fix exp ... When a lambda-expression is presented as generated by machine, it is printed in typewriter style using 'Cambridge Polish' notation: (exp exp), (lamvar exp) etc.

For an example, consider a program to compute the function x to the nth where x and n are free (input) variables. (For readability we omit some of the explicit consts and application nodes in the concrete syntax. We thus write $\left(=n^{\prime} 0\right)$ instead of (= @ $\mathrm{n}^{\prime} @$ const 0).)

$$
\left(f i x \lambda p . \lambda n^{\prime} . \lambda x^{\prime} . i f\left(=n^{\prime} 0\right) 1 \quad\left(* x^{\prime}\left(p @\left(-n^{\prime} 1\right) @ x^{\prime}\right)\right)\right) @ n @ x .
$$

2.1.2 Semantics

We use denotational semantics (Stoy, 1977; Schmidt, 1986) to assign meanings to programs, rather than the more traditional $\alpha \beta \eta$-reduction approach. There are at least two reasons for this:

1. It allows a cleaner analysis of possible errors at partial evaluation time.
2. It is more natural (and yields much better results) for the self-application used in compiler generation.

The Scott domain of expression values $V a l$ is the separated sum of the flat domain of base values and the domain of function values: $\mathrm{Val}=$ Base + Funval.

If f is a value from Funval we take $f \uparrow$ Funval to be the value f injected into summand Funval of Val. Informally: $f \uparrow$ Funval puts a type tag on f. If val is a value from Val, val \downarrow Funval removes the type tag, provided val is from the Funval summand. If not, val \downarrow Funval produces an error. (It is assumed that Val has an error element and that applications etc. are strict in errors; details are omitted for notational simplicity.)

The valuation functions for lambda-calculus programs are the usual ones, given in fig. 1 with the notational conventions usual in denotational semantics (\uparrow and \downarrow bind less strongly than application). The denotational definition of fig. 1 may be regarded as a self-interpreter for the lambda-calculus since it is easily transformed into a lambda-calculus program (of form fix $\lambda \mathscr{E} \ldots$...).

Semantic domains

```
Val = Base + Funval
Funval = Val }->\mathrm{ Val
Env=Var }->\mathrm{ Val
E: Expression }->\mathrm{ Env }->\mathrm{ Val
E\mathscr{IVar] ] = \rho(var)}
E}\llbracket\lambdavar.exp\rrbracket\rho=\lambdavalue.(\mathscr{E}\llbracket\operatorname{exp}\\rho[var\mapstovalue])\uparrow Funva
\mathscr{E}\llbracket\mp@subsup{exp}{1}{@}@\mp@subsup{exp}{2}{2}\rrbracket\rho=(\mathscr{E}\llbracket\mp@subsup{exp}{1}{}\rrbracket\rho\downarrow\mathrm{ Funval )(E& }\llbracket\mp@subsup{\operatorname{exp}}{2}{}|\rho)
E}\mathscr{fix exp|\rho= fix(\mathscr{E}[\operatorname{exp}\\rho\downarrow Funval)
\mathscr{E}\if exp}\mp@subsup{\operatorname{exp}}{2}{}\mp@subsup{\operatorname{exp}}{3}{}\rrbracket\rho=(\mathscr{E}\llbracket\mp@subsup{\operatorname{exp}}{1}{}\rrbracket\rho\downarrow\mathrm{ Base })->\mathscr{E}\llbracket\mp@subsup{\operatorname{exp}}{2}{}\rrbracket\rho,\mathscr{E}\llbracket\mp@subsup{\operatorname{exp}}{3}{}\rrbracket
\mathscr { E } \llbracket c o n s t ~ c \rrbracket \rho = c \uparrow \text { Base}
```

Fig. 1. Lambda-calculus semantics.
The untyped lambda-calculus program to be interpreted might contain type errors and hence the type checks such as $\mathscr{E} \llbracket \exp _{1} \rrbracket \rho \downarrow$ Funval are necessary so the selfinterpreter can report 'error' when this happens. If the subject program is known to be well-typed it is safe to omit the type tags (Milner, 1978). This is in general not the case for an untyped language.

2.2 Two-level syntax

The two-level lambda-calculus contains two versions of each operator in the ordinary lambda-calculus: for each of the 'normal' operators and base functions: $\lambda, @, \ldots$, cons,...there is also a residual version: $\underline{\lambda}, @, \ldots$, cons, ... in the two-level calculus. The abstract syntax of two-level expressions is

$$
\begin{aligned}
\operatorname{texp}::= & \operatorname{texp} @ \operatorname{texp} \mid \lambda \text { var.texp } \mid \text { if texp texp texp } \mid \text { fix texp } \mid \text { const base-value } \mid \\
& \text { texp@texp } \mid \lambda \text { var.texp }|\underline{\text { if } t e x p t e x p t e x p ~}| \text { fix texp } \mid \text { const base-value } \mid \\
& \text { var } \mid \text { lift texp }
\end{aligned}
$$

Intuitively, in the two-level semantics all operators $\lambda, @, \ldots$ have the same denotations by the semantic function \mathscr{T} in fig. 2 as in the one-level call-by-value semantic function of fig. 1 , while the residual operators: $\underline{\lambda}, @, \ldots$ are suspended yielding as

Semantic domains

$$
\begin{aligned}
& 2 \mathrm{Val}=\text { Base }+2 \text { Funval }+ \text { Code } \\
& 2 \text { Funval }=2 \mathrm{Val} \rightarrow 2 \mathrm{Val} \\
& \text { Code }=\text { Expression }(=\text { the set of one-level expressions) } \\
& 2 E n v=\operatorname{Var} \rightarrow 2 \mathrm{Val} \\
& \mathscr{T}: 2 \text { Expression } \rightarrow 2 \text { Env } \rightarrow 2 \mathrm{Val} \\
& \mathscr{T}[\text { var } \rrbracket \rho=\rho(\text { var }) \\
& \mathscr{T} \llbracket \text { fix texp } \rrbracket \rho=(\lambda \text { value } .(\mathscr{T} \llbracket \text { texp } \rrbracket \rho[\text { var } \mapsto \text { value }])) \uparrow 2 \text { Funval } \\
& \mathscr{T} \llbracket \lambda v a r . \operatorname{texp} \rrbracket \rho=\text { fix }(\mathscr{T} \llbracket \operatorname{texp} \rrbracket \rho \downarrow 2 \text { Funval }) \\
& \mathscr{T} \llbracket \operatorname{texp}_{1} @ \operatorname{texp}_{2} \rrbracket \rho=\left(\mathscr{T}\left[\operatorname{texp}_{1} \rrbracket \rho \downarrow 2 F u n v a l\right)\left(\mathscr{T} \llbracket \operatorname{texp}_{2} \rrbracket \rho\right)\right. \\
& \mathscr{T} \llbracket \mathrm{if} \operatorname{texp}_{1} \operatorname{texp}_{2} \operatorname{texp}_{3} \rrbracket \rho=\left(\mathscr{T} \llbracket \operatorname{texp}_{1} \rrbracket \rho \downarrow \text { Base }\right) \rightarrow \mathscr{T} \llbracket \operatorname{texp}_{2} \rrbracket \rho, \mathscr{T} \llbracket \operatorname{texp}_{3} \rrbracket \rho \\
& \mathscr{T} \llbracket \text { const } \mathrm{c} \rrbracket \rho=c \uparrow \text { Base } \\
& \mathscr{T} \llbracket l i f t \text { texp } \rrbracket \rho=\text { build-const }(\mathscr{T} \llbracket t e x p \rrbracket \rho \downarrow \text { Base }) \uparrow \text { Code } \\
& \mathscr{T} \llbracket \lambda v a r . \operatorname{texp} \rrbracket \rho=\operatorname{let} n v a r=\text { newname in build }-\lambda(n v a r, \mathscr{T}[\operatorname{texp} \rrbracket \rho[v a r \mapsto \\
& \text { nvar }\rfloor \downarrow \text { Code }) \uparrow \text { Code } \\
& \mathscr{T}\left\lceil\operatorname{texp}_{1} @ \operatorname{texp}_{2} \rrbracket \rho=\text { build-@(T) } \llbracket \operatorname{texp}_{1} \rrbracket \rho \downarrow \text { Code, } \mathscr{T} \llbracket \operatorname{texp}_{2} \rrbracket \rho \downarrow \text { Code }\right) \uparrow \text { Code } \\
& \mathscr{T} \llbracket f i x \exp \rrbracket \rho=\text { build-fix }(\mathscr{T} \llbracket \mathrm{texp} \rrbracket \rho \downarrow \text { Code }) \uparrow \text { Code } \\
& \mathscr{T}\left[i f \text { texp }{ }_{1} \operatorname{texp}_{2} \operatorname{texp}_{3} \rrbracket \rho=\text { build-if(} \mathscr{T} \llbracket \operatorname{texp}_{1} \rrbracket \rho \downarrow\right. \text { Code, } \\
& \mathscr{T} \llbracket \operatorname{texp}_{2} \rrbracket \rho \downarrow \text { Code }, \\
& \mathscr{T}\left\lceil\operatorname{texp}_{3} \rrbracket \rho \downarrow \text { Code }\right) \uparrow \text { Code } \\
& \mathscr{T} \llbracket \text { const } \mathrm{c} \rrbracket \rho=\text { build-const }(c) \uparrow \text { Code }
\end{aligned}
$$

Fig. 2. Two-level lambda-calculus semantics.
result a piece of code (a one-level expression) for execution at run-time. The lift operator builds a residual constant expression with the same value as lift's argument. The lift operator is used when a residual expression has a constant value that must be computed at partial evaluation time. We will give an example of this in section 2.5.1.

Note that we do not distinguish syntactically between 'normal' and residual variables (elsewhere called dynamic and static). The reason for this is that the universality of the value domain, which can hold both 'normal' values and residual code.

2.3 Two-level semantics

The value of a two-level expression ranges over a domain 2 Val :

$$
\begin{aligned}
& 2 \mathrm{Val}=\text { Base }+2 \text { Funval }+ \text { Code } \\
& 2 \text { Funval }=2 \text { Val } \rightarrow 2 \mathrm{Val} \\
& \text { Code }=\text { Expression }
\end{aligned}
$$

which is the normal expression value domain extended by an extra summand, the flat domain of one-level expressions, Code. The value of a two-level expression might thus be an (ordinary) expression. The valuation functions for two-level lambda-calculus programs are given in fig. 2. The rules contain explicit type checks; section 2.5 will
discuss sufficient criteria for omitting these (and so the error element as well). The \mathscr{T} rules for the non-residual syntactic constructs look the same as the corresponding \mathscr{E} rules but the values range over the larger domain of two-level values 2 Val .

To obtain self-applicability the rules should be rewritten as a single expression in our lambda calculus language. This is straightforward, the result being of the form fix $\lambda \mathscr{T} . \lambda \exp . \lambda \rho \ldots$.

The \mathscr{T}-rule for a residual application is

$$
\mathscr{T} \llbracket \operatorname{texp}_{1} @ \operatorname{texp} \mathrm{ex}_{2} \rrbracket \rho=\text { build } @\left(\mathscr{T} \llbracket \exp 1 \rrbracket \rho \downarrow \text { Code, } \mathscr{T} \llbracket \operatorname{texp}_{2} \rrbracket \rho \downarrow \text { Code }\right) \uparrow \text { Code } .
$$

The recursive calls $\mathscr{T} \llbracket \operatorname{texp}_{1} \rrbracket \rho$ and $\mathscr{T} \llbracket \operatorname{texp}_{2} \rrbracket \rho$ produce reduced operator and operand and the function build-@ 'glues' them together with an application operator @ to appear in the residual program (concretely, an expression of the form texp ${ }_{1}$-code @ texp ${ }_{2}$-code). All the build-functions are strict. (For a concrete example of machinegenerated code, the reader can consult the session in appendix A.)

The projections check that both operator and operand reduce to code pieces since it does not make sense to glue, for example, functions together to appear in the residual program. Finally the newly composed expression is tagged as being code.

The \mathscr{T}-rule for variables is

$$
\mathscr{T} \llbracket \operatorname{var} \rrbracket \rho=\rho(\text { var }) .
$$

The environment ρ is expected to hold the values of all variables regardless of whether they are predefined constants, functions, or code pieces. The environment is updated in the usual way in the rule for non-residual λ, and in the rule for $\underline{\lambda}$, the formal parameter is bound to a fresh variable name (which we assume available whenever needed):

$$
\begin{aligned}
\mathscr{T} \llbracket \lambda . \operatorname{var} \operatorname{texp} \rrbracket \rho=\operatorname{let} n v a r & =\text { newname } \\
& \text { in build } \lambda(n v \text { var, } \mathscr{T} \llbracket \operatorname{texp} \rrbracket \rho[\operatorname{var} \mapsto n v a r] \downarrow \text { Code }) \uparrow \text { Code } .
\end{aligned}
$$

Each occurrence of var in texp will then be looked up in ρ, causing var to be replaced by some var ${ }_{\text {new }}$. Since λ var.texp might be duplicated, and thus become the 'father' of many λ-abstractions in the residual program, this renaming is necessary to avoid name confusion in residual programs. The free dynamic variables must be bound to their new names in the initial static environment ρ_{s}. The generation of new variable names relies on a side effect on a global state (a name counter). In principle this could have been avoided by adding an extra parameter to the semantic function, but for the sake of notational simplicity we have used a less formal solution.

Example 1

Suppose we are given the power program power with free variables n and x :

$$
\left(f i x \lambda p . \lambda n^{\prime} . \lambda x^{\prime} . i f\left(=n^{\prime} 0\right) \quad \text { const } 1\left(* @ x^{\prime}\right) @\left(p @\left(-n^{\prime} 1\right) @ x^{\prime}\right)\right) @ n @ x
$$

with $\mathrm{n}=2$ as static variable. We annotate the irreducible parts to yield the program power ${ }^{\mathrm{ann}}$:

$$
\left(\text { fix } \lambda p . \lambda n^{\prime} . \lambda x^{\prime} . \text { if }\left(=n^{\prime} 0\right) \quad \text { const } 1\left(\underline{*} @ x^{\prime}\right) @\left(p @\left(-n^{\prime} 1\right) @ x^{\prime}\right)\right) @ n @ x
$$

With $\rho_{s}=\left[\mathrm{n} \mapsto 2 \uparrow\right.$ Base, $\mathrm{x} \mapsto \mathrm{x}_{\mathrm{new}} \uparrow$ Code $]$ we can evaluate power ${ }^{\mathrm{ann}}$ (i.e. partially evaluate power), yielding:

```
    \(\mathscr{T}\left[\right.\) power \(\left.^{\text {ann }}\right] \rho_{s}\)
\(=\mathscr{T}\left[\left(f i x \lambda p \cdot \lambda n^{\prime} \cdot \lambda x^{\prime}\right.\right.\). if \(\left(=n^{\prime} 0\right) \quad\) const 1
    \(\left(\right.\) *@ \(\left.\left.x^{\prime}\right) @\left(p @\left(-n^{\prime} 1\right) @ x^{\prime}\right)\right) @ n @ x \rrbracket \rho_{s}\)
\(=\left(* X_{\text {new }}\left(* x_{\text {new }} 1\right)\right)\)
```

In appendix A a Scheme session shows how this residual program is generated by our partial evaluator.

In the power example it is quite clear that with $\rho=[\mathrm{n} \mapsto 2, \mathrm{x} \mapsto d 2], \rho_{s}=[\mathrm{n} \mapsto 2$, $\left.\mathrm{x} \mapsto \mathrm{x}_{\text {new }}\right]$, and $\rho_{d}=\left[\mathrm{x}_{\text {new }} \mapsto d 2\right]$ (omitting injections for brevity) it holds for all $d 2$

$$
\mathscr{E} \llbracket \text { power } \rrbracket \rho=\mathscr{E} \llbracket \mathscr{T} \llbracket \text { power }^{\mathrm{ann}} \rrbracket \rho_{s} \rrbracket \rho_{a}
$$

This is the kind of correctness property we want to hold in general. In section 2.6 we state a general correctness theorem concerning two-level evaluation.

2.4 A bird's eye view of how mix works

Mix specializes programs in two steps. If given program p and static data $d l$, its actions are:

1. Binding time analysis. This annotates p, giving $p^{\text {ann }}$.
2. Evaluate $\mathscr{T} \llbracket p^{\text {ann }} \rrbracket \rho_{s}$, where ρ_{s} binds p 's free static variable to $d l$.

Free variables in p will only be bound to first-order values, i.e. values in the Base or Code summands of 2 Val .

2.5 'Well-annotated programs do not go wrong'

The semantic rules of fig. 2 check explicitly that the values of sub-expressions are in the appropriate summands of the value domain, in the same way that a type-checking interpreter for an untyped language would check types on the fly. Type-checking on the fly is clearly necessary to prevent mix from committing type errors itself on a poorly annotated program.

Doing type checks on the fly in mix is not very satisfactory for practical reasons. Mix is supposed to be a general and automatic program generation tool, and it should for obvious reasons be impossible for a mix generated compiler to go down with an error message.

Note that it is in principle possible - but unacceptably inefficient in practice - to avoid mix-time errors by annotating as residual all operators in the input program to mix. This would place all values in the code summand so all type checks would succeed; but the residual program would always be isomorphic to the source program, so it would not be optimized at all.

The aim of this section is to develop a more efficient strategy, ensuring two things prior to partial evaluation: that the partial evaluator will not fail a type check, thus rendering the type checks superfluous; and ensuring that as many operations as possible are performed at mix time. This section title 'Well-annotated programs do not go wrong' is thus a paraphrase of Milner's slogan (Milner, 1978).

2.5.1 Well-annotated expressions

Given a one-level expression exp, an annotated lambda-expression exp ${ }^{\text {ann }}$ is a twolevel expression obtained by replacing some occurrences of $@, \lambda, \ldots$ in exp by the corresponding marker operator: @ , $\underline{\lambda}, \ldots$ and inserting some lift-operators. Clearly the annotations have to be placed consistently not to produce a projection error according to the rules in fig. 2.

A simple and traditional solution to our problem is to devise a type system. In typed functional languages, a type inference algorithm, such as algorithm W of Milner (1978) and Damas and Milner (1982), checks that a program is well-typed prior to program execution. If it is, no run-time summand tags or checks are needed. Type correctness is quite well understood and can be used to obtain a good formulation of the problem to be solved by binding time analysis. It also turns out that we can adapt some of the type inference ideas of Damas and Milner (1982) (and many other papers) to obtain a nice algorithm for doing binding time analysis. The type system used here is very simple, but it should not be too difficult to adapt the ideas to a more powerful system including more base types, constructors, and polymorphism.

Definition 2

The abstract syntax of a two-level type t is given by

$$
\text { type }::=\text { base |type } \rightarrow \text { type } \mid \text { code }
$$

A type environment is a mapping from variables to types.

Definition 3

Let τ be a type environment mapping the free variables of a two-level expression texp to their types. Then texp is well-annotated if $\tau \vdash$ texp: t can be deduced from the inference rules in fig. 3 for some type t. \square

Note that type unicity does not hold: t is not uniquely determined by τ and texp. Given any type environment τ and the expression $\lambda x . x$ it holds, for example, that $\tau \vdash \lambda \mathrm{x} . \mathrm{x}:$ base \rightarrow base and $\tau \vdash \lambda \mathrm{x} . \mathrm{x}:($ base \rightarrow base $) \rightarrow$ (base \rightarrow base).

Our lambda-calculus is basically untyped, but the well-annotatedness ensures that the program parts evaluated at partial evaluation time are well-typed, thus insuring mix against type errors. The well-annotatedness criterion is completely permissive concerning the run-time part of a two-level expression. An extreme case: every lambda-expression with only residual operators is well-typed -at partial evaluation time.

Two-level expressions of type base evaluate (completely) to constants, and expressions of type $t_{1} \rightarrow t_{2}$ evaluate to some function 'living' only at partial evaluation time. The mix-value of a two-level expression texp of type code is a onelevel expression exp. For partial evaluation we are only interested in fully annotated programs $p^{\text {ann }}$ that have type code. If so, $\mathscr{T} \llbracket p^{\text {ann }} \rrbracket \rho_{s}$ (if defined) will be the residual program.
Suppose an expression of type base is evaluated at mix-time yielding value as result, and suppose value is needed at run-time. The lift annotation is then used to indicate that the computed value must be turned into a constant expression to appear in the

$$
\begin{aligned}
& \frac{\tau(\mathrm{x})=T}{\tau \vdash \mathrm{x}: T} \\
& \frac{\mathrm{~T}\left[\mathrm{x} \mapsto T_{2}\right] \vdash \operatorname{texp}: T_{1}}{\tau \vdash \lambda \mathrm{t} \cdot \operatorname{texp}: T_{2} \rightarrow T_{1}} \\
& \frac{\tau \vdash \operatorname{texp}}{1}: T_{2} \rightarrow T_{1}, \tau \vdash \operatorname{texp}{ }_{2}: T_{2} \\
& \frac{\tau \vdash \text { texp }:\left(T_{1} \rightarrow T_{2}\right) \rightarrow\left(T_{1} \rightarrow T_{2}\right)}{\tau \vdash \text { fixtexp }:\left(T_{1} \rightarrow T_{2}\right)} \\
& \frac{\tau \vdash \operatorname{texp}_{1}: \text { base, } \quad \tau \vdash \operatorname{texp}_{2}: T, \quad \tau \vdash \operatorname{texp}_{3}: T}{\tau \vdash \text { if } \operatorname{texp}_{1} \text { texp }{ }_{2} \operatorname{tex} p_{3}: T} \\
& \tau \vdash \text { const c:base } \\
& \frac{\tau[\mathrm{x} \mapsto \text { code }] \vdash \text { texp:code }}{\tau \vdash \lambda \mathrm{x} \cdot \text { texp:code }} \\
& \frac{\tau \vdash \operatorname{texp}_{1}: \text { code, } \tau \vdash \operatorname{texp}_{2}: \text { code }}{\tau \vdash \text { texp }} \text { @ texp } 2: \text { code } \\
& \frac{\tau \vdash \text { texp : code }}{\tau-\text { fix texp :code }} \\
& \frac{\tau \vdash \operatorname{texp}_{1}: \text { code }, \quad \tau \vdash \operatorname{texp}_{2}: \text { code }, \quad \tau \vdash \text { texp }_{3}: \text { code }}{\tau \vdash \text { if texp } \operatorname{texp}_{2} \text { texp }{ }_{3}: \text { code }} \\
& \tau \vdash \text { const c:code } \\
& \frac{\tau \vdash \text { texp: base }}{\tau-\text { lift texp :code }}
\end{aligned}
$$

Fig. 3. Type rules checking well-annotatedness.
residual program. The type inference rules accordingly state that if texp has type base then lift texp has type code.

Example 4

Consider the following program that computes n times x to the nth where x and n are free (input) variables.

$$
\left(f i x \lambda p . \lambda n^{\prime} . \lambda x^{\prime} . i f\left(=n^{\prime} 0\right) n \quad\left(* x^{\prime}\left(p @\left(-n^{\prime} 1\right) @ x^{\prime}\right)\right)\right) @ n @ x .
$$

If we take x to be of type code (dynamic) and n to be of type base (static), we observe that this program cannot be well-annotated without using lift. The reason is that the multiplication branch must have type code since the multiplication cannot be performed at partial evaluation time, but the n branch of the conditional has type base. This incompatibility cannot be resolved using the type deduction rules without the rule for lift.

If, however, we 'lift' the \boldsymbol{n} that provides the base case value, we obtain a wellannotated program:

$$
\text { (fix } \left.\lambda p . \lambda n^{\prime} . \lambda x^{\prime} . \text { if }\left(=n^{\prime} 0\right) \quad \text { lift } n \quad * @ x^{\prime} @\left(p @\left(-n^{\prime} 1\right) @ x^{\prime}\right)\right) @ n @ x
$$

The result on error freedom of well-typed programs can be formulated as follows. Proof is omitted since the result is well-known.

Definition 5

Let t be a two-level type and v be a two-level value. We say that t suits v if and only if one of the following holds:

1. $t=$ base and $v=c t \uparrow$ Base for some $c t$.
2. $t=$ code and $v=c d \uparrow$ Code for some $c d$.
3. (a) $t=t_{1} \rightarrow t_{2}, v=f \uparrow 2$ Funval for some f, and
(b) $\forall v \in 2 \mathrm{Val}: t_{1}$ suits v implies t_{2} suits $f(v)$.

A type environment τ suits an environment ρ if for all variables x bound by $\rho, \tau(x)$ suits $\rho(\mathrm{x})$.

Recall that the initial static environment ρ_{s} maps static variables to their (first-order) values and dynamic variables to their new name. A type environment τ that suits ρ_{s} thus maps static variables to base, and dynamic variables to code. The following is a standard result (Milner, 1978).

Proposition 6

If $\tau \vdash$ texp: t and τ suits ρ_{s} then $\mathscr{T} \llbracket$ texp ρ_{s} does not yield a projection error.

2.5.2 The existence of best completions

In general we want to perform as much computation as possible at partial evaluation time. This means that as few annotations as possible should be added to make the expression well-annotated.

Definition 7

The annotation forgetting function $\varphi: 2 \operatorname{Exp} \rightarrow \operatorname{Exp}$, when applied to a two-level expression texp returns an expression exp which differs from texp only in that all annotations and lift operators are removed.

Definition 8

Given two-level expressions, texp and texp', define texp \subseteq texp' by:

1. $\varphi($ texp $)=\varphi\left(\right.$ texp $\left.^{\prime}\right)$.
2. All operators marked as residual in texp are also marked as residual in texp'.
\subseteq defines a preorder on the set of two-level expressions. If we restrict \subseteq to the set of two-level expressions without lift-operators, ㄷ is a partial order possessing greatest lower bounds (written Π).

Definition 9

Given a two-level expression texp and a type environment τ, a completion of texp for τ is a two-level expression texp ${ }^{\prime}$ with $\operatorname{texp} \sqsubseteq \operatorname{texp}^{\prime}$ and $\tau \vdash$ texp ${ }^{\prime}: t$ for some type t.

A best completion (if it exists) is an expression texp" which is a completion of texp fulfilling texp ${ }^{\prime \prime} \sqsubseteq$ texp ${ }^{\prime}$ for all completions texp' of texp. A liftless completion texp ${ }^{\prime}$ of texp is a completion of texp in which lift does not occur.

As we saw in example 4 not all two-level expressions have liftless completions. If a two-level expression has liftless completions, it has a unique best liftless completion.

Theorem 10
Given a two-level expression texp and a type environment τ mapping the free variables of texp to either base or code. Assume texp has at least one liftless completion. Then it also has a best liftless completion.

Proof
Found in Gomard (1989).
There does not in general exist a unique best completion of two-level expressions. Suppose n has type base and that we want a completion of $(\lambda x . x) @ \mathrm{n}$ of type code. There are two candidates: lift ($(\lambda x . x) @ n$) and ($\lambda x . x$) @ liftn which, though different, yield equal amounts of static computation. In Gomard (1989) there is a discussion of the general existence of best completions.

2.6 The mix equation revisited

With $m=n=1$ the mix equation is

$$
\mathbf{L} p[d 1, d 2]=\mathbf{L}(\mathbf{L} \operatorname{mix}[p, d l]) d 2
$$

In terms of \mathscr{E} and \mathscr{T} the equation is

$$
\mathscr{E} \llbracket p \rrbracket \rho=\mathscr{E}\left[\mathscr{T} \llbracket p^{\mathrm{ann}} \rrbracket \rho_{s} \rrbracket \rho_{d}\right.
$$

where p^{ann} is a completion of $p, \rho=\left[\mathrm{x}_{1} \mapsto d l, \mathrm{x}_{2} \mapsto d 2\right], \rho_{8}=\left[\mathrm{x}_{1} \mapsto d 1, \mathrm{x}_{2} \mapsto x_{\mathrm{new}}\right]$, and $\rho_{d}=\left[\mathrm{x}_{\text {new }} \mapsto d 2\right]$.
We now state the general correctness theorem for two-level evaluation of untyped lambda-expressions.

Theorem 11 (Main correctness theorem)
Suppose we are given:

1. A two-level expression texp with free static variables $\mathrm{x}_{1} \ldots \mathrm{x}_{m}$ and free dynamic variables $X_{m+1} \ldots \dot{x}_{m+n}$.
2. Environments $\rho, \rho_{d} \in E n v$ and $\rho_{\varepsilon} \in 2 E n v$ such that for $i \in 0 \ldots m: \rho\left(x_{i}\right)=\rho_{s}\left(\mathrm{x}_{i}\right)$ and for $i \in m+1 \ldots m+n: \rho\left(\mathrm{x}_{i}\right)=\rho_{d}\left(\rho_{s}\left(\mathrm{x}_{i}\right) \downarrow\right.$ Code $)$.
3. $\tau \vdash$ texp: code for some τ that suits ρ_{s}.

If both $\mathscr{E} \llbracket \mathscr{T} \llbracket \operatorname{texp} \rrbracket \rho_{s} \rrbracket \rho_{d}$ and $\mathscr{E} \llbracket \varphi($ texp $) \rrbracket \rho$ are not \perp then

$$
\mathscr{E} \llbracket \mathscr{T} \llbracket \operatorname{texp} \rrbracket \rho_{s} \rrbracket \rho_{d}=\mathscr{E} \llbracket \varphi(\operatorname{texp}) \rrbracket \rho
$$

Proof
See Gomard (1989).

3 Aspects of binding time analysis by type inference

3.1 BTA: type analysis of untyped programs?

Given an expression exp in the untyped, one-level lambda-calculus and some assumptions on its free variables, it is always possible to add enough annotations to obtain a well-annotated two-level expression texp, in the worst case by making all operators residual and adding lift operators where needed. Operators in texp can be forced to be residual for two somewhat different reasons:

1. The computation cannot be performed when the input data is incomplete, or
2. The non-residual part of the type system could not assign a proper type to the sub-expression.

The first reason forces us, for example, to make the sum of a static and a dynamic variable residual. The second reason would force $\lambda x . x @ x$ to be annotated $\lambda x . x @$ x no matter what the context is, since $\lambda x . x @ x$ cannot be assigned a type in our system. Similarly any occurrence of the lambda-notation equivalent of the Ycombinator in a subject program will be made residual, so to define mix-time recursive functions we have to use the explicit fixed point operator.

Our favourite subject programs are denotational language definitions. In these the 'syntactic dispatch' and the environment lookup operations are usually 'wellbehaved' and do not need to be made residual. Consider for example the following (in which we have again omitted some application operators). It is a syntactically sugared fragment of a lambda-calculus self-interpreter (and thus also a fragment of mix) :

```
\mathscr{E}=\lambdaexp.\lambda\rho. case exp of
    var(id): \rho(id)
    app(exp
    abs(x, exp )}):\lambdaval. (\mathscr{E Exp
```

We assume that the expression \exp fed to \mathscr{E} is static. Clearly ($\mathscr{E} \exp \rho$) must have the same type as $\left(\mathscr{E} \exp _{1} \rho\right)$ (call it t). On the other hand, the application branch of the case expression demands $(\mathscr{E} \exp \rho)$ to have the same type as $\left(\mathscr{E} \exp _{1} \rho\right) @\left(\mathscr{E} \exp _{2} \rho\right)$, so the same expression must have type $t \rightarrow t$. These demands are incompatible; consequently ($\mathscr{E} \exp \rho$), the results of the case branches, and the application operator must be retyped: annotated as residual and so of type code.

The environment ρ is well-behaved, since the application of ρ and its updating (in the abstraction branch) are type consistent. The minimally annotated self-interpreter thus becomes:

```
\(\mathscr{E}=\lambda \exp . \lambda \rho\). case exp of
    \(\operatorname{var}(i d): \rho(i d)\)
    \(\operatorname{app}\left(\exp _{1}, \exp _{2}\right):\left(\mathscr{E} \exp _{1} \rho\right) @\left(\mathscr{E} \exp _{2} \rho\right)\)
    \(\operatorname{abs}\left(x, \exp _{1}\right): \lambda \operatorname{val}\left(\mathscr{E} \exp _{1}(\lambda i d . i f i d=x\right.\) then val else \(\left.\rho(i d))\right)\),
```

where exp has type base, ρ has type base \rightarrow code, and \mathscr{E} has type base \rightarrow (base \rightarrow code) \rightarrow code.

But now the reader may be confused: this type seems quite different from the type $\mathscr{E}:$ Expression $\rightarrow E n v \rightarrow V a l$ with $E n v=V a r \rightarrow V a l$ seen in the denotational semantics of the lambda-calculus of fig. 1. But there is no conflict, just a different viewpoint : the types used here are for a different purpose than those of the semantics, namely to identify what can be performed at partial evaluation time.

To explain the type of \mathscr{E} in the well-annotated two-level self-interpreter, first recall that expressions are base values. Second, Val is a sum domain, and the result of applying \mathscr{E} to an expression can be in any summand (or even be the error element), depending on dynamic program input, which is unavailable at partial evaluation time. The result of evaluation must thus have type code.

3.2 Viewing binding time analysis as type inference

Given an expression exp, a naive exponential time algorithm could generate all wellannotated completions and pick the best. We would like to do better than that, and this section sketches ideas for a more efficient BTA. Detailed algorithms are given in Gomard (1990).

Given a well-annotated expression texp, algorithm W of Damas and Milner (1982) is able to assign types to texp and its sub-expressions. Given an expression that is not well-annotated, the algorithm would at some stage fail to unify two type terms and report an error. Since all such errors can in principle be fixed by annotating some operators as residual, a good question is which operators it should change.

Algorithm W manipulates type terms that denote types of the sub-expressions of texp. It appears possible to associate information with each type term about which of the program's sub-expressions must have that type. [In Wand (1986) a similar idea is used to make type inference systems give better error messages.] When a unification fails the relevant list of sub-expressions is returned. This points out which parts of texp should be given type code for texp to have a chance of being well-annotated.

In our framework we have three type constructors: \rightarrow, base, and code. During type inference we will mark each such constructor with a subscript: a list of occurrences of sub-expressions of the expression whose type is being inferred. This means that if the constructor causes a unification to fail, then the sub-expression(s) pointed out by the occurrence(s) should be made residual.

Example 12

Suppose texp =

$$
\text { if } x \quad x \quad \lambda y \cdot y
$$

with initial type assumption $\tau=[\mathrm{x} \mapsto$ code $]$. The condition of any non-residual ifexpression must have type base (i.e. boolean), so x must also be a base value. The unification of code with base fails, and accordingly the conditional must be residual, so texp is transformed into

$$
\text { if } x \quad x \quad \lambda y \cdot y
$$

and W tries to check the types of this new candidate. This time the unification of the
types of the two branches again fails, since $\lambda y . \gamma$ has type $t \rightarrow t$, so accordingly λy is made residual. Now texp $=$

$$
\underline{\text { if } x \quad x \quad \lambda y \cdot y}
$$

which is well-annotated.

Example 13

In the power example the unannotated program is

$$
\left(f i x \lambda p . \lambda n^{\prime} . \lambda x^{\prime} . i f\left(=n^{\prime} 0\right) \quad c o n s t 1 \quad\left(* @ x^{\prime}\right) @\left(p @\left(-n^{\prime} 1\right) @ x^{\prime}\right)\right) @ n @ x
$$

with initial type assumption $\tau=[\mathrm{n} \mapsto$ base, $\mathrm{x} \mapsto$ code]. This implies expression (fix...) has type base \rightarrow code $\rightarrow \alpha_{2}$ where α_{2} is a type variable. In turn it is found that p must have type base \rightarrow code $\rightarrow \alpha_{2}, \mathrm{n}^{\prime}$ has type base, x^{\prime} has type code, and that both branches in the conditional have type α_{2}.

The type of the non-residual (binary) multiplication operator $*$ is base \rightarrow base. Since x has type code the type assignment algorithm will fail. This forces $*$ and the corresponding applications to be residual. In turn const 1 must also be made residual yielding the well-annotated (and best) completion:

$$
\left(f i x \lambda p . \lambda n^{\prime} . \lambda x^{\prime} . i f\left(=n^{\prime} 0\right) \quad c o n s t 1 \quad\left(* @ x^{\prime}\right) @\left(p @\left(-n^{\prime} 1\right) @ x^{\prime}\right)\right) @ n @ x \quad[
$$

It is possible to augment the type representations in the almost linear unification algorithm of Huet (1976) with type origin information without significant increase in its running time. Algorithm W scans the program once and makes one unification for each application and each conditional. In our algorithm, each time algorithm W fails, at least one operator will be made residual, and algorithm W will be re-applied to the result. This does not seem prohibitively expensive, especially in light of the fact that binding time analysis is only performed once : before the static data are available for specialization. Gomard (1990) contains the details of the algorithm.

What this binding time analysis does is different from the lambda-calculus binding time analyses described in Nielson and Nielson (1988b) and Schmidt (1988) in that the base language is not required to be well-typed.

Earlier work in binding time analysis (e.g. Jones et al., 1989) has been based on abstract interpretation, but it seems to us that the framework of type inference provides a simple and efficient alternative. This idea of using type inference on 'typical' abstract interpretation tasks has also been used in recent work on strictness analysis (Kuo and Mishra, 1989) where the result was a much more efficient but sometimes less precise strictness analysis than that done by evaluation over a higher order abstract strictness domain. In Wadler (1990) a type system is also used to determine which variables are referenced exactly once; again a typical application area where abstract interpretation has been used.

3.3 Finiteness of partial evaluation

Mix can 'go wrong' in other ways than by committing type errors. Reduction might proceed infinitely if \mathscr{T} reduces too often. To avoid this some redexes should be left in the residual program, and since mix obeys the annotations blindly it is the
responsibility of the BTA to decide which. Some attention has been paid to this problem in the literature and it is generally recognized as being difficult to ensure termination and yet to do non-trivial computation at partial evaluation time.

A variety of BTA algorithms for first-order functional languages have been published (e.g. Jones et al., 1989; Mogensen, 1988), but they do not ensure termination. Jones (1988) outlines a BTA algorithm with strong termination properties for a flow-chart language, but even though the language is simple the algorithm is not. A further problem with the first-order languages is that it is a too conservative restriction to demand compositionality: static parameters that become strictly smaller in every recursive function call. To ensure safe BTA without this restriction some abstract interpretations are needed.

The higher-order lambda-calculus on the other hand still has significant expressive power when compositionality is imposed. Let us first note that partial evaluation of a well-annotated expression without non-residual fix-operators is guaranteed to terminate. Second, a non-residual fix-expression

$$
\text { fix } \lambda f . \lambda x_{1} \ldots \lambda x_{n} \text {.body }
$$

defining a function f is safe if for some i, the i th argument has type base and in all recursive calls to f, that argument is always strictly smaller than x_{i} (according to some well-founded ordering on the domain of possible argument values). Compositionality of recursive function definitions is easy to check, and it is always possible to transform a well-annotated expression not satisfying the criterion into one that does, by simply making any offending fixed point operators residual. As long as compositional definitions are used the criterion is strong enough to ensure termination of partial evaluation without forcing to be residual any fix-operators that safely could have been annotated as non-residual.

3.4 Code duplication

The following two-level expression texp is well-annotated with $\tau=[y \mapsto$ code $]$

$$
(\lambda x \cdot x+x) @(y * y)
$$

In the proof of $\tau \vdash$ texp: code, sub-expression $\lambda x . x \pm x$ has type code \rightarrow code and ($\mathrm{Y} * \mathrm{y}$) has type code. Partial evaluation yields (we do not rename y) the residual program

$$
(y * y)+(y * y)
$$

which has the unfortunate feature that the computation ($y * y$) has been duplicated. If ($y * y$) had been computationally heavier or had been contained in a recursive call, this could have serious impacts on the efficiency of the residual program. To avoid the code duplication a more conservative annotation of the subject program would suffice:

$$
(\lambda x \cdot x+x) @(y * y)
$$

This program is also well-annotated and partial evaluation yields

$$
(\lambda x \cdot x+x) @(y * y)
$$

It is always possible to solve the problem by making enough operators residual but it is clearly desirable not to do this when not strictly necessary.

In the first annotated program $\lambda x . x+x$ had type code \rightarrow code, and in the second $\underline{x} . \mathrm{x}+\mathrm{x}$ had type code. To avoid code duplication we would have to restrict the number of references to the formal parameter in functions of type code $\rightarrow t$ to at most one. To be sure to preserve termination properties under call-by-value we would have to insist on exactly one reference.

Quite similar problems are well known from other partial evaluators. In Sestoft (1988) a method to detect which parts of a program should be made residual to avoid duplication of function calls is presented. In the Similix project (Bondorf and Danvy, 1989; Bondorf, 1990) a let-expression is inserted whenever there is a risk of duplication.

4 Experiments with mix

The partial evaluator mix that we have implemented in and for the lambda-calculus realizes in practice the three Futamura projections mentioned in section 1.3.2. In the present section we demonstrate this by doing compilation and compiler generation from mix and from two different language definitions written in the lambda-calculus. The first example, a self-interpreter for the lambda-calculus, may seem to be only of academic interest. It serves, however, to demonstrate rigorously that mix can reduce away all of the computational overhead traditionally associated with interpretation. Further, it shows that mix can generate a 'self-compiler' and a compiler generator with natural and understandable structure. For a second and less introspective example, we present a denotational semantics for a small imperative language, Tiny, and study the structure and performance of the Tiny-to-lambda-calculus compiler generated from it by mix.

4.1 A self-interpreter

From the Futamura projections it is not at all clear how good residual programs we can expect mix to produce, and it is not even clear how to measure the quality of residual programs. We now examine the structure of some mix-generated programs, and measure the actual run time on the computer of some standard examples.

To get an idea of how much speed-up we can expect partial evaluation to yield, consider the partial evaluation of a self-interpreter with respect to a known program p.

$$
\mathbf{L} \operatorname{mix}[\sin t, p]=r .
$$

By the mix equation $\mathbf{L} p d=\mathbf{L} \sin t[p, d]=\mathbf{L}(\mathbf{L} \operatorname{mix}[\sin t, p]) d=\mathbf{L} r d$, so the programs p and r should have the same meaning. But what about efficiency?

If we required r to be more efficient than p this would mean that mix was able to optimize any program written in the lambda-calculus, needing only a self-interpreter to help. Considering the simplicity of mix, this is asking too much. Introducing a selfinterpreter gives a roughly linear slow-down of the execution speed of p due to the interpretation overhead. It thus seems unreasonable to expect mix in general to give more than a linear speed-up, i.e. to remove the interpretation factor. If we can achieve \mathbf{L} mix $[$ sint,$p]=p$, then all interpretation overhead has been removed.

The self-interpreter we used for the one-level lambda-calculus was a direct implementation of the semantic rules in fig. 1 without the injections and projections. The main part of the annotated self-interpreter is in fig. 4; note that we use the annotation $-r$ instead of underlining. We have not included the lengthy definition of the initial environment holding all predefined functions.

```
(fix (lam sint
(lam exp (lam env
        (if (atom? exp)
            (env exp)
            (((lam head-of-exp (lam tail-of-exp
                (if ((eq? head-of-exp) (const const))
                    (lift (car tail-of-exp))
                (if ((eq? head-of-exp) (const lam))
                    (lam-r value ((sint (take-body exp))
                                    (lam y (if ((eq? y) (take-var exp))
                                    value
                                    (env y)))))
                (if ((eq? head-of-exp) (const 0))
                                (0-r ((sint (car tail-of-exp)) onv)
                                    ((sint (cadr tail-of-exp)) env))
                    (if ((eq? head-of-exp) (const if))
                        (if-r ((sint (car tail-of-exp)) env)
                                    ((sint (cadr tail-of-exp)) env)
                                    ((sint (caddr tail-of-exp)) env))
                                    (if ((eq? head-of-exp) (const fix))
                                    (fix-r ((sint (car tail-of-exp)) env))
                                    (0-r (0-r error-r exp)
                                    (lift (const "Wrong syntax")))))))),
                (car exp))
                ((cdr exp)))))))
```

Fig. 4. Well-annotated lambda-calculus self-interpreter.

4.1.1 'Lmix $[\operatorname{sint}, p]=p$ ' is important

It turns out that our partial evaluator yields a residual program r structurally equal to p, the only difference being the variable names. This structural equality happens only because the self-interpreter does not use indirect representation of values. If the interpreter had, for instance, used closures to represent functional values, then the residual program r would have done so too, since r is derived from the interpreter in a very straightforward way.

For a concrete example, fig. 5 contains two programs, one a hand-written Fibonacci program, the other result of running mix to specialize the self-interpreter with respect to the first program.

The absence of the type checks is also necessary to obtain L mix $[$ sint, $p]=p$ since hardly any of the type checks would be performable at partial evaluation time. Since mix only operates on well-annotated programs we have complete assurance against type errors at mix time, but a type check of the residual program would be needed to ensure absence of run-time type errors. Further, if the interpreter were required to be strongly typed, then some indirect value representation would be needed, meaning that mix would not be able to remove a complete layer of interpretation.

In the development phase of a self-applicable partial evaluator, the cited condition on the result of specializing a self-interpreter often provides a natural and useful

```
Program \(p\) :
(fix (lam fib (lam \(x\)
        (if ((< x) (const 2))
        (const 1)
            \(((+(1 i b)((-x)(\) const 1\())))\)
                (fib ((-x) (const 2)))) )) )
Program \(r=\mathbf{L} \operatorname{mix}[\) sint, \(p]:\)
(fix (lam value-6 (lam value-7
            (if ((< value-7) (const 2))
                        (const 1)
                \(((+\) (value-6 ((- value-7) (const 1))))
                    (value-6 ((- value-7) (const 2))))))))
```

Fig. 5. Fibonacci and Fibonacci.
stepping stone in the process of getting self-application to work. To see why, compare the equations

$$
\begin{aligned}
\mathbf{L} \operatorname{mix}[\text { sint }, p] & =p \\
\mathbf{L} \operatorname{mix}[\operatorname{mix}, \text { int }] & =\text { compiler }
\end{aligned}
$$

and recall that mix roughly consists of a self-interpreter augmented with semantic rules for the residual operators. It has been the experience of several partial evaluation projects (e.g. Jones et al., 1989) and now this project too, that once a selfinterpreter was properly handled by mix, the first successful compiler generation was not too far away! (We assume tacitly that binding time analysis is performed. Without it, there is a long way from the self-interpreter to mix.)

4.1.2 A self-compiler

The result of running \mathbf{L} mix [mix, sint] is a 'self-compiler', a program that transforms one lambda-expression into another semantically equivalent expression. The generated self-compiler is structure preserving as well: the target expressions generated by the compiler have machine-generated variable names but are otherwise identical to the source expressions.

Fig. 6 contains the part of the generated compiler that compiles abstractions and applications. The program is presented as generated by machine, except that the variable names been changed into some more natural ones. The compiler has a ' 100% natural' recursive descent structure which is a little surprising considering that

```
(if ((eq? head-of-exp) (const lam))
    ((lam name
            ((build-lam name)
                ((compile (take-body exp))
                    (lam id (if ((eq? id) (take-var exp))
                                    name
                                    (env id))))))
        (nen-name (const nil)))
(if ((eq? head-of-exp) (const ©))
    ((build-app ((compile (car tail-of-exp)) env))
                            ((compile (cadr tail-of-exp)) env))))
```

Fig. 6. Compilation of abstractions and applications.
it is generated by self-application of a partial evaluator. The compilers generated in Jones et al. (1989) and Gomard and Jones (1989) can also be read by humans but their structures are not more than ' 75% natural'.

It is interesting to compare the compiler's clause for application with the clause in the annotated self-interpreter. Where the interpreter has a non-residual operation so has the compiler, and where the interpreter has a residual operator, @, the compiler has a call to the corresponding expression building function, build-@. We now show the compiler fragment from fig. 6 in a syntactically sugared notation, where we use the 'syntactic' operators '@,' ' λ ', ... in the meta-language to denote construction of those operators. Thus build-@ ($\left.\mathscr{C} \llbracket \exp _{1} \rrbracket \rho, \mathscr{C} \llbracket \exp _{2} \rrbracket \rho\right)$ may be written $\mathscr{C} \llbracket \exp _{1} \rrbracket \rho$ '@' $\mathscr{C} \llbracket \exp _{2} \rrbracket \rho$.

$$
\begin{aligned}
& \mathscr{C}[\lambda \text { var. } \exp \rrbracket \rho= \text { let } n v a r=\text { newname in } \\
& ' \lambda \prime n v a r . \mathscr{C} \llbracket \exp \rrbracket \rho[\text { var } \mapsto n v a r] \\
& \mathscr{C} \llbracket \exp _{1} @ \exp _{2} \rrbracket \rho=\mathscr{C} \llbracket \exp _{1} \rrbracket \rho \rho^{\prime} @ ' \mathscr{C} \llbracket \exp _{2} \rrbracket \rho
\end{aligned}
$$

4.1.3 A compiler generator

The third Futamura projection states that \mathbf{L} mix [mix, mix] yields a compiler generator cogen. When the compiler generator cogen is applied to an interpreter a compiler is generated. It holds that

$$
\mathbf{L} \text { cogen int }=\mathbf{L} \operatorname{mix}[\text { mix, int }]
$$

In section 4.1.2 we looked at the structure of a little piece of the self-compiler, so we have an idea of what cogen does. The question is now whether it does it in a natural way, and the answer turns out to be yes.

```
(if ((eq? head-of-exp) (const ©))
    ((build-app ((cogen (car tail-of-exp)) env))
                            ((cogen (cadr tail-of-exp)) env))
    (if ((eq? head-of-exp) (const 0-r))
        ( (build-app
            ((build-app (const build-app))
                                    ((cogen (car tail-of-exp)) env)))
            ((cogen (cadr tail-of-exp)) env))))
```

Fig. 7. Application treatment in the compiler generator.

Fig. 7 shows the part of the machine-generated cogen that treats application nodes in the subject program which is typically an annotated interpreter. A non-residual application node is treated in a very straightforward manner: an application node to appear in the compiler is built exactly as in the self-compiler above. In the residual case the processed branches are not glued together by an application node but by a call to the function build-@ to appear in the compiler. With the same notational conventions as in section 4.1.2:

$$
\begin{aligned}
& \mathscr{C} \llbracket \exp _{1} @ \exp _{2} \rrbracket \rho=\mathscr{C} \llbracket \exp _{1} \rrbracket \rho^{\prime} @ ' \mathscr{C} \llbracket \exp _{2} \rrbracket \rho \\
& \mathscr{C} \llbracket \exp _{1} @ \exp _{2} \rrbracket \rho=' \text { build }-@ '\left(\mathscr{C} \llbracket \exp _{1} \rrbracket \rho, \mathscr{C} \llbracket \exp _{2} \rrbracket \rho\right)
\end{aligned}
$$

4.1.4 Performance

Table 1 shows the run-times of our example programs. All timings are measured in Sun $3 / 50$ cpu milliseconds using Chez Scheme. The run-times for mix are just for twolevel evaluation; they do not include binding time analysis. The interpretational overhead in the self-interpreter and the mix program is rather large since all free variables (input variable and predefined function names) are looked up in the initial environment, which is a quite large case expression. Mix is able to remove this interpretational overhead, so the speed-ups gained when mix and the self-interpreter are partially evaluated are accordingly large (thus perhaps artificially so).

Table 1

$\left.\begin{array}{rlr}\hline \hline \text { Run } & & \text { Run-time Ratio } \\ \hline \mathbf{L} \text { sint }[f i b, 15] & = & 30400 \\ \mathbf{L} \text { target } 15 & =987 & 830\end{array}\right\} 36 \cdot 6$

Table 2 shows the sizes of our example programs. The sizes are measured as the number of cons cells + the number of atoms in the S-expressions representing the programs in Chez Scheme. The programs $f i b$ and target are virtually identical, and the size ratio between scomp and sint is quite small since the two programs are very similar in structure. Some operations in sint have been replaced by the corresponding code-generating operations. Cogen is similarly a transformed version of mix.

Table 2
$\left.\left.\begin{array}{lll}\hline \hline \text { Program } & \text { Size } & \text { Ratio } \\ \hline \text { fib } & 101 \\ \text { target } & 101\end{array}\right\} \begin{array}{ll} & 1 \cdot 0 \\ \text { sint } & 2826 \\ \text { scomp } & 3375\end{array}\right\} 1 \cdot 2$

4.2 An interpreter for a Tiny imperative language

In this section we give an interpreter for an imperative language, Tiny, with whileloops and assignments. We give a denotational semantics in lambda-calculus form and discuss how annotation should be done. The syntax of Tiny-programs is

$$
\begin{aligned}
\text { program }::= & \text { var-declaration command } \\
\text { var-declaration }::= & \text { variables variable* } \\
\text { command }::= & \underline{\text { while expression do command } \mid} \\
& \begin{array}{c}
\text { command } ; \text { command } \mid \\
\text { variable }:=\text { expression }
\end{array}
\end{aligned}
$$

The semantic functions are given in fig. 8. The semantic functions may easily be written in lambda-calculus form to be partially evaluated (see appendix D).

```
Semantic domains
Store \(=\) Location \(\rightarrow\) Nat
Environment \(=\) Variable \(\rightarrow\) Location
\(\mathscr{P}:\) program \(\rightarrow\) Store \(\rightarrow\) Store
\(\mathscr{P} \llbracket \underline{\text { variables }} \mathrm{v}_{1} \ldots, \mathrm{v}_{n} ; \mathrm{cmd} \rrbracket \sigma_{\text {init }}=\mathscr{C} \llbracket \mathrm{cmd} \rrbracket\left(\mathscr{D} \llbracket \mathrm{v}_{1}, \ldots, \mathrm{v}_{n} \rrbracket\right.\) first-location \(-\sigma_{\text {intt }}\)
\(\mathscr{D}:\) variable* \(\rightarrow\) Location \(\rightarrow\) Environment
\(\mathscr{D} \llbracket \mathrm{v}_{1}, \ldots, \mathrm{v}_{n} \rrbracket\) loc \(=\lambda i d . i d=\mathrm{v}_{1} \rightarrow\) loc, \(\mathscr{D}\left\lceil\mathrm{v}_{2}, \ldots, \mathrm{v}_{n} \rrbracket(\right.\) next-loc loc \()\) id
\(\mathscr{D} \mathbb{\rrbracket}\) loc \(=\lambda x\). error \(_{\text {loc }}\)
\(\mathscr{C}:\) command \(\rightarrow\) Environment \(\rightarrow\) Store \(\rightarrow\) Store
\(\mathscr{C} \llbracket \mathrm{c}_{1} ; \mathrm{c}_{2} \rrbracket \rho \sigma=\mathscr{C} \llbracket \mathrm{c}_{2} \rrbracket \rho\left(\mathscr{C} \llbracket \mathrm{c}_{1} \rrbracket \rho \sigma\right)\)
\(\mathscr{C} \llbracket \mathrm{var}:=\exp \rrbracket \rho \sigma=\sigma[\rho(\) var \() \mapsto \mathscr{E} \llbracket \exp \rrbracket \rho \sigma]\)
\(\mathscr{C} \llbracket \underline{w h i l e} \exp\) do \(c \rrbracket \rho \sigma=\left(f i x \lambda f . \lambda \sigma_{1} \cdot \mathscr{E} \llbracket \exp \rrbracket \rho \sigma=0 \rightarrow \sigma, f\left(\mathscr{C} \llbracket c \rrbracket \rho \sigma_{1}\right)\right) \sigma\)
\(\mathscr{E}:\) expression \(\rightarrow\) Environment \(\rightarrow\) Store \(\rightarrow\) Nat
                                    ... as usual...
```

Fig. 8. Tiny semantics.

The resulting lambda-calculus program, a Tiny-interpreter, has two free variables: the initial store istore and the program to be interpreted. Suppose that a Tinyprogram is given as static data, but istore is unknown. In other words, suppose that we have the type assumptions

$$
\begin{aligned}
& \tau \vdash \text { istore: code } \\
& \tau \vdash \text { program:base }
\end{aligned}
$$

We will now informally discuss how to add annotations such that the interpreter becomes well-annotated according to the rules of fig. 3. The commands and expressions are all subparts of the static program, and so have type base. The environment, ρ, can be computed completely since it does not depend on the store. It is applied to subparts of the program (variable names) and it returns static locations. Hence $\tau \vdash \rho:$ base \rightarrow base. Since the initial store is of type code all
subsequent stores also have type code. When the semantic function \mathscr{C} is applied to a command of type base, an environment of type base \rightarrow base and a store of type code, the result is an updated store, also of type code.

The mix-time application of λ store....can result in duplication of store updating code. To avoid this the λ store....has been annotated λ store...., and the corresponding applications have accordingly been annotated as residual. BTA could have classified λ store. ... as non-residual (thus getting type code \rightarrow code) and still meet the type checking rules, but to avoid code duplication the classification $\underline{\lambda}_{\text {store }} . .$. (of type code) is a better choice. The type of \mathscr{C} (as annotated for partial evaluation) is thus

```
            \tau \vdash \mathscr { C } : \text { base } \rightarrow ( \text { base } \rightarrow \text { base ) } \rightarrow \text { code}
(fix (lam c
    (lam com (lam rho (lam-r store
        (if (seq? com)
            (0-r ((c (second-com com)) rho)
                            (0-r ((c (first-com com)) rho) store))
        (if (assign? com)
            (Q-r (\mathbb{Or (0-r update-r (rho (take-id com)))}
                                    (((e (take-exp com)) rho) store))
    store)
        (if (while? com)
            (0-r (fix-r (lam-r f
                            (lam-r store
                                    (if-r (0-r (0-r eq?-r (const-r 0))
                                    (((e (take-cond com)) rho) store))
                                    store
                                    (Q-r f (@-r ((c (take-body com)) rho)
store)))( v))
            store)
        (0-r (@-r error "Illegal command") (lift com)))))))))
```

Fig. 9. The semantic function C in two-level lambda-calculus.

Fig. 9 shows the function \mathscr{C} in its annotated lambda-calculus form. When we apply the annotated Tiny-interpreter to the following program.

$$
\begin{aligned}
& \text { variables result } x ; \\
& \text { result }:=1 ; \\
& x \quad:=6 ; \\
& \text { while } \times \text { do } \\
& \text { result }:=\text { result } * x ; \\
& x \quad:=x-1
\end{aligned}
$$

which computes the factorial of 6 , the residual program in fig. 10 is produced. We have changed some names and omitted (const..) around the integers 0 and 1 for readability. Furthermore we have postreduced a few trivial redexes. A redex (λx.body) @ arg is trivial if x appears at most once in body.

The store is explicitly passed around as a parameter, but since the program is singlethreaded in the store variables (Schmidt, 1985) these could all be replaced by one global variable. Such a transformation is called globalization (Sestoft, 1989). With the store arguments removed the residual program would almost look like (nested) assembly code.

```
((fix (lam fac
    (lam store-1
        (if ((eq? 0) ((access 1) store-1))
                store-1
                (fac
                ((lam store-3
                    (((update 1) ((- ((access 1) store-3)) 1)) store-3))
                ((Cupdate 0)
                            ((* ((access 0) store-1)) ((access 1) store-1)))
                            store-1))))))
            (((update 1) 6)
                (((update 0) 1)
                (const new-store))))
```

Fig. 10. Factorial residual program.

4.3 An example of compiler generation

When mix is applied to itself and the Tiny-interpreter, a compiler from Tiny to lambda-calculus is generated. When we examine the structure of the generated compiling function \mathscr{C}_{c} we notice a strong resemblance with that of the semantic function \mathscr{C}. Those operators annotated as residual in fig. 9 have been replaced by the corresponding code-generating actions.

To emphasize the structural similarities we have changed the machine-generated names into names close to those of \mathscr{C}. Fig. 12 contains the part that compiles commands as generated by machine. Fig. 11 contains a part of the generated compiling function \mathscr{C}_{c} syntactically sugared. As in section 4.1.2, we use for brevity the syntax-font in citation marks: ‘@', ' λ ', ...instead of writing build-@, build- λ, \ldots To reduce the number of quotes we write 'if = @ 0 ' instead of quoting all constructors in the term. A comparison of figs. 8 and 11 shows that in the generated compiler the run-time (residual) actions of the interpreter have been replaced by code-building operations.

$$
\begin{aligned}
& \mathscr{C}_{c}\left[\mathrm{c}_{1} ; \mathrm{c}_{2} \rrbracket \rho=\text { let } n n_{1}=\text { new-name }\right. \text { in } \\
& \mathscr{C}_{c}\left[\mathrm{c}_{2}\right] \rho \text { '@' }\left(\mathscr{C}_{c}\left[\mathrm{c}_{1} \rrbracket \rho^{\prime} @ \prime n_{1}\right)\right. \\
& \mathscr{C}_{c}\left[\mathrm{var}:=\exp \rrbracket \rho=\operatorname{let} n n_{1}=n e w-n a m e\right. \text { in } \\
& \text { ‘update'‘@' } \rho(\mathrm{var}) \text { '@' }\left(\mathscr{E}_{c}[\exp] \rho n n_{1}\right) \text { '@' } n n_{1} \\
& \mathscr{C}_{c} \llbracket \underline{w h i l e} \exp \mathrm{c} \rrbracket \rho=\text { let } n n_{1}=\text { new-name } \\
& n n_{2}=\text { new-name } \\
& n n_{3}=\text { new-name } \text { in } \\
& \text { (' }{ }^{\prime} \mathrm{fix} \text { ' } \lambda \text { ' } n n_{3} \text {.' } \lambda \text { ' } n n_{2} \text {.' } \mathrm{if}=@ 0 \text { ' } @ \text { ' }\left(\mathscr{E}_{c} \llbracket \exp \rrbracket \rho n n_{2}\right) \\
& n n_{2} \\
& \left.\left.n n_{3} \text { @'(} \mathscr{C}_{c}[\mathbf{c}] \rho \text { '@' } n n_{2}\right)\right)^{\prime} @{ }^{\prime} n n_{1}
\end{aligned}
$$

Fig. 11. C_{c} Syntactically sugared.

4.3.1 Performance

Table 3 shows the run-times of our example programs. In the following, fac denotes the factorial program written in Tiny, target denotes the factorial residual program (fig. 10), tiny denotes the Tiny-interpreter, comp denotes the generated Tiny-compiler. All the timings are measured in Sun $3 / 50 \mathrm{cpu}$ milliseconds using Chez Scheme.

```
(fix (lam c
    (lam com (lam rho
        ((lam new-name1
            ((build-lam new-namel)
                (if (seqq? com)
                ((build-app ((c (second-com com)) rho))
                                    ((build-app ((c (first-com com)) rho))
                                    new-name1))
            (if (assign? com)
                ((build-app
                ((build-app
                ((build-app (const update))
                                    (rho (take-id com))))
                                    (((e (take-ass-exp com)) rho) nev-namei)))
                ner-name1)
                    (if (while? com)
                ((build-app (build-1ix
                            ((lam new-name2
                            ((build-lam new-name2)
                                    ((lam new-name3
                                    ((build-lam new-name3)
                                    ((Cbuild-if
                                    ((build-app
                                    ((build-app (const eq?))
                                    (build-const (const 0))))
                                    (((e (take-cond-exp com)) rho)
                                    new-name3)))
                                    nev-name3)
                                    ((build-app new-name2)
                                    ((build-app
                                    ((c (take-while-body com)) rho))
                                    new-name3)))))
                                    (new-name (const nil)))))
                            (neu-name (const nil)))))
                new-name1)
                ((build-app ((build-app error)
                    (error "Illegal command"))) com))))))
                (new-name (const store)))))))
```

Fig. 12. The generated compiling function \mathscr{C}_{c}.
Table 3
$\left.\begin{array}{llr}\hline \hline \text { Run } & & \text { Run-time Ratio } \\ \hline \mathbf{L} \text { tiny }[f a c, \text { 6 } & = & 70 \\ \text { L target } 6 & = & 720 \\ \mathbf{L} \text { mix }[\text { tiny, } f a c] & = & 10\end{array}\right\} 7 \cdot 0$

Table 4 shows the sizes of our example programs. The sizes are measured as the number of cons cells + the number of atoms in the S-expressions representing the programs in Chez Scheme.

Table 4
$\left.\begin{array}{lrr}\hline \hline \text { Program } & \text { Size Ratio } \\ \hline \text { fac } & 71 \\ \text { target } & 221\end{array}\right\} 3 \cdot 1$

From tables 3 and 4 (and tables 1 and 2 in section 4.1.4) we see that in the case where mix performs a compilation from Tiny to lambda-calculus the size ratio is significantly larger and the speed-up smaller than in all other cases. In the case of self-compilation there is a canonical target program - which our methods produce - but this is generally not the case for other compilation tasks. When programs written in arbitrary programming languages are translated into lambda-calculus it is not clear (nor always true) that the target program derived from the source and an interpreter in the straightforward way is the best. Therefore to get really good results some postprocessing, like globalization of parameters, is likely to be needed. Alternatively, the interpreters can be written with explicit attention to the fact that they will be partially evaluated. This, however, requires good insight into the partial evaluation algorithm.

5 Perspectives and conclusions

5.1 Related work

The present work overlaps with two areas: partial evaluation (and its recent offspring: BTA) that has emphasized automatic program optimization and transformation; and semantics-directed compiler generation, whose main goal has been to take as input a denotational semantics definition of a programming language, and to obtain automatically a compiler that efficiently implements the defined language.

5.1.1 Partial evaluation

Early work in partial evaluation viewed partial evaluation as an optimizing phase in a compiler (constant folding), as a device for incremental computations (Lombardi, 1967), or as a method to transform-imperative Lisp programs (Beckman et al., 1976). The latter system was able to handle funargs, but it was not self-applicable (although the Redcompile program amounts to a hand-written version of cogen). Later work aimed to partially evaluate higher-order and imperative Scheme programs (Schooler, 1984; Guzowski, 1988), but did not achieve self-application. Ershov and Itkin (1977) have proved correctness of a partial evaluation scheme for a flow-chart language, but the scheme did not allow transfer of static information across dynamic conditionals. In Hansen and Träff (1989) an evaluation strategy that involves specialization of firstorder functions is proved correct.

The potential of self-application was realized independently in Japan and the Soviet Union (Futamura, 1971; Turchin, 1980; Ershov, 1978) in the early seventies and experiments were made without conclusive results. The first non-trivial selfapplication was realized in 1984 (Jones et al., 1985, 1989) for first-order recursive equations. Since then several other self-applicable systems have been developed (Bondorf, 1989, for programs in the form of term-rewriting systems; Gomard and Jones, 1989, for a simple imperative language; Fuller and Abramsky, 1988, for Prolog; Romanenko, 1988, for a subset of Turchin's Refal language; Consel, 1988, and Bondorf and Danvy, 1989, for stronger systems handling first-order Scheme programs).

These systems are reasonably efficient for first-order languages, the generated compilers were typically between 3 and 10 times faster than compiling by partial evaluation of an interpreter.

Recent work by Bondorf (1990) extends that of Bondorf and Danvy (1989). The result is a self-applicable partial evaluator for a higher-order subset of Scheme where user-named functions are specialized with respect to higher-order values. This ability makes Bondorf and Danvy's system more powerful than ours, the price being that it is far more complicated. The system begins with a BTA that uses a closure analysis along the lines of Sestoft (1989), prior to a traditional abstract interpretation based binding time analysis. The closure analysis yields control flow information that is used to determine which program parts must be dynamic as a consequence of something else being dynamic. Several other static program analyses are performed, for example to detect and avoid code duplication. This abstract interpretation based approach provides an alternative to the one proposed by us in section 3.2: to annotate type terms with some program point information.

The resulting system is surely of more practical utility than ours, especially in a Scheme context. In contrast our system uses the classical lambda-calculus, and in our opinion illustrates a fundamental principle: that correctness of binding time annotations is well viewed as type correctness, and that BTA can be done by type inference. Further, we have constructed a complete correctness proof.

5.1.2 Binding time analysis

Some basic ideas saw the light of day in Jones and Muchnick (1978) but binding time analysis was not recognized as a central concept before the explicit use of binding time information in Jones et al. (1985) gave a breakthrough in practice. Since then binding time analysis has become a main ingredient in all self-applicable partial evaluation systems, and it has become a research area on its own. The reasons why binding time analysis is essential for efficient self-application are detailed in Bondorf et al. (1988).

The Nielsons have written several interesting papers on binding time analysis of a typed lambda-calculus (e.g. Nielson and Nielson, 1988b). They introduce a wellformedness criterion for typed two-level lambda-expression. In their approach it is necessary for x to be of run-time kind for $\underline{\lambda} x$. body to be well-formed. This is parallel to our demand that x must have type code. Similarly, it is necessary for x to be of compile-time kind for λx. body to be well-formed. Their run-time type system is not 'flat' as is our code, but has function types, products, etc. In their framework there
is no construct like our lift, which to us seems necessary in practice, for example to write an interpreter suited for partial evaluation. As we saw in section 2.5.1, the presence of lift complicates the notion of best completion and calls for more work.
In Mogensen (1989) a binding time analysis for polymorphically typed higherorder languages is devised. In contrast with Nielson and Nielson (1988b) (and us), Mogensen uses an abstract closure consisting of the function name and the binding times for the free variables to describe the binding time of a function. Neither Mogensen (1989) nor Nielson and Nielson (1988b) develop a partial evaluator.

5.1.3 Semantics-directed compiler generation

The pathbreaking work in this field was SIS: the Semantics Implementation System of Mosses (1979). SIS implements a pure version of the untyped lambda-calculus using the call-by-need reduction strategy. Compiling from a denotational semantics is done by translating the definition into a lambda-expression, applying the result to the source program, and simplifying the result by reducing wherever possible. This is clearly a form of partial evaluation. SIS has a powerful notation for writing definitions, but it is unfortunately extremely slow, and is prone to infinite loops when using, for example, recursively defined environments. In our opinion this is because the reduction strategy is 'on-line', and the problem could be eliminated by annotations such as we have used. (Choosing annotations to avoid non-termination and code duplication is admittedly a challenging problem, but we feel it is one that should be solved before doing partial evaluation rather than during it.)

Systems based on the pure (typed) lambda-calculus include Paulson (1982), Weis (1987) and Nielson and Nielson (1988a). The first uses partial evaluation at compile time. It is considerably faster at compile time than SIS, but still very slow at run time. Weis's system (1987) is probably the fastest in this category that has been used on large language definitions. In the Nielsons' work so far, the greatest emphasis has been on correctness rather than efficient running systems.

Systems by Pleban (1984) and Appel (1985) achieve greater run-time efficiency at the expense of less pure semantic languages - one for each language definition in the former case, and a lambda-calculus variant with special treatment of environments and stores in the latter. Finally Wand's methodology is very powerful (Wand 1982, 1984), but it seems to require so much cleverness from the user that it is not clear how it may be automated.

The main strength of our system is that is simple enough to be understood and proven correct and yet able to perform non-trivial compilation and compiler generation. The main weakness of our system seems to be that there is still a long way to the generation of 'real' compilers, e.g. generating target code nearer to machine level, and applying the many forms of analysis and optimization seen in hand-written compilers. We think that we have a clear understanding of basic principles for compiler generation by partial evaluation, but to get past the toy level some hard work remains.

5.2 Future work
 5.2.1 Target code quality

All target programs generated by our system are written in the lambda-calculus and though lambda-calculus can be implemented quite efficiently, this is a source of inefficiency since it is far from traditional machine architectures. One possibility is to apply relevant optimizing transformations to the lambda-calculus target programs, such as globalization of Schmidt (1985) and Sestoft (1989), detection of tail recursion etc., and to compile the target program into machine code.

To avoid this two-pass style the machine code can be generated during partial evaluation as in Holst (1988). In our framework the idea is to redefine the functions build- λ, build-@,...such that they construct a piece of machine code instead of a lambda-expression. One might define, for example, that build-if($\left.c_{1}, c_{2}, c_{3}\right)=$

A problem with this approach is that it is not (immediately) possible to apply transformations that require global analysis of the target program. An interesting idea (Schmidt, 1988) is to examine the subject program for useful properties before partial evaluation, and let the partial evaluation phase use these properties to generate better code. A natural candidate for such an analysis is the detection of single-threaded variables in a language definition. In Bondorf and Danvy (1989) a partial evaluator that can handle the presence of global variables is described.

5.2.2 Specialization of named combinators

The fundamental concept in most partial evaluators, and one which we do not use in any explicit way, is that of program point specialization. The idea is that if, say, a binary function $f x y=$ body at partial evaluation time is seen to be called with a static first argument (say 2) and a dynamic second argument, then a function $f_{2} y=$ optimized-body is added to the residual program. We call f a program point (in an imperative language a program point is a label), and we call the pair $(\mathrm{f}, 2)$ a specialized program point. A partial evaluator often uses two sets pending and out to keep track of the specialized program points for which code must be or has been generated.

Program point specialization has some advantages over our approach: code need only be generated once for each specialized program point and it is thus easier to control code duplication. Some applications of partial evaluation rely heavily on sharing specialized functions in the residual program (Consel and Danvy, 1989), but we have seen that compilation and compiler generation can be done non-trivially without this sharing.

A larger class of programs can be partially evaluated non-trivially (see example 14). There are also some disadvantages : the partial evaluator becomes more complicated,
termination problems get harder, and since the two sets pending and out inevitably are dynamic the results of self-application are not as nice as the ones we get.

Example 14

Consider Ackermann's function

$$
\begin{aligned}
& \text { ack } 0 n=n+1 \\
& \text { ack } m 0=\operatorname{ack}(m-1) 1 \\
& \operatorname{ack} m n=\operatorname{ack}(m-1)(\operatorname{ack} m(n-1))
\end{aligned}
$$

and suppose that m is known to have the value 2 . With specialization of named functions we can get the following residual program (about twice as fast as the original):

$$
\begin{aligned}
& \operatorname{ack}_{1} 0=2 \\
& \operatorname{ack}_{1} n=\left(\operatorname{ack}_{1}(n-1)\right)+1 \\
& \operatorname{ack}_{2} 0=3 \\
& \operatorname{ack}_{2} n=\operatorname{ack}_{1}\left(\operatorname{ack}_{2}(n-1)\right) .
\end{aligned}
$$

The introduction of specialized named functions, $a^{2} k_{1}$ and $a c k_{2}$, is crucial to the quality of the residual program. Without program point specialization no optimization would have occurred, since a residual fix can only define one function at a time, and three were used above.

5.2.3 Applications of BTA

The job of the BTA is to replace just enough of the program's operators with their residual counterparts so the non-residual program parts are well-typed. We now discuss some possible applications of such a BTA algorithm that have nothing to do with partial evaluation.

If a BTA algorithm was applied to a well-typed program with no free variables of type code, the result would be that of ordinary monomorphic type checking, namely a message of acceptance together with the program's type. If the BTA accepted a program to be (normally) executed without adding any annotations, it would mean that all type checks during evaluation could safely be omitted. This is the motivation for having strongly typed languages.

Untyped languages like Scheme are compiled to machine code that has type checks at run-time, though many of the type checks could easily be seen in advance always to succeed. For example, when an interpreter is run, it is clear that the syntactic dispatch will never make a type error as long as the input is atomic, and the environment lookup can also be seen to succeed. If BTA was applied to such an interpreter, some operators would be made residual (see section 3.1). For some of these operators type checking code should be generated, but no such code is needed for the rest. We suspect this could yield some speed-up since Lisp and Scheme programs often make limited use of untyped features, which are of course enough to make a traditional type checker fail.

A BTA algorithm could also be used instead of a traditional type checker to allow better type error messages to be given. Consider the interpreter from section 3.1,
which would not pass a traditional type checker without annotations. We believe that seeing the well-annotated interpreter text:

```
\(\mathscr{E}=\lambda \exp . \lambda \rho\). case exp of
    \(\operatorname{var}(\mathrm{id}) \quad: \rho\) (id)
    \(\operatorname{app}\left(\exp _{1}, \exp _{2}\right):\left(\mathscr{E} \exp _{1} \rho\right) @\left(\mathscr{E} \exp _{2} \rho\right)\)
    \(\operatorname{abs}\left(x, \exp _{1}\right):: \hat{\lambda} \operatorname{val} .\left(\mathscr{E} \exp _{1}(\underline{\lambda i d}\right.\). ifid \(=x\) then val else \(\left.\rho(i d))\right)\)
```

together with the information that exp has type base, ρ has type base \rightarrow code, and \mathscr{E} has type base \rightarrow (base \rightarrow code $) \rightarrow$ code, is much more useful to the user than the traditional error message: 'failed to unify...' followed by two type terms.

5.3 Conclusion

We have solved the open problem of developing and implementing a self-applicable partial evaluator for a higher-order language (and so has Bondorf, 1990). As programming language, we used an untyped lambda-calculus with a fixed point operator and an explicit conditional. The solution turned out to be surprisingly simple and one reason for this is that we found it unnecessary to specialize program points to obtain non-trivial results. The main area of application of our methods is the automatic transformation of interpretive language specifications into compilers. From denotational definitions of small languages our partial evaluator can generator compilers with a very natural structure - they look almost 'hand-written'.

As in other successful partial evaluation projects we use annotations added in a prephase to guide partial evaluation. We introduced the concept of wellannotatedness by means of a type system to ensure that the partial evaluator does not commit errors during partial evaluation. This approach also gives a new approach to the problem of ensuring finiteness of partial evaluation. Ideas for a binding time analysis have been discussed, and an implementation are described in Gomard (1990).

We tried the partial evaluator on two small language definitions and investigated the structure of the generated compilers. The compilers, as well as the generated compiler generator, were found to be readable - if the machine-generated names are manually changed!

Gomard (1989) contains a detailed proof of a central theorem: the correctness of partial evaluation. This theorem guarantees that compilers generated from a language definition will always be faithful to the programming language semantics. It also contains a proof that there is a unique 'best' way to annotate a given program (without lifts).

```
                    Appendices
                    A A mix session
> (define (fix f) (lambda (a) ((f (fix f)) a)))
fix
> (define L-interpreter-in-Scheme ; Scheme code implementing L
    (fix (lambda (e)
                (lambda (exp)
                            (lambda (env)
                            (if (atom? exp)
                            (env exp)
                            (((lambda (head-exp)
                                    (lambda (tail-exp)
                            (if ((eq? head-exp) 'const)
                                    (car tail-exp)
                                    (if ((eq? head-exp) 'lam)
                                    (lambda (value)
                                    ((e (take-body exp))
                                    (lambda (y)
                                    (if ((eq? y) (take-var exp))
                                    value
                                    (env y)))))
                                    (if ...
L-interpreter-in-Scheme
> (define L ; Scheme code implementing L.
    (lambda (pgm d1 d2) ; pgm is expected to have two free
        ((L-interpreter-in-Scheme pgm) ; variables, x1 and x2.
            (lambda (id)
            (if (eq? id 'x1) ; the standard initial environment
                            d1 ; is extended mith the bindings
                    (if (eq? id 'x2) ; [x1 -> d2, x2 -> d2]
                            d2
                            (initial-env id)))))))
L
> (define power ; power computes x2 to the x1'st (L code)
        '(0 (0 (fix (lam p (lam n (lam x
                            (if (0 (0 eq? n) (const 0))
                                    (const 1)
                                    (0 (0 * x)
                                    (0 (Q p (0 (0 - n) (const 1))) x)))))))
                    x1) x2))
power
>(L power (const 2) (const 3))
9
> (define E'(fix (lam E (lam exp (lam env ; core of the self-interpreter for L
    (if (0 atom? exp)
            (0 env exp)
    (0 (0) (lam head-exp (lam tail-exp
            (if (0 (0 eq? head-exp) (const const))
                (0 car tail-exp)
            (if (0 (0 eq? head-exp) (const lam))
                    (lam value (0 (0 E (0 take-body exp))
                            (lam y (if (0 (0 eq? y)
                                    (0 take-var exp))
                                    value
                                    (0 env y)))))
                    (if (0 (0 eq? head-exp) (const 0))
                    (0 (0 (0 E (0 car tail-exp)) env)
```

```
                    (0 (0 E (0 cadr tail-exp)) env))
            (if (0 (0 eq? head-exp) (const if))
            (if (© (© E (© car tail-exp)) env)
                    (0 (0 E (Q cadr tail-exp)) env)
                    (0 (0 E (0 caddr tail-exp)) env))
            (if (© (© eq? head-exp) (const fix))
                (fix (0 (© E (0 car tail-exp)) env))
            (0 (0 error exp) (const "Wrong syntax"))
            ))))\))
        (0 car exp))
        (( (cdr exp))))))))
E
> (define self-int (0 (0,E x1) ; gram, x2 to a pair (d1, d2) of the
            (lam id ; input to program x1
                                    (if (0 (0 eq? id) (const x1))
                                    (0 car x2)
                                    (if (0 (0 eq? id) (const x2))
                                    (0 cdr x2)
                                    (0,i-env-txt id))))))
self-int
> (L self-int power (cons (const 2) (const 3)))
9
> (define T '(fix (lam T (lam exp (lam env ; evaluator for 2-level L
    (if (© atom? exp)
            (0 env exp)
        (0 (© (lam head-exp (lam tail-exp
            (if (0 (Q eq? head-exp) (const const))
            (0 car tail-exp)
            (if (0 (0 eq? head-exp) (const const-r))
                    (0 build-const (0 car tail-exp))
                    (if (0 (0 eq? head-exp) (const lam))
                    (lam value (0 (0 T (0 take-body exp))
                                    (lam y (if (0 (0 eq? y)
                                    (© take-var exp))
                                    value
                                    (0 env y)))))
                    (if (0 (0 eq? head-exp) (const lam-r))
                        (0) (lam par
                                    (0 (0 build-lam par)
                                    (0 (0 T (0 cadr tail-exp))
                                    (lam x ...
T
                                    mix takes two arguments x1 & x2. x1 is a
                                    ; binary L-program and x2 is the first input
                                    to x1. Thus x1 is T-evaluated with its first
                                    free variable (also named x1!) bound to input
> (define mix '(0 (0,T x1) ; x2, and its second variable (named x2) bound
            (lam id ; to its own name.
                                    (if (0 (0 eq? id) (const x1))
                                    x2
                                    (if (0 (0 eq? id) (const x2))
                                    (const x2) ; x2 is bound to the varible
                                    (0 ,i-env-txt id)))))) ; name x2. The residual program
mix
> (define power-ann
    '(0 (c) (fix (lam p (lam n (lam x
                            (if (0 (0 eq? n) (const 0))
                    (const 1)
            (0-r (0-r *-r x)
                        (0 (0 p (0 (0 - n) (const 1))) x)))))))
```

```
    x1) x2))
power-ann
> (L mix power-ann (const 2))
(0 (0*x2) (0 (0* <2) 1))
> (define self-int-ann '(0 (0 ,E-ann x1) ; not in this session. (Essen-
    (lam id ; tially a subset of T-ann.)
    (if (0 (© eq? id) (const x1))
(0-r car-r x2)
(if (© (0 eq? id) (const x2))
                                    (0-r cdr-r x2)
                                    (0 ,i-env-ann id))))))
self-int-ann
> (define power-target (L mix sint-ann power))
power-target
> power-target
(0 (0 (fix (lam value-001
                                    (lam value-002
                                    (lam value-003
                                    (if (0 (0 eq? value-002) (const 0))
                                    (const 1)
                                    (0 (0 * value-003)
                                    (0 (0 value-001
                                    (0 (0 - value-002) (const 1)))
                                    value-003))))))(
        (0 car x2))
        (0 cdr x2))
; The residual program of the self-interpreter, power-target, has one free
; variable x2. This variable should be bound to the pair of input values
; (d1, d2) to the program power.
> (L power-target 'dummy (cons (const 2) (const 3)))
9
> (define T-ann '(fix (lam mix (lam exp (lam env ; Full listing in appendix B
    (if (© atom? exp)
                (0 env exp)
            (0) (0 (lam head-exp (lam tail-exp
                    (if (0 (0 eq? head-exp) (const const))
                        (0 lift (0 car tail-exp))
                        (if ...
T-ann
> (define mix-ann '(0 (0,T-ann x1)
                        (lam id
                                    (if (0 (0 eq? id) (const x1))
                                    x2
                            (if (0 (0 eq? id) (const x2))
                            (const-r x2)
                            (0 ,i-env-ann id))))))
mix-ann
> (define self-compiler (L mix mix-ann sint-ann))
self-compiler
; The self-compiler has one free variable, x2. The program to compile is
; bound to this variable.
> (define pover-target1 (L self-compiler 'dummy power))
power-target1
```

```
> (equal? power-target power-target1)
#t
> (define cogen (L mix mix-ann mix-ann))
cogen
> (define self-compileri (L cogen 'dumay sint-ann))
self-compileri
> (equal? self-compiler self-compiler1)
#t
```

$>$

B Tannotated

(fix (lam T
(lam exp (lam env
(if (atom? exp)
(env exp)
(() lam head-exp (lam tail-exp
(if ((eq? head-exp) (const const))
(lift (car tail-exp))
(if ((eq? head-exp) (const const-r))
(e-r build-const-r (lift (car tail-exp)))
(if ((eq? head-exp) (const lam))
(lam-r value ((T (take-body exp))
(lam y (if ((eq? y)
(take-var exp))
value
(env y)))))
(if ((eq? head-exp) (const lam-r))
(0-r (lam-r par
(0-r (0-r build-lam-r par)
((T (cadr tail-exp))
(lam x
(if ((eq? x)
(car tail-exp))
par
(env x))))))
(e-r new-namer (const-r nil)))
(if ((eq? head-exp) (const 0))
(e-r (T (car tail-exp)) env)
((T (cadr tail-exp)) env))
(if ((eq? head-exp) (const ©-r))
(e-r (0-r build-app-r ((T (car tail-exp)) env))
($(T$ (cadr tail-exp)) env))
(if ((eq? head-exp) (const if))
(if-r ((T (car tail-exp)) env)
((T (cadr tail-exp)) env)
((T (caddr tail-exp)) env))
(if ((eq? head-exp) (const if-r))
($\Theta-r$ ($0-r$ ($\Theta-r$ build-if-r
((T (car tail-exp)) env))
((T (cadr tail-exp)) env))
((T (caddr tail-exp)) env))
(if ((eq? head-exp) (const $f i x)$)
(fix-r ($(T$ (car tail-exp)) env))
(if (eq? head-exp) (const fix-r))
($Q-r$ build-fix-r ((T (car tail-exp)) env))
(0-r (0-r error-r exp)
(const-r "Wrong syntax"))
)) ())) ())))
(car exp))
$((\operatorname{dr} \exp))))))$

C The generated self-compiler

Below is a printing of the self-compiler. We have done very little editing as you can see, the only major thing was to remove most of the endless case-analysis of predefined functions. The compiler takes its input through the free variable $\times 2$.

```
(((fix (lam v-33 (lam v-34 (lam v-35
(if (atom? v-34)
    (v-35 v-34)
    (((1am v-36
        (lam v-37
                (if ((eq? v-36) (const const))
                    (lift (car v-37))
                (if ((eq? v-36)
                        (const lam))
                                ((lam par-38
                                    ((build-lam par-38)
                                    ((v-33 (take-body v-34))
                                    (lam v-39
                                    (if ((eq? v-39)
                                    (take-var v-34))
                                    par-38
                                    (v-35 v-39))))))
                            (new-name (const nil)))
                (if ((eq? v-36) (const 0))
                        ((build-app
                            ((v-33 (car v-37)) v-35))
                            ((v-33 (cadr v-37)) v-35))
                    (if ((eq? v-36) (const if))
                        (((build-if
                                    ((v-33 (car v-37)) v-35))
                                    ((v-33 (cadr v-37)) v-35))
                                    ((v-33 (caddr v-37)) v-35))
                (if ((eq? v-36) (const fix))
                        (build-fix
                            ((v-33 (car v-37)) v-35))
                        ((build-app
                            ((build-app (const error)) v-34))
                                    (const-r "Wrong syntax")))))))))
        (car v-34))
        (cdr v-34)))))))
        x2)
    (lam v-32
        (if ((eq? v-32) (const assoc))
            (const assoc)
            (if ((eq? v-32) (const atom?))
                (const atom?)
                (if ((eq? v-32) (const car))
                    (const car)
                        (if ((eq? v-32) (const cdr))
                        (const edr)
                                (if ((eq? v-32) (const cadr))
                        (const cadr)
                                    (if ((eq? v-32) (const caddr))
                                    (const caddr)
                                    (if ((eq? v-32) (const cons))
                                    (const cons)
                                    (if ((eq? v-32)
                                    (const eq?))
                                    (const eq?)
                                    (if ((eq? v-32)
                                    (const build-lam))
                                    (const build-lam)
```

```
(if ((eq? v-32)
    (const build-app))
    (if ....
```

and so on ad nauseam . . . (539 lines more).

D The generated compiler generator

Below is the printing of the generated compiler generator. We have done very little editing (as you can see), the only major thing being that we have removed most of the endless case-analysis of predefined functions. The compiler generator takes its input through the free variable $\times 2$.

```
(c(fix
(lam v-165 (lam v-166 (lam v-167
(if (atom? v-166)
    (v-167 v-166)
    (()lam v-16B
        (lam v-169
                (if ((eq? v-168) (const const))
                        (lift (car v-169))
                (if ((eq? v-168) (const const-r))
                    ((build-app (const build-const))
                (lift (car v-160)))
            (if ((eq? v-168)
                    (const lam))
                ((lam par-172
                            ((build-lam par-172)
                                    ((v-165 (take-body v-166))
                                    (lam v-173
                                    (if ((eq? v-173)
                                    (take-var v-166))
                                    par-172
                                    (v-167 v-173))))))
                            (nek-name (const nil)))
                    (if ((eq? v-168) (const lam-r))
                        ((build-app
                                ((lam par-170
                            ((build-1am par-170)
                                    ((build-app
                                    ((build-app
                                    (const build-lam))
                                    par-170))
                                    (cv-105
                                    (cadr v-169))
                                    (lam v-171
                                    (if ((eq? v-171)
                                    (car v-169))
                                    par-170
                                    (v-167 v-171)))))))
                                    (new-name (const nil))))
                                    ((build-app (const new-name))
                                    (build-const nil)))
                (if ((eq? v-168)
                            (const 0))
                            ((build-app
                            ((v-165 (car v-169)) v-167))
                            ((v-165 (cadr v-169)) v-167))
                    (if ((eq? v-168) (const 0-r))
                            ((build-app
```

```
                                    ((build-app (const build-app))
                            ((v-165 (car v-169)) v-167)))
                                ((v-165 (cadr v-169)) v-167))
(if ((eq? v-168) (const if))
        (((build-if ((v-165 (car v-169))
                                    v-167))
            ((v-165 (cadr v-169)) v-167))
        ((v-165 (caddr v-169)) v-167))
    (if ((eq? v-168) (constif-r))
        ((build-app
            ((build-app
                        ((build-app
                                    (const build-if))
                                    ((v-165 (car v-169))
                                    v-167)))
                    ((v-165 (cadr v-169))
                            v-167)))
            ((v-165 (caddrv-169))
                    v-167))
    (if ((eq? v-168) (const fix))
            (build-fix
                    ((v-165 (car v-169)) v-167))
        (if ((eq? v-168) (const fix-r))
            ((build-app
                                    (const build-fix))
                ((v-165 (car v-169)) v-167))
            ((build-app
                                    ((build-app (const error))
                                    v-166))
                    ((const-r "Wrong syntax"))))))))()))())
        (car v-166))
    (cdr v-166))))))
        x2)
(lam v-164
        (if ((eq? v-164) (const assoc))
        (const assoc)
        (if ((eq? v-164) (const atom?))
            (const atom?)
            (if ((eq? v-164) (const car))
                (const car)
                (if ((eq? v-164) (const cdr))
                    (const cdr)
                    (if ((eq? v-164) (const cadr))
                            (const cadr)
                                    (if ((eq? v-164) (const caddr))
                                    (const caddr)
                            (if ...
```

and so on ad nauseam . . (538 lines more).

E Tiny interpreter

Below is the listing of the annutatated Tiny interpreter that we have used to compile and generate compilers.

```
(lam program
((lam e ((lam d ((lam c
    ((lam var-decl
        ((lam statement-part
                                    ((lam var-env
                                    (0-r ((c statement-part) var-env)
                                    (const-r nem-store)))
                                    ((d (cdr var-decl)) (const 0))))
            (take-statement-part program)))
        (take-var-decl program)))
(fix (lam c (lam com (lam var-env (lam-r store
    (if (seq? com)
            (0-r ((c (second-com com)) var-env)
                (0-r ((c (first-com com)) var-env) store))
        (if (assign? com)
            (0-r (0-r (0-r update-r
                                    (var-env (take-id com)))
                                    (((e (take-ass-exp com)) var-env) store))
                    store)
            (if (uhile? com)
                (0-r (fix-r (lam-r f
                                    (lam-r store
                                    (if-r (0-r (0-r eq?-r
                                    (const-r 0))
                                    (((e (take-cond-exp
                                    com))
                                    var-env)
                                    store))
                                    store
                                    (0-I 1 (0-r
                                    ((c
                                    (take-while-body com))
                                    var-env)
                                    store))))), store)
                (0-r (0-r error "Illegal command") com)))))))))),
(fix (lam d (lam var-list (lam location
    (if (null? var-list)
            (lam x (const no-location))
        (lam y
            (if ((eq? y) (car var-list))
                            location
            (((d (cdr var-list)) (1+ location)) y))))))))))
(fix (lam o (lam exp (lam var-env (lam store
        (if (number? exp)
            exp
        (if (is-var? exp)
        (0-r (0-r (const-r access) (var-env exp)) store)
        (0-r (@-r ((lam id (if ((eq? id) (const *))
                #-r
                    (if ((eq? id) (const -))
                        --r
                        error-r)))
                    (op-name exp))
            (((e (arg1 exp)) var-env) store))
            (((e (arg2 exp)) var-env) store)))))))))))
```


F The generated tiny compiler

Below is a listing of the generated Tiny-to-lambda-calculus compiler.

```
(lam v-62
    ((lam v-68
            ((lam v-74
                            ((lam v-81
                            ((lam v-82
                            ((lam v-83
                            ((lam v-84
                                    (c(v-81
                                    v-83)
                                    v-84)
                                    (build-const
                                    (const
                                    new-store)))(
                                    (v-74
                                    (cdr v-82))
                                    (const 0))))
                                    (take-statement-part v-62)))
                                    (take-var-decl v-62)))
(fix (lam v-75 (lam v-76 (lam v-77 (lam v-78
(if (seq? v-76)
    (((v-75 (gecond-com v-76)) v-77)
        (((v-75 (first-com v-76)) v-77) v-78))
    (if (assign? v-76)
        ((build-app
            ((build-app
                                    ((build-app (const update))
                                    (v-77 (take-id v-76))))
                (((v-68 (take-ass-exp v-76)) v-77)
                            v-78)))
            v-78)
    (if (rhile? v-76)
            ((build-app (build-fix
                    ((lam par-79
                    ((build-lam par-79)
                        ((lam par-80
                                    ((build-1am par-80)
                                    (((build-if
                                    ((build-app
                                    ((build-app (const eq?))
                                    (build-const (const 0))))
                                    (((v-68 (take-cond-exp v-76))
                                    v-77)
                                    par-80)))
                                    par-80)
                                    ((build-app par-79)
                                    (((v-75 (take-while-body v-76))
                                    v-77)
                                    par-80)))))
                                    (ner-name (const nil)))))
                (ney-name (const nil))))
                v-78)
            ((build-app
                        ((build-app error)
                        (error "Illegal command"))) v-76)))))))))))
(fix (lam v-69 (lam v-70 (lam v-71
        (if (null? v-70)
            (lam v-73 (const no-location))
            (lam v-72
```

```
        (if ((eq? v-72) (car v-70))
            v-71
            (((v-69 (cdr v-70))
                (1+ v-71))
            v-72))())())!)
(fix (lam v-63 (lam v-64 (lam v-65 (lam v-66
    (if (number? v-64)
        (lift v-64)
        (if (is-var? v-64)
            ((build-app
                    ((build-app (const access))
                                    (lift (v-65 v-64))))
            v-66)
        ((build-app
            ((build-app
                                    ((lam v-67
                                    (if ((eq? v-67) (const *))
                                    (const mult)
                                    (if ((eq? v-67) (const -))
                                    (const minus)
                                    (const error))))
                            (op-name v-64)))
            (((v-63 (argi v-64)) v-65) v-66)))
            (((v-63 (arg2 v-64)) v-65) v-66)))))))))))
```


Acknowledgements

The goal of partially evaluating lambda-expressions has been in the minds of the programming language theory group at DIKU since the first successes with firstorder languages in 1984. Recent insights grew from numerous discussions in this group, including in particular Anders Bondorf, Olivier Danvy and Torben Mogensen, as well as Carsten Kehler Holst, Thomas Jensen and Peter Sestoft. We also thank the guests and other acquaintances of the group that have stimulated the work by showing their interest (John Hughes, John Launchbury, Carolyn Talcott, Phil Wadler and many others).

Miranda is a trademark of Research Software Ltd.

References

Appel, A. 1985. Semantics-directed code generation. In 12th ACM Symposium on Principle of Programming Languages, pp. 315-24.
Beckman, L. et al. 1976. A partial evaluator, and its use as a programming tool. Artificial Intelligence 7 (4): 319-57.
Bondorf, A. 1989. A self-applicable partial evaluator for term rewriting systems. In J. Diaz and F. Orejas (editors), TAPSOFT '90. Proc. Int. Conf. Theory and Practice of Software Development, Barcelona, Spain, March 1989. Lecture Notes in Computer Science, 352, pp. 81-95. Springer-Verlag.
Bondorf, A. 1990. Automatic autoprojection of higher order recursive equations. In N. Jones (editor), ESOP '90, Third European Symposium on Programming, Copenhagen, Denmark. Lecture Notes in Computer Science, 432. Springer-Verlag.
Bondorf, A. and Danvy, O. 1989. Automatic autoprojection for recursive equations with global variables and abstract data types, 1989. (Submitted for publication).

Bondorf, A., Jones, N. D., Mogensen, T. and Sestoft, P. 1988. Binding Time Analysis and the Taming of Self-Application. Draft, 18 pages, DIKU, University of Copenhagen, Denmark (August).
Consel, C. 1988. New insights into partial evaluation : the Schism Experiment. In H. Gonzinger (editor), ESOP '88, 2nd European Symposium on Programming, Nancy, France, March 1988. Lecture Notes in Computer Science, 300, pp. 236-46. Springer-Verlag.
Consel, C. and Danvy, O. 1989. Partial evaluation of pattern matching in strings, Information Processing Letters 30 (2): 79-86.
Damas, L. and Milner, R. 1982. Principal type-schemes for functional programs. In 9th ACM Symposium on Principles of Programming Languages, pp. 207-12.
Ershov, A. P. 1978 On the essence of compilation. In E. J. Neuhold (editor) Formal Description of Programming Concepts, pp. 391-420. North-Holland.
Ershov, A. P. and Itkin, V. E. (1977). Correctness of mixed computation in Algol-like programs. In J. Gruska (editor), Mathematical Foundations of Computer Science, Tatranská Lomnica, Czechoslovakia. Lecture Notes in Computer Science, 53, pp. 59-77. SpringerVerlag.
Fuller, D. A. and Abramsky, S. 1988. Mixed computation of Prolog programs. New Generation Computing 6 (2, 3): 119-41.
Futurama, Y. 1971. Partial evaluation of computation process - an approach to a compiler-compiler. Systems, Computers, Controls 2 (5): 45-50.
Goguen, G., Thatcher, J. W., Wagner, E. G. and Wright, J. B. 1977. Initial algebra semantics and continuous algebras, Journal of the ACM 24: 68-95.
Gomard, C. K. 1989. Higher Order Partial Evaluation-HOPE for the Lambda Calculus, Master's thesis, DIKU, University of Copenhagen, Denmark (September).
Gomard, C. K. and Jones, N. D. 1989. Compiler generation by partial evaluation: a case study. In H. Gallaire (editor), Information Processing 89. IFIP.
Gomard, C. K. 1990. Partial Type Inference for Untyped Functional Programs. In 1990 ACM Conference on Lisp and Functional Programming, pp. 282-287.
Guzowski, M. A. 1988. Towards Developing a Reflexive Partial Evaluator for an Interesting Subset of LISP, Master's thesis, Department of Computer Engineering and Science, Case Western Reserve University, Cleveland, Ohio (January).
Hansen, T. A. and Träff, J. L. 1989. Memorization and its use in lazy and incremental program generation, Master's thesis, DIKU, University of Copenhagen.
Holst, N. C. K. 1988. Language triplets; the AMIX approach. In D. Bjørner, A. P. Ershov and N. D. Jones (editors), Partial Evaluation and Mixed Computation, pp. 167-85, NorthHolland.
Huet, G. 1976. Resolution d'equations dans les langages d'ordre 1, 2, .., ω. PhD thesis, Univ. de Paris VII.
Jones, N. D. 1988. Automatic program specialization: a re-examination from basic principles.
In D. Bjørner, A. P. Ershov and N. D. Jones (editors), Partial Evaluation and Mixed Computation, pp. 225-82, North-Holland.
Jones, Neil D. and Muchnick, Steven S. 1978. TEMPO: A Unified Treatment of Binding Time and Parameter Passing Concepts in Programming Languages. Lecture Notes in Computer Science 66. Springer-Verlag.
Jones, N. D., Sestoft, P. and Søndergaard, H. 1985. An experiment in partial evaluation: the generation of a compiler generator. In J.-P. Jouannaud (editor), Rewriting Techniques and Applications, Dijon, France. Lecture Notes in Computer Science, 202, pp. 124-40. SpringerVerlag.
Jones, N. D., Sestoft, P. and Søndergaard, H. 1989. Mix : a self-applicable partial evaluator for experiments in compiler generation. Lisp and Symbolic Computation 2 (1): 9-50.
Jones, N. D., Gomard, C. K., Bondorf, A., Danvy, O. and Mogensen, T. 1990. A selfapplicable partial evaluator for the lambda calculus. In IEEE Computer Society 1990 International Conference on Computer Languages (March).

Kuo, T.-M. and Mishra, P. 1989. Strictness analysis: a new perspective based on type inference. In Functional Programming Languages and Computer Architecture, London, September 89. ACM Press and Addison-Wesley.
Lombardi, L. A. 1967. Incremental computation. In F. L. Alt and M. Rubinoff (editors), Advances in Computers 8, pp. 247-333. Academic Press.
Milner, R. 1978. A theory of type polymorphism in programming, Journal of Computer and System Sciences 17 (3): 348-75.
Mogensen, T. 1988. Partially static structures in a self-applicable partial evaluator. In D. Bjørner, A. P. Ershov and N. D. Jones (editors), Partial Evaluation and Mixed Computation, pp. 325-47, North-Holland.
Mogensen, T. 1989. Binding time analysis for polymorphically typed higher order languages.
In J. Diaz and F. Orejas (editors), TAPSOFT'89. Proc. Int. Conf. Theory and Practice of Software Development, Barcelona, Spain, March 1989, Lecture Notes in Computer Science 352, pp. 298-312. Springer-Verlag.
Morris, F. L. 1973. Advice on structuring compilers and proving them correct. In 1st ACM Symposium on Principles of Programming Languages, pp. 144-52.
Mosses, P. 1979. SIS-Semantics Implementation System, Reference Manual and User Guide, DAIMI Report MD-30, DAIMI, University of Århus, Denmark.
Nielson, F. and Nielson, H. R. 1988a. The TML-Approach to Compiler-Compilers, Technical Report 1988-47, Department of Computer Science, Technical University of Denmark.
Nielson, H. R. and Nielson, F. 1988b. Automatic binding time analysis for a typed λ-calculus. In 15th ACM Symposium on Principles of Programming Languages, pp. 98-106.
Paulson, L. 1982. A semantics-directed compiler generator. In 9th ACM Symposium on Principles of Programming Languages, pp. 224-33.
Pleban, U. 1984. Compiler prototyping using formal semantics, SIGPLAN Notices 19 (6): 94-105.
Plotkin, G. 1975. Call-by-name, call-by-value and the lambda calculus, Theoretical Computer Science 1, 125-59.
Romanenko, S. A. 1988. A compiler generator produced by a self-applicable specializer can have a surprisingly natural and understandable structure. In D. Bjørner, A. P. Ershov and N. D. Jones (editors) Partial Evaluation and Mixed Computation, pp. 445-63. North-Holland Schmidt, D. A. 1985. Detecting global variables in denotational specifications, ACM Transactions on Programming Languages and Systems 7 (2): 229-310.
Schmidt, D. A. 1986. Denotational Semantics. Allyn and Bacon.
Schmidt, D. A. 1988. Static properties of partial evaluation. In D. Bjørner, A. P. Ershov and N. D. Jones (editors), Partial Evaluation and Mixed Computation, pp. 465-83. North-Holland.

Schooler, R. 1984. Partial Evaluation as a Means of Language Extensibility, Master's thesis, 84 pages, MIT/LCS/TR-324, Laboratory for Computer Science, MIT, Cambridge, Massachusetts (August).
Sestoft, P. 1988. Automatic call unfolding in a partial evaluator. In D. Bjørner, A. P. Ershov and N. D. Jones (editors), Partial Evaluation and Mixed. Computation, pp. 485-506. NorthHolland.
Sestoft, P. 1989. Replacing function parameters by global variables. In Functional Programming Languages and Computer Architecture, London, September 89. ACM Press and AddisonWesley.
Stoy, J. 1977. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press.
Turchin, V. F. 1980. The use of metasystem transition in theorem proving and program optimization. In J. De Bakker and J. van Leeuven (editors), Automata, Languages and Programming. Seventh ICALP, Noordwijkerhout, The Netherlands. Lecture Notes in Computer Science 85, pp. 645-57. Springer-Verlag.
Wadler, P. 1990. Linear types can change the world! ISIP TC Working Conference on Programming Concepts and Methods, Sea of Galilee, Israel, April 1990.

[^0]
[^0]: Wand, M. 1982. Semantics-directed machine architecture. In 9th ACM Symposium on Principles of Programming Languages, pp. 234-41.
 Wand, M. 1984. A semantic prototyping system. In SIGPLAN '84 Symposium on Compiler Construction, pp. 213-21.
 Wand, M. 1986. Finding the source of type errors. In 13th ACM Symposium on Principles of Programming Languages, pp. 38-43.
 Weis, P. 1987. Le Système SAM: Metacompilation très efficace à 「aide doperateur sémantiques, PhD thesis, l'Université Paris VII (in French).

