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Abstract. Suppose that c is a linear operator acting on an n-dimensional complex
Hilbert Space H, and let τ denote the normalized trace on B(H). Set b1 = (c + c∗)/2
and b2 = (c − c∗)/2i, and write B for the spectral scale of {b1, b2} with respect to τ .
We show that B contains full information about Wk(c), the k-numerical range of c for
each k = 1, . . . , n. This is in addition to the matrix pencil information that has been
described in previous papers. Thus both types of information are contained in the
geometry of a single 3-dimensional compact, convex set. We then use spectral scales to
prove a new fact about Wk(c). We show in Theorem 3.4 that the point λ is a singular
point on the boundary of Wk(c) if and only if λ is an isolated extreme point of Wk(c):
i.e. it is the end point of two line segments on the boundary of Wk(c). In this case
λ = (n/k)τ (cz), where z is a central projection in the algebra generated by c and the
identity. In addition we show how the general theory of the spectral scale may be used
to derive some other known properties of the k-numerical range.

2000 Mathematics Subject Classification. 15A60.

0. Introduction and notation. The spectral scale was introduced by the present
authors and Nik Weaver in [1] and further developed by the authors in [2]. It is defined
for any finite set of self-adjoint operators in a finite von Neumann algebra. The main
theme in [1] and [2] is that full spectral information about real linear combinations of
such operators is contained in the spectral scale and that much of this information is
reflected by the geometry of the spectral scale.

In the present paper we view the spectral scale from another perspective and
thereby show that full information about the k–numerical range of a finite dimensional
operator is also contained in its spectral scale. In fact it turns out that certain cross-
sections of the spectral scale (which we call isotrace slices) are isomorphic to the
k–numerical ranges via an affine transformation. Thus, in this restricted case at least,
two rather different sets of data are combined into one three dimensional, compact,
convex set. Although we restrict consideration in this paper to the finite dimensional
world, we shall write this paper using the language of operators (rather than matrices)
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226 CHARLES A. AKEMANN AND JOEL ANDERSON

to emphasize how easily many of the concepts generalize to infinite dimensional
situations. Indeed, results analogous to those presented here also hold in the infinite
dimensional case. These will be presented in a forthcoming paper.

In what follows we shall show that many of the known properties of the k–
numerical range may be easily derived from the general theory of the spectral scale.
In addition some new results will be derived. These are presented in Section 3 below.
We are indebted to Professor Chi-Kwong Li for pointing out several references that we
had overlooked.

The notation developed here will be used throughout the rest of the paper. Let c
denote a linear operator on an n–dimensional complex Hilbert space H and let τ denote
the normalized trace on B(H), the algebra of all linear operators on H. Write N for the
subalgebra of B(H) generated by c, c∗ and the identity 1 of B(H). Set b1 = (c + c∗)/2
and b2 = (c − c∗)/2i. The spectral scale was defined in [1] and [2] via the map � given
by the formula

�(a) = (τ (a), τ (b1a), τ (b2a)),

and the spectral scale B = B(b1, b2) was defined as

B = {�(a) : a ∈ B(H), 0 ≤ a ≤ 1}.
It is convenient for the present paper to view the second and third real coordinates as
a single complex number. The definition of � then becomes

�(a) = (τ (a), τ (ca))

and we now define the spectral scale B = B(c) of c by the formula

B = {�(a) : a ∈ B(H), 0 ≤ a ≤ 1}.
Thus, we now view B as a subset of � × �, rather than as a subset of �3. As shown in
[1, Theorem 2.4], B = �(N+

1 ), where for any self-adjoint subalgebra M of B(H),

M+
1 = {a ∈ M : 0 ≤ a ≤ 1}.

As noted above, the geometry of the spectral scale reflects spectral data for real
linear combinations of b1, b2; i.e. matrix pencil information. Information of this sort is
widely valued as documented in [9]. The basis for this current work is the observation
that B also essentially contains the k-numerical range of c for each 1 ≤ k ≤ n.

Recall that the numerical range of c is by definition

W (c) = {〈cx, x〉 : x ∈ H and ‖x‖ = 1}.
We use σ (c) to denote the spectrum of c.

Observe that if W (c) is a line segment, then it follows from [7, §1.2] that the
endpoints of W (c) are reducing eigenvalues of c. Also, W (c) = {λ} if and only if
c = λ1. Since these cases are not of interest to us, we shall restrict our considerations
to the case in which W (c) is a two dimensional set.

The numerical range has a corner at λ if W (c) has dimension two and there is
more than one tangent line of support for W (c) at λ. The presence of a corner in the
numerical range signals the fact that c enjoys a special structure. Further, it turns out
that corners in W (c) must be lineal in the sense that there are two tangent lines of

https://doi.org/10.1017/S0017089503001320 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089503001320


THE SPECTRAL SCALE AND THE k–NUMERICAL RANGE 227

support that intersect the boundary in line segments of positive length. Since we shall
show that an analogous result hold for the k-numerical range, we now discuss this in
more detail. Recall that a point on the boundary of a convex subset of �2 is said to be
singular if the boundary curve is not differentiable at this point.

THEOREM 0.1. If W (c) has dimension two and the boundary of W (c) is singular at
λ, then the following statements hold.

(1) W (c) has a corner at λ.
(2) λ is a reducing eigenvalue for c.
(3) λ is lineal.

Proof. Let us begin by presenting a proof of the assertion in (1). Translating and
rotating if necessary, we may assume that λ = 0, W (c) lies in the upper half plane and
that the positive imaginary axis intersects the interior of W (c). In this case we can find
a convex function f defined on an open interval containing 0 and whose graph gives
a portion of the boundary of W (c) that contains 0. Since 0 is a singular point of the
boundary, f is not differentiable at 0 and since f is convex, it follows that

f ′
−(0) = lim

h→0−

f (h))
h

< lim
h→0+

f (h))
h

= f ′
+(0).

Thus, the lines through 0 with slopes f ′
±(0) are tangent to W (c).

Kippenhahn established assertion (2) in [8, Satz 13]. The proof offered below seems
to be new. It is convenient to rotate once more so that λ = 0 and W (c) lies in the right
half plane so that the corner has the form shown below, where both Li are tangent to
W (c) at 0, L1 has positive slope and L2 has negative slope, as shown below.

�
�

�
�

�
�

��

�
�

�
�

�
�

��

x

y

L1

L2

•λ = 0

Since W (c) is contained in the right half plane, we get b1 ≥ 0 and, since there is
a unit vector x such that 〈b1x, x〉 = 0, we get b1x = 0, by the remark in the second
paragraph preceding Theorem 0.1.

We may now select θ �= 0 so small that W (eiθc) is also contained in the right half
plane. Arguing as above, we get that

Re(eiθc)x = (cos θb1 − sin θb2)x = 0
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and so b2x = 0. Therefore b1x = b2x = cx = 0. Hence, λ must be a reducing eigenvalue
for c.

Assertion (3) is due to Lancaster [10, Corollary 4]. �

Observe that the proof above shows that if C is any compact, convex, two
dimensional subset of �2, then the boundary of C is singular at λ if and only if C
has a corner at λ.

The k–numerical range of c is defined by the formula

Wk(c) =
{

1
k

k∑
i=1

〈cxi, xi〉 : the xi’s are orthonormal

}
(1 ≤ k ≤ n).

An easily verified alternative definition is as follows:

Wk(c) =
{n

k
τ (cp) : p is a projection of rank k

}
.

Observe that when k = n we have

Wn(c) = τ (c),

so that Wn(c) consists of a single point. As the results in this paper make clear it is
natural to include the case in which k = 0 and to define W0(c) = 0. Since we have
W1(c) = W (c), this notion is a generalization of the standard numerical range. Let us
now review some of the basic properties of the k-numerical range.

THEOREM 0.2. If 1 ≤ k ≤ n, then the following statements hold.
(1) Wk(c) is a compact, convex subset of �.
(2) If 1 ≤ k ≤ n and p denotes any projection of rank k, then

kWk(c) = {nτ (upu∗vcv∗) : u and v are unitary}.

(3) We have kWk(c) = nτ (c) − (n − k)Wn−k(c).
(4) The operator c is normal if and only if Wk(c) is a polygon for each k.
(5) The operator c is normal if and only if W[n/2] is a polygon.
(6) If Wk(c) has a corner at λ, then c = c1 ⊕ c2, where c1 has dimension k and

kλ = nτ (c1).

Proof. The assertion in (1) is due to Berger who introduced the k–numerical range
in his thesis [3]. A proof may be found in [5, Problem 167]. The assertion in (2) follows
easily from the fact that τ is central and the definition of Wk(c). Assertion (3) follows
from the fact that τ (cp) + τ (c(1 − p)) = τ (c). Assertion (4) is proved in [12, Theorem 3].
The remarkable result in assertion (5) is due to Li, Sung and Tsing [11] and the assertion
in (6) was first proved by Marcus and Filippenko in [13]. �

Let us now describe our results in more detail. The key to understanding the role
played by the k-numerical range in the spectral scale is the notion of an isotrace slice
of the spectral scale. If 0 ≤ t ≤ 1, then the isotrace slice of B at t is by definition

It = {x = (x0, z) ∈ B : x0 = t}.

https://doi.org/10.1017/S0017089503001320 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089503001320


THE SPECTRAL SCALE AND THE k–NUMERICAL RANGE 229

We prove in Theorem 1.3 that if 0 < k < n and we define the map πk from � to � × �

by πk(z) = (k/n, kz/n), then πk is an affine map that is a bijection from Wk(c) onto
Ik/n. Thus, we may view the k-numerical range as a subset of the spectral scale.

It is also shown in Section 1 (Theorem 1.1) that the extreme points of B lie on
the isotrace slices of the form Ik/n for k = 0, 1, . . . , n and so B is the convex hull of
this finite collection of sets. In Section 2 we present some examples (and pictures) of
various spectral scales.

It turns out that the general theory of spectral scales that was developed in [1] and
[2] may be used to derive the assertions (4) and (6) in Theorem 0.2. In fact, assertion
(4) follows immediately from the identification of Wk(c) with the isotrace slice Ik/n and
[2, Corollary 5.6]. Assertion (6) is proved below in Theorem 3.4. In addition we show
that a singularity on the boundary of Wk(c) always occurs at an isolated extreme point
of Wk(c). Such a point is obviously lineal. Furthermore, such points correspond to
central projections in the algebra N.

As our results show, the spectral scale provides a new way to study n-tuples of
self-adjoint finite dimensional operators. In the case under study here, when there are
just two operators so that B is a subset of three dimensional real euclidean space (or
� × �), we may actually visualize B as shown in the examples and pictures in Section
2. These pictures were created using a MATLB program written by Jeff Duzak as part
of an REU research project supervised by the second author. Readers can contact the
second author for a copy of this program which is quite useful for testing conjectures.
This program also draws isotrace slices of B and so, by the results of this paper, it also
draws scale models of k-numerical ranges.

1. Isotraces and extreme points. The spectral scale has a striking structure in the
finite dimensional case under consideration here that we describe in the next Theorem.

THEOREM 1.1. If x is an extreme point of B, then it lies in an isotrace slice of the
form Ik/n, where k = 0, 1, . . . , n.

Proof. Since x is an extreme point of B, it has the form �(p), where p is a projection
in N by [1, Theorem 2.3(1)]. If p has rank k, then τ (p) = k/n and so �(p) = (k/n, s),
where s = τ (cp). Hence, x ∈ Ik/n. �

For example, if n = 3, then extreme points of B come from projections of trace
0, 1/3, 2/3 or 1. While I0 and I1 are always the single points 0 and �(1), in generic
examples I1/3 and I2/3 are solid ellipses whose boundaries consist of extreme points of
B. Hence, generically, the boundary of B between two successive isotrace slices consists
of one dimensional faces. The boundary between I0 and I1/3 is typically a skewed cone
and, by the symmetry of B, the same is true for the boundary of B between I2/3 and
I1. However, as one can see in Examples 2.2 and 2.3 below, B may have planar faces.
A complete description and interpretation of the faces of B may be found in [2, §3].
Further, in [2, Corollary 5.6] we showed that N is abelian and finite-dimensional if
and only if the spectral scale has a finite number of extreme points. Thus, in finite
dimensions, one can “see” that N is abelian from the shape of B.

We now show how the k-numerical range may be identified with the isotrace slice
Ik/n. This identification depends on a simple convexity result, which we now present.
If 0 < t < 1 and M is any self-adjoint subalgebra of B(H), then we write

M+
1,t = {a ∈ M+

1 : τ (a) = t}.
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LEMMA 1.2. The extreme points of B(H)+1,k/n are precisely the projections of rank k.

Proof. If p is a projection of rank k, then it is an extreme point of B(H)+1 and so
it is also an extreme point of B(H)+1,k/n. For the converse, suppose that a is in N+

1,k/n,
but a is not a projection. Write α1, . . . , αn for the eigenvalues of a. Since τ (a) = k/n we
get that α1 + · · · + αn = k and, since a is not a projection, we have 0 < αi < 1, for at
least one index i. Since α1 + · · · + αn = k, there must also be an index j �= i such that
0 < αj < 1. Relabeling if necessary, we may assume that 0 < α1 ≤ α2 < 1.

Since α1 + α2 − 1 < α1 and 0 < α1 we may select λ and γ such that

max{0, α1 + α2 − 1} < λ < α1 and α2 < γ < min{1, α1 + α2}.
Now write

a1 =




λ 0 0 . . . 0
0 α2 + α1 − λ 0 . . . 0
0 0 α3 . . . 0
...

...
...

. . .
...

0 0 0 . . . αn


 and a2 =




γ 0 0 . . . 0
0 α2 + α1 − γ 0 . . . 0
0 0 α3 . . . 0
...

...
...

. . .
...

0 0 0 . . . αn


 .

Observe that a1 �= a2 because λ < α1 ≤ α2 < γ . Since the diagonal entries of a1 and
a2 lie in [0, 1] and sum to k, these matrices are elements of B(H)+1,k/n. As λ < α1 < γ

there is a real number t with 0 < t < 1, such that α1 = tλ + (1 − t)γ . Next, note that

t(α1 + α2 − λ) + (1 − t)(α1 + α2 + γ ) = α1 + α2 − (tλ + (1 − t)γ )

= α1 + α2 − α1 = α2

and therefore a = ta1 + (1 − t)a2. Thus a is not an extreme point. �
THEOREM 1.3. If 0 < k < n and we define the map πk of � into � × � by the formula.

πk(λ) = (k/n, kλ/n),

then πk is an affine bijection from Wk(c) onto Ik/n.

Proof. If λ ∈ Wk(c), then there is a projection p with rank k such that kλ = nτ (pc)
and the point (τ (p), τ (pc)) is in Ik/n because τ (p) = k/n. Thus,

πk(λ) = (k/n, kλ/n) = (k/n, τ (pc)) ∈ Ik/n.

Hence πk maps Wk(c) into Ik/n and πk is clearly a one-to-one map.
Now suppose that (k/n, λ) ∈ Ik/n so that λ = τ (ca), for some a ∈ N+

1,k/n.
By Lemma 1.2, the Krein–Milman Theorem [16, Theorem 2.6.16 ] and
[14, Theorem 17.1], a is a convex combination of projections of rank k. Since Wk(c) is
convex by part (1) of Theorem 0.2 and points of the form (n/k)τ (cp) are in Wk(c), we
deduce that (n/k)λ ∈ Wk(c). �

2. Examples. In this section we describe the spectral scale for four examples.

EXAMPLE 2.1. If

c =
[

1 + i
2

i
2

i
2

i
2

]
,
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then the nontrivial projections in N must have trace 1/2 and so I1/2 is the only isotrace
slice of B that contains nontrivial extreme points. It turns out that I1/2 is the disk of
radius 1/4 centered at (1/2, (1 + i)/4). Since

B = conv(0, I1/2, (1, (1 + i)/2))

the spectral scale in this case is a pair of skewed circular cones joined at their bases as
shown below.

In this case the extreme points of B are 0, �(1) and points on the circular boundary
of I1/2. The one dimensional faces are the line segments joining 0 and �(1) to the
extreme points on the circle. There are no faces of dimension two.

We now present a 3 × 3 example in which the spectral scale has a “flat spot”.

EXAMPLE 2.2. Write

b1 =

 1 0 1

0 2 1
1 1 3


 , b2 =


 1 0 0

0 1 0
0 0 0


 and c = b1 + ib2 =


 1 + i 0 1

0 2 + i 1
1 1 3


 .

We have that �([0, b2]) is a face of B by [1, Theorem 2.3]. (Here [0, b2] = {a ∈ N :
0 ≤ a ≤ b2}.) Furthermore, it follows from the results in [2, §3] that this face is two
dimensional. In fact, as can be seen from the figure below, it is diamond shaped.
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EXAMPLE 2.3. The facial structure of the spectral scale can be quite complex. In
the next example there are eight faces of dimension two. If we write

b1 =




0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0


 , b2 =




0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0


 and c = b1 + ib2,

then the spectral scale is as shown below.
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Although it appears from the figure that the lighter portions between the isotrace
slices I2/5 and I3/5 are two dimensional faces, in fact they consist of faces of dimension
one. This anomaly occurred as a result of the MATLAB shading routine employed to
draw this picture.

EXAMPLE 2.4. In [1, Example 3.5] we showed that, in the noncommutative case, the
spectral scale is not a complete invariant for the operators b1 and b2 by exhibiting two
pairs of inequivalent self-adjoint 3 × 3 matrices that shared the same spectral scale.
In this example each pair generated the full von Neumann algebra B(H). In our final
example we show that the same phenomenon can occur even if one pair is reducible.
Write

c1 =

 1 + i 0 0

0 1 + 2i 1
0 1 1


 and c2 =




1 1√
2

0
1√
2

1 + i 1√
2

0 1√
2

1 + 2i


 .

It is clear that for c2 the algebra N is the full algebra B(H), while this is not true for c1

because N has non-trivial center.
On the other hand, the associated spectral scales are equal. This follows from the

fact that each of these matrices has the same characteristic polynomial and part (2) of
[1, Theorem 3.2].

In fact even more is true. Write S(z) = Rec1 + zImc1 and T(z) = Rec2 + zImc2. A
straightforward calculation shows that

det(S(z) − w1) = det(T(z) − w1) = (−2zw + 2z + w2 − 2w)(w − 1 − z),

so that even if N is irreducible, the associated characteristic polynomial may be
reducible.

3. Corners in isotrace slices and the k-numerical range. In this section we show
that, by using the spectral scale, we can establish results analogous to Theorem 0.1 for
the k–numerical range. Let us begin by recalling an idea that proved useful in [2]. If x
is an extreme point of a convex set X in �k which is isolated in the set of all extreme
points of X , then we say that x is an isolated extreme point of X .

Recall that a face in B is said to be a sharp face if it is contained in at least two
hyperplanes of support [2, Definition 4.1]. We showed in [2, Lemma 5.2] that an isolated
extreme point of B is always a sharp face. Our main result on corners is Theorem 3.4
below. The proof of this result requires three technical lemmas which we present next.
Since the first result is just a slight generalization of Lemma 1.2 and uses the notation
from that lemma, the proof is somewhat abbreviated. Recall that if 0 < t < 1, then

N+
1,t = {a : a ∈ N+

1 and τ (a) = t}.

LEMMA 3.1. If a is an extreme point of N+
1,t, then there is a projection p in N such

that either a = p or

a = p + αq,

where q is a projection in N that is orthogonal to p, qNq has dimension one and 0 < α < 1.
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Proof. Fix an extreme point a of N+
1,t. If a = p is a projection, then the proof is

complete. Assume that this is not the case. Let α1, . . . , αm denote the distinct eigenvalues
of a and let q1, . . . , qk denote the corresponding eigenprojections. Since a is not a
projection, there is at least one index i such that 0 < αi < 1. If there were another
index j with 0 < αj < 1, then by adding (resp. subtracting) a small amount to αi and
subtracting (resp. adding) a small amount to αj we would get two new elements of N+

1t
whose average is a, so that a would not not be an extreme point of this set. Hence,
0 < αi < 1 and all other indices are 0 or 1.

If qiNqi did not have dimension one, then it would contain two nonzero orthogonal
projections and, arguing as in the previous paragraph, we would again get that a is not
an extreme point. Hence, a has the indicated form. �

In the following lemma it is convenient to return (briefly) to the picture of B as
lying in �3 and then to use some results in [2] that are stated in this framework. If C is
a convex subset of �2 with a corner at λ, then C admits an infinite family of tangent
lines of support at λ and these lines all lie in a sector of a disk with maximal angle. We
call the tangent lines of support that bound this sector the sectorial tangent lines of
support. Also, if z± are projections in N, then we write

[z−, z+] = {a ∈ N : z− ≤ a ≤ z+}.

LEMMA 3.2. If k is an integer with 1 ≤ k ≤ n, Ik/n has dimension two and the point
x = (k/n, r1, r2) lies at a corner on the isotrace slice Ik/n, then the following statements
hold.

(1) There is a sharp face F in B of dimension at most one that contains x.
(2) F = �([z−, z+]), where z± are central projections in N.
(3) The points �(z±) are isolated extreme points of B.

Proof. As Ik/n has dimension two and has a corner at x, there are two distinct
sectorial tangent lines of support of Ik/n in the plane of Ik/n at x. Denote these tangent
lines by L1 and L2. Each Li meets B only in the boundary of the isotrace slice Ik/n and
so they are each disjoint from the interior of B. By [16, Corollary 2.4.11], there are
distinct planes P1 and P2 such that Li ⊂ Pi and each Pi is disjoint from the interior of
B. Since each plane contains (k/n, r1, r2)), they are planes of support for B. Thus, if we
write F = P1 ∩ P2 ∩ B, then F is a sharp face of B.

Since we are now regarding B as a subset of �3 we may use the results in [1] and
[2] to get that each plane of support is determined by a spectral pair of the form (s, t),
where s is a real number and t = (t1, t2) is a nonzero vector in �2. Specifically, by [1,
Theorem 2.3] if P is a plane of support for B, then there is a spectral pair (s, t) such
that points on P satisfy an equation of the form

−sx0 + t1x1 + t2x2 = α.

The constant α is determined as follows. We write bt = t1b1 + t2b2 and let p+
s,t and

p−
s,t denote the spectral projections of bt corresponding to the intervals (−∞, s] and

(−∞, s). With this notation, we have

α = τ ((bt − s1)p±
s,t).

Observe that (−s, t) is a normal vector for this plane.
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Since P1 and P2 are distinct planes of B that have nonempty intersection, their
normal vectors are linearly independent, and so there exist linearly independent
spectral pairs (s1, t1) and (s2, t2) such that each Pi has the equation

−six0 + ti1x1 + ti2x2 = αi,

where ti = (ti1, ti2). Since the point x = (k/n, r1, r2) lies in each plane, we get

−si(k/n) + ti1r1 + ti2r2 = αi.

Now fix a point (xi0, xi1, xi2) on the tangent line Li and observe that since Ik/n lies in
the plane x0 = k/n, we get xi0 = k/n. Since this point also lies in the plane Pi, we get

−si(k/n) + ti1xi1 + ti2xi2 = αi = −si(k/n) + ti1r1 + ti2r2

and so

ti1(xi1 − r1) + ti2(xi2 − r2) = 0.

If the vectors t1 and t2 were linearly dependent, then it would follow that the tangent
lines L1 and L2 are parallel. Since these lines intersect at a corner of the isotrace slice
Ik/n, this is impossible and therefore the ti’s must be linearly independent.

Applying [2, Corollary 4.7], we get that F has the form �([z−, z+]), where z± are
central projections in N. Next, since F is a face in B, the end points �(z±) are extreme
points of B. Since the projections z± are central, the points �(z±) are isolated extreme
points of B by [2, Theorem 5.4(2)] and so assertions (2) and (3) hold. �

Let us now return to our previous notation so that we regard B as a subset of
� × �.

LEMMA 3.3. If G = �([z−, z+]) is any face of B that satisfies statements (1), (2) and
(3) of Lemma 3.2 and (t, γ ) ∈ G, then (t, γ ) is an isolated extreme point of It.

Proof. Since G is a face, its intersection with It is a face of It that consists of the
single extreme point (t, γ ), since G has dimension one and since faces of B are transverse
to isotrace slices by [2, Theorem 6.4(1)]. If (t, z) were not an isolated extreme point
of It, then there would be a sequence (t, γj) of extreme points in It that converges to
(t, γ ). Since the inverse images of extreme points contain extreme points, each of these
points would have the form �(pj) or �(pj + αjqj), where pj, qj and αj are as described in
Lemma 3.1. After passing to a subsequence we may assume that (t, γj) = �(pj + αjqj).
We now assume that 0 < αj < 1 and further that G is one dimensional. The other cases
are handled similarly, but somewhat more easily.

Since the dimension of N is finite, the range of the trace on the projections in N
is finite and, since τ (pj + αjqj) = t for each j, the αj’s also form a finite set. Hence, by
passing to another subsequence, we may assume that each αj equals α and 0 < α < 1.
We can now find another subsequence (which we continue to index with j’s) such that
pj converges to p and qj converges to q Since pj and qj are orthogonal and qjNqj has
dimension one, for each j, it follows readily that p and q are orthogonal projections,
and qNq has dimension one.

Since �(p + αq) = (t, γ ) ∈ G and G = �([z−, z+]), we have z− ≤ p + αq ≤ z+ and,
since G is one dimensional, we get that z = z+ − z− �= 0. Hence, zbiz is a scalar multiple
of z, for i = 1, 2 by [2, Lemma 3.3(1)]. Since z is central, z(p + αq) is a multiple of z.
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Thus, p + αq = z− + z(p + αq) and so this element is central. But, since 0 < α < 1, this
means that both p and q are central. This is impossible since the central projections
are isolated in the set of all projections. Hence, (t, γ ) must be an isolated extreme point
of It. �

With these preparations, we may now present the main Theorem of this section.
Recall that the map πk from � to � × �, defined by

πk(z) = (k/n, kz/n),

is an affine map that is a bijection from Wk(c) onto Ik/n, by Theorem 1.3.

THEOREM 3.4. If Wk(c) has dimension two and if 0 < k < n, then the following
statements are equivalent.

(1) λ is a singular point on the boundary of Wk(c).
(2) Wk(c) has a corner at λ.
(3) There is a face F of B containing the point (k/n, kλ/n) that enjoys the properties

described below.
(a) F is a sharp face in B of dimension at most one.
(b) F = �([z−, z+]), where z± are central projections.
(c) The points �(z±) are isolated extreme points of B.
(d) There are faces F1 and F2 in B of dimension two such that F1 ∩ F2 = F and

if (t, γ ) ∈ F, then Fi ∩ It is a line segment for each i. Further, if L1 and L2 denote
the sectorial tangent lines of support to Wk(c) at λ, then their images πk(Li) in B
intersect the relative interiors of the Fi’s.
(4) λ is an isolated extreme point of Wk(c).

Proof. As in the proof of (1) in Theorem 0.2 and the remark following it, we have
that (1) =⇒ (2) because the boundary of Wk(c) is convex.

Now suppose that (2) holds. In this case πk(λ) = (k/n, kλ/n) lies at a corner of the
isotrace slice Ik/n and so we may apply Lemma 3.2 to get that parts (a), (b) and (c) of
part (3) are true.

Hence, for each (t, γ ) ∈ F , there are faces Ft,1 and Ft,2 in B of dimension two such
that (t, γ ) ∈ Ft,i by [2, Lemma 6.5(3)] and Lemma 3.3. If F has dimension zero, so that
it is a single point, then we must have Ft,i = Fi and so (d) is true in this case.

Now suppose that F has dimension one, fix (t, γ ) in the relative interior of F and
consider the face Ft = Ft,1 ∩ F . If Ft were a single point, then it would be an extreme
point of B, which is impossible because it lies in the relative interior of F . Hence Ft

has dimension one. Since Ft is contained in F we must have Ft = F . Since it is obvious
(and straightforward to prove) that three distinct faces of dimension two in B cannot
intersect in a face of dimension one, we must have that Ft,1 is either F1 or F2. Hence
assertion (d) holds in this case.

Thus, in all cases we get that the faces Fi have dimension two. Since such faces are
transverse to the isotrace slices of B by [2, Lemma 6.4(1)], each line πk(Li) intersects
Fi in its relative interior. Thus, (2) =⇒ (3).

Next, if (3) is true, then it is clear that λ is an isolated extreme point of Wk(c)
and so (3) =⇒ (4). If (4) holds, then it is also clear that (1) holds and so these four
conditions are equivalent. �

REMARK 3.5. (1) Suppose that λ lies at a corner of Wk(c) and Li are the sectorial
tangent lines of support for Wk(c) at this point. The faces F1 and F2 described in part (3)
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of Theorem 3.4 were specifically constructed so that the corresponding lines πk(Li) in
� × � intersect the relative interiors of the Fi’s. If the sharp face F has dimension one,
then it bounds precisely two faces of dimension two in the boundary of B. In this
situation, we say that the union of the Fi’s is a shelf of B and F is the edge of the shelf.

(2) Now suppose that F1 ∩ F2 = F = {(k/n, kλ/n)} is a point. In this case
(k/n, kλ/n) is an extreme point of B and so it cannot be an interior point of any
face of B. Thus, this point is an “end point" of any face that contains it. We say that
(k/n, kλ/n) is a mountain peak in this case. In contrast to the one dimensional case,
there are three possibilities for the local geometry of B near (k/n, kλ/n), which are as
follows.

(a) Each face of dimension one that ends at (k/n, kλ/n) is the edge of a shelf
in B.

(b) The point (k/n, kλ/n) bounds at least one shelf in B and at least one face of
dimension one that is not the edge of a shelf.

(c) The point (k/n, kλ/n) does not bound a shelf.
If N is abelian so that B has a finite number of extreme points, then (k/n, kλ/n) lies
at a mountain peak of type (a). Observe that since F1 ∩ F2 is a point, the faces that
intersect the lines πk(Li) do not intersect in a shelf, as in remark (1) above. However,
their boundaries are edges of shelves formed from one of the Fi’s and another two
dimensional face of B. In most abelian examples the corners of the isotrace slices
all lie in shelves and there are no mountain peaks. On the other hand, it is fairly
straightforward to construct abelian examples where mountain peaks of type (a) occur
and it seems possible that there are noncommutative examples which also display this
geometry. Examples also show that mountain peaks of type (b) can occur.

If the boundary of the numerical range of c is nonsingular (i.e., does not contain
any corners), then �(0) is a mountain peak of type (c). Further, it follows from the
symmetry of B that �(1) is also a mountain peak of type (c) in this case. We have not
been able to construct an example of a type (c) mountain peak at any other points
of B.

(3) If F is any sharp face of dimension one in B, then it is the edge of a shelf and
if (k/n, kλ/n) ∈ F , for some k, then λ ∈ Wk(c). To see this, it is convenient to view B as
a subset of �3 so that we may use the notation developed in [1] and [2]. Observe that,
since F is a sharp face of dimension one, there must be linearly independent spectral
pairs (si, ti), i = 1, 2, such that the corresponding faces

Fi = �([p−
si,ti

, p−
si,ti

])

have dimension two and contain F . Further, it follows that the vectors ti are linearly
independent. Indeed, if they were linearly dependent, then replacing (si, ti) with a
multiple of itself if necessary, we could assume that t1 = t2. (Recall that replacing a
spectral pair by a multiple of itself leaves the associated face unchanged.) In this case
since (s1, t1) and (s2, t1) are linearly independent, we must have that s1 �= s2. But then,
since these vectors are each normal vectors for F we would get that F has dimension
zero by [2, Corollary 4.9(2)], a contradiction. With this we may repeat the remaining
portion of the proof of part (3) of Theorem 3.4 verbatim to get that the assertions in
part (3) hold for F .

(4) Now suppose that F = �([z+, z−]) is the sharp edge of a shelf in B so that z±

are central projections in N with z− < z+. In this case if we write z = z+ − z−, then we
get that zbi = βiz, for i = 1, 2, and if we put γ = β1 + iβ2, then zc = γ z, so that γ is a
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reducing eigenvalue of c. This number is the “complex slope" of F because

τ (cz+) − τ (cz−)
τ (z+) − τ (z−)

= τ (zc)
τ (z)

= τ (γ z)
τ (z)

= γ.

We note that if c is normal so that every face of dimension one is the sharp edge of
a shelf in B and the complex slopes of these faces lie in the spectrum of c, then these
complex slopes fill out the spectrum. A proof of this fact will appear as part of a more
general result in a forthcoming paper.

(5) If F = �([z+, z−]) is the sharp edge of a shelf, as in remark (4), and if the
rank of z = z+ − z− is r, then F intersects r adjacent isotrace slices. Thus, in general,
the point (k/n, kλ/n) may be an interior point of the face F . However, if the reducing
eigenvalues of c have multiplicity one, then F lies between two adjacent isotrace slices.
Also (k/n, kλ/n) is one of the end points of F and so is an extreme point of B.
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