
LMS J. Comput. Math. 17 (Special issue A) (2014) 404–417 C© 2014 Author

doi:10.1112/S1461157014000382

Class numbers of real cyclotomic fields of composite conductor

John C. Miller

Abstract

Until recently, the ‘plus part’ of the class numbers of cyclotomic fields had only been determined
for fields of root discriminant small enough to be treated by Odlyzko’s discriminant bounds.

However, by finding lower bounds for sums over prime ideals of the Hilbert class field, we can
now establish upper bounds for class numbers of fields of larger discriminant. This new analytic
upper bound, together with algebraic arguments concerning the divisibility properties of class
numbers, allows us to unconditionally determine the class numbers of many cyclotomic fields
that had previously been untreatable by any known method.

In this paper, we study in particular the cyclotomic fields of composite conductor.

1. Introduction

Ever since mathematicians more than a century ago established connections between Fermat’s
Last Theorem and the unique factorization properties of cyclotomic integers, the class numbers
of cyclotomic fields have been investigated intensively. Among the most mysterious aspects
remains the ‘plus part’ of the class number, that is the class number of the maximal real
subfield.

Exploiting Odlyzko’s discriminant lower bounds, Masley [3] and van der Linden [2] were
able to unconditionally establish the class numbers of all real cyclotomic fields of composite
conductor m, provided that m 6 200, φ(m) 6 72 and m 6= 148, 152. However, for fields of larger
degree or conductor, the root discriminant becomes too large for their methods to handle. To
overcome the problem of large root discriminants, we establish a lower bound on sums over
prime ideals of the Hilbert class field, which in turn establishes an upper bound on the class
number. We make further algebraic arguments concerning the divisibility of class numbers in
order to prove our main result.

Theorem 1.1. Let m be a composite integer, m 6≡ 2 (mod4), and let Q(ζm)+ denote
the maximal real subfield of the mth cyclotomic field Q(ζm). Then the class number h+

m

of Q(ζm)+ is

h+
m =


1 if φ(m) 6 116 and m 6= 136, 145, 212,

2 if m = 136,

2 if m = 145,

1 if m = 256,

where φ is the Euler phi function. Furthermore, under the generalized Riemann hypothesis
(GRH), h+

212 = 5 and h+
512 = 1.

For example, the real cyclotomic field of conductor 420 has class number 1. This is the largest
conductor for which the class number of a cyclotomic field has been calculated unconditionally.
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class numbers of fields of composite conductor 405

This result on composite conductors complements our earlier results on real cyclotomic fields
of prime conductor.

Theorem 1.2 (Miller [5]). Let p be a prime integer, and let Q(ζp)
+ denote the maximal real

subfield of the pth cyclotomic field Q(ζp). Then the class number of Q(ζp)
+ is 1 for p 6 151.

Furthermore, under the assumption of the GRH, the class number h+
p of Q(ζp)

+ is

h+
p =


1 if p 6 241 and p 6= 163, 191, 229,

4 if p = 163,

11 if p = 191,

3 if p = 229.

2. Upper bounds for class numbers

A critical step for determining the class number of fields of relatively large degree or
discriminant is to find an upper bound for the class number. To accomplish this, Masley [3]
and van der Linden [2] exploited Odlyzko’s lower bounds of discriminants. Although Odlyzko’s
tables [7, 8] are unpublished, much information about his estimates for discriminants and
related problems can be found in his survey [6].

Definition 1. Let K denote a number field of degree n over Q. Let d(K) denote its
discriminant. The root discriminant rd(K) of K is defined to be:

rd(K) = |d(K)|1/n.

We can use the relative discriminant formula to prove the following proposition.

Proposition 2.1. Let L/K be an extension of number fields. Then

rd(K) 6 rd(L),

with equality if and only if L/K is unramified at all finite primes.

Consequently, the root discriminant has the following important property.

Corollary 2.2. Let K be a number field. Then the Hilbert class field of K has the same
root discriminant as K.

Suppose K is a totally real number field of degree n. Odlyzko constructed a table [8] of pairs
(A,E) such that the discriminant of K has the lower bound

|d(K)| > Ane−E .

If rd(K) < A, we can use Odlyzko’s discriminant bounds and Corollary 2.2 to get an upper
bound for the class number h,

h <
E

n(logA− log rd(K))
.

However, if the root discriminant of K is larger than the largest A in Odlyzko’s table, the
above method cannot be applied. The largest value for A in Odlyzko’s table is 60.704 (or
213.626 if the GRH is assumed).
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Example 1. The real cyclotomic field Q(ζ212)+ has root discriminant approximately
98.2080. This root discriminant is too large for the class number to be treated by Odlyzko’s
unconditional discriminant bounds, but if we assume the GRH, then we can choose a pair
(A,E) = (119.296, 118.11) from Odlyzko’s table [7] of GRH conditional discriminant bounds
to get a class number upper bound

h+
212 6 11

which is conditional on the GRH.

In the author’s previous paper [4], we obtained unconditional upper bounds for class numbers
for fields of root discriminant larger than 60.704 by establishing nontrivial lower bounds for
sums over the prime ideals of the Hilbert class field. We repeat here a lemma that will be
crucial to our investigation.

Lemma 2.3 (Miller [4]). Let K be a totally real field of degree n, and let

F (x) =
e−(x/c)2

cosh(x/2)

for some positive constant c. Suppose S is a subset of the prime integers which totally split
into principal prime ideals of K. Let

B =
π

2
+ γ + log 8π − log rd(K)−

∫∞
0

1− F (x)

2

(
1

sinh(x/2)
+

1

cosh(x/2)

)
dx

+ 2
∑
p∈S

∞∑
m=1

log p

pm/2
F (m log p).

If B > 0 then we have an upper bound for the class number h of K,

h <
2c
√
π

nB
.

Note that the above upper bound is unconditional on the GRH.
If x is in the ring of integers of K, and if its norm is a prime integer p which is unramified

in K, then p totally splits into principal ideals, and we can take p to be in the set S above.
Once we find sufficiently many such prime integers which totally split into principal ideals, so
that B > 0, we can establish an upper bound for the class number.

3. Real cyclotomic fields

We briefly recall a few facts about real cyclotomic fields and establish some notation. More
information can be found in Washington’s Introduction to Cyclotomic Fields [11].

Let ζm be a primitive mth root of unity. Then Q(ζm) is the cyclotomic field of conductor m.
Its maximal real subfield, also known as the real cyclotomic field of conductorm, is Q(ζm+ζ−1

m ),
which we will usually denote by Q(ζm)+. The degree of Q(ζm)+ over Q is φ(m)/2, where φ is
the Euler phi function.

The Galois group Gal(Q(ζm)/Q) is isomorphic to (Z/mZ)×, and the Galois group
Gal(Q(ζm)+/Q) of the real cyclotomic field is isomorphic to the quotient group (Z/mZ)×/{±1}.
Galois theory determines the subfields of Q(ζm)+.

The ring of integers of Q(ζm)+ is simply Z[ζm + ζ−1
m ] = Z[2 cos(2π/m)]. The prime integers

which totally split in this field are precisely those which are congruent to ±1 modulo m.

https://doi.org/10.1112/S1461157014000382 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000382


class numbers of fields of composite conductor 407

We will denote the class number of Q(ζm) by hm and the class number of its maximal real
subfield (the ‘plus part’) by h+

m. The ‘minus part’ h−m is defined to be the relative class number

h−m =
hm

h+
m
.

Let n = φ(m)/2 and let a1, a1, . . . , an be those positive integers (in increasing order) that
are less than m/2 and coprime to m. Until otherwise noted, the integral basis of Q(ζm)+ that
we will use is {b0, b1, . . . , bn−1}, with b0 = 1 and bj = 2 cos (2πaj/m) for j = 1, . . . , n− 1.

Given an element x of a Galois number field K, we define its norm to be

N(x) =

∣∣∣∣ ∏
σ∈Gal(K/Q)

σ(x)

∣∣∣∣.

4. Divisibility properties of the class numbers of real cyclotomic fields

In the author’s previous paper on cyclotomic fields of prime conductor [5], we were able to take
advantage of the extensive work of Schoof [9] on the divisibility properties of class numbers
h+
p for p prime. Real cyclotomic fields of prime power conductor have the special property

that the index of the group of cyclotomic units O×cyc within the full group of units O× is equal
to the class number. This allowed Schoof to study the Galois action on the quotient group
O×/O×cyc, rather than class group itself, to extract information about the class number.

However, once we move away from prime power conductors, the size of the quotient group
O×/O×cyc is no longer equal to the class number. To some extent, Agathocleous, in her thesis [1],
was able to get around this problem, but with the limitation of considering only composite
conductors that are products pq of two distinct odd primes. This is actually quite a severe
limitation for us: only 9 of the 50 fields we considered have such conductors.

Therefore, in the current paper, we return to the classical approach of exploiting the Galois
action on the class group itself, as implemented by Masley [3] and van der Linden [2]. This
approach has its limitations, especially when considering the p-part of the class number where
p divides the degree of the field. Nevertheless, by establishing quite good upper bounds on the
class numbers, we are able to successfully use these methods.

In order to carry out our strategy, we use several theorems described by van der Linden [2],
Masley [3] and Washington [11].

Parity Check Theorem (Masley [3, Theorem 2.21]). If h−m is odd, then h+
m is odd.

Reflection Theorem (Masley [3, Theorem 2.22]). Let p be a prime integer, and let M
be the least common multiple of p and the conductor m. If p does not divide h−M , then p does
not divide h+

m.

We will use the tables in Washington [11, p. 412] to find the minus part h−m of the class
number.

Pushing Up Theorem (Washington [11, Proposition 4.11]). Let L/K be an extension of
number fields. If no intermediate field M 6= K of L/K is abelian over K and unramified (at
all primes, including the Archimedean ones) over K, then hK divides hL.

Corollary 4.1. h+
m divides h+

km for any positive integer k.

Corollary 4.2. If K is a subfield of a real cyclotomic field of prime power conductor pk,
then hK divides h+

pk
.
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Pushing Down Theorem (Washington [11, Theorem 10.4]). Let L/K be a Galois
extension of number fields whose degree is a power of a prime p. Suppose that there is at
most one prime (finite or infinite) of K that ramifies in L. If p does not divide hK , then p does
not divide hL.

Theorem 4.3 (Masley [3, Theorem 2.10]). Let m = 4p, pq or 2aq, with a > 3, p and q odd
primes, and q ≡ 3 ( mod 4). Then the maximal real abelian 2-extension K of Q with conductor
m has odd class number.

Rank Theorem (Masley [3, Corollary 2.15]). Let L/K be a cyclic extension of degree n.
Let p be a prime that does not divide hE for all intermediate fields E with K ⊆ E ( L. If p
divides hL, then pf divides hL, where f is the order of p modulo n.

We also give the more precise version of the Rank Theorem described by van der Linden [2].
Given a cyclic extension of number fields L/K of degree n, and a prime p not dividing n, we
define Cl∗p(L/K) to be

Cl∗p(L/K) = {α ∈ Clp(L) : αΦn(σ) = 1},

where Clp(L) is the Sylow p-subgroup of the class group of L, σ is the generator of Gal(L/K),
and Φn is the nth cyclotomic polynomial. For example, given the trivial extension K/K, we
have Cl∗p(K/K) = Clp(K).

Theorem 4.4 (van der Linden [2, Theorem 8]). Let L/K be a cyclic extension of degree n.
Let p be a prime that does not divide n. Then |Cl∗p(L/K)| is a power of pf , possibly 1, where
f is the order of p modulo n.

Theorem 4.5 (van der Linden [2, Theorem 6]). Let E/K be an abelian extension of number
fields of degree n, and let p be a prime integer not dividing n. Then

Clp(E) ∼= ⊕Cl∗p(L/K),

where the direct sum is over all the intermediate fields L for which L/K is cyclic.

Corollary 4.6. Suppose p, K and E are as in the theorem above. If p divides hE , then
there exists a cyclic extension L/K, with K ⊆ L ⊆ E and p dividing hL.

5. The class number of the real cyclotomic field of conductor 148

We give a detailed example of applying our upper bound to find the class number of the real
cyclotomic field of conductor 148.

Van der Linden [2] proved that the class number of Q(ζ148)+ has class number 1, conditional
upon the GRH. The root discriminant of this field is approximately 66.94, which is greater
than 60.704, so Odlyzko’s discriminant bounds could not be used to establish an unconditional
upper bound on the class number. However, using our class number upper bound, we can now
unconditionally prove that the real cyclotomic field of conductor 148 has class number 1.

Proposition 5.1. The class number of Q(ζ148)+ is 1.

Proof. First, using our integral basis {b0, b1, . . . , bn−1}, we search over ‘sparse vectors’ and
find two elements of the ring of integers that have norms of 149 and 443:

N(b0 + b1 + b8) = 149,

N(b0 + b1 + b9) = 443.
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Since the prime integers 149 and 443 are congruent to ±1 modulo 148, they totally split in
Q(ζ148)+, and split into principal ideals generated by the above elements and their conjugates.

We define our set S to be
S = {149, 443}.

Let F be the function

F (x) =
e−(x/c)2

cosh(x/2)

with c = 20. The contribution from prime ideals of the Hilbert class field is bounded below by

2
∑
p∈S

∞∑
m=1

log p

pm/2
F (m log p) > 2

∑
p∈S

log p
√
p
F (log p) > 0.1753.

The following integral can be estimated using numerical integration:∫∞
0

1− F (x)

2

(
1

sinh(x/2)
+

1

cosh(x/2)

)
dx < 1.2825.

Thus we find a lower bound for B,

B =
π

2
+ γ + log 8π − log rd(Q(ζ148)+)−

∫∞
0

1− F (x)

2

(
1

sinh(x/2)
+

1

cosh(x/2)

)
dx

+ 2
∑
p∈S

∞∑
m=1

log p

pm/2
F (m log p) > 0.0611.

Now we can apply Lemma 2.3 to show that the class number has an upper bound

h+
148 6 32.

It remains to use divisibility arguments to show that the class number is 1. We consider the
possible prime divisors of h+

148.

2-part. Since h−148 = 4 827 501 is odd, the Parity Check Theorem shows that h+
148 is odd.

3-part. The degree of Q(ζ148)+ is 36. Consider its quartic subfield K4. The prime integer 37
is totally ramified in K4 and factors as

(37) = P 4

for a prime ideal P . The prime P is the only prime that ramifies in the degree 9 extension
Q(ζ148)+/K4. Since K4 has class number 1 (which has small enough degree that it can
be calculated unconditionally in a software package such as Sage [10]), we can use the
Pushing Down Theorem to show that 3 does not divide h+

148.

p-part, 5 6 p 6 31 Q(ζ148)+/Q is a cyclic extension. Every proper subfield of Q(ζ148)+ is either
a subfield of Q(ζ37)+, or is the degree 12 subfield K12, or is the quartic subfield K4. Using
Sage, we can calculate unconditionally that K4 and K12 have class number 1. Also, the
subfield Q(ζ37)+ has class number 1. Since Q(ζ37)+/Q is totally ramified at 37, by the
Pushing Up Theorem every subfield of Q(ζ37)+ has class number 1. Thus, using the
extension Q(ζ148)+/Q and the upper bound h+

148 6 32, we can apply the Rank Theorem
to show that p does not divide h+

148 for all p between 5 and 31.

Using the upper bound h+
148 6 32, we conclude unconditionally that h+

148 = 1.
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Note that the Minkowski bound of Q(ζ148)+ is approximately 2.5× 1018. It is striking that,
using our new approach, we needed to only check if two primes, 149 and 443, factored into
principal ideals, in stark contrast to using the Minkowski bound, which would have required
checking roughly 6× 1016 primes!

As an alternative proof, in the following section we will show below that an upper bound of
h+

148 is 1, thus showing that h+
148 = 1, without need for any additional algebraic arguments.

6. Upper bounds for class numbers of real cyclotomic fields of degree less than or equal to 58

Consider the real cyclotomic field of conductor m with degree n. For real cyclotomic fields of
relatively small degree, it is possible to use relatively few prime ideals to find a class number
upper bound. However, for fields of larger degree, the number of primes required is much
greater. Our strategy will be to search over sparse vectors using both the basis b0, b1, . . . , bn−1

described above, as well as using an alternative basis,

ck =

k∑
j=0

bj , k = 0, 1, . . . , n− 1.

The advantage of using the alternative basis is its tendency to find elements that are of different
norm than those found using sparse vectors in the original basis.

We calculate the norm of every element of the ring of integers of the form

x = b0 + b1 + a1bj1 + a2bj2 + a3bj3 + a4bj4 + a5bj5

and
x = b1 + a1bj1 + a2bj2 + a3bj3 + a4bj4 + a5bj5 ,

where 1 < j1 < j2 < j3 < j4 < j5 < n and aj ∈ {−1, 0, 1} for 1 6 j 6 5. Similarly, using the
alternative basis, we also calculate the norm of every element of the form

x = c0 + a1ck1 + a2ck2 + a3ck3 + a4ck4 + c5bk5 ,

where 1 6 k1 < k2 < k3 < k4 < k5 < n and ak ∈ {−1, 0, 1} for 1 6 k 6 5.
Let T denote the set of all such elements x, and let S denote the set of norms that are prime,

congruent to ±1 modulo the conductor m, and less than 1010,

S = {N(x) : x ∈ T,N(x) prime, N(x) ≡ ±1 (modm), N(x) < 1010}.

We calculate the set S for every real cyclotomic field of composite conductor m of degree
up to 58, that is, with φ(m) 6 116, except for the fields that have already been treated
unconditionally by Masley or van der Linden. We also exclude the conductor 212, for reasons
to be discussed later. We then apply Lemma 2.3. The results are given in Table 1 of conductors
m, parameter c, and upper bounds of class numbers h+

m.
We are free to choose the parameter c. Recall that our class number bound is h < 2c

√
π/nB.

If c is chosen to be too small, then the lower bound for the denominator B would be nonpositive
or very small. On the other hand, if c is too large, this leads directly to a large class number
bound. Thus, there is an optimal c that provides the best possible bound. However, since the
class number is an integer, the class number bound is usually not sensitive to the precise choice
of c, so it is easy to just compute an optimal c by testing in a reasonable interval.

We should also remark that if we had calculated the table of class number upper bounds
using summations over a larger number of principal prime ideals, then we could have improved
upper bounds, obviating the need for some of the algebraic arguments in § 7. There is a trade-off
between the amount of computation and the amount of algebraic argumentation.
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7. Class numbers of real cyclotomic fields of degree up to 58

The above upper bounds are sufficiently strong to immediately show that the real cyclotomic
fields of conductors

115, 147, 148, 152, 165, 195, 200, 204, 216, 220, 228, 240, 252, 264, 300, 420

have class number 1.
In the following, all invocations of the Parity Check Theorem and the Reflection Theorem

use minus parts of the class numbers obtained from the table in Washington [11, p. 412]. In
particular, an application of the Parity Check Theorem shows that the real cyclotomic fields
of conductors

119, 129, 141, 125, 176, 196

also have class number 1.
For conductor 145, we will need a better upper bound, so the proof of that class number

will be postponed until the next section. The remaining fields are treated below.

Proposition 7.1. The class number of Q(ζ121)+ is 1.

Proof. We have the upper bound h+
121 6 4. By the Parity Check Theorem, h+

121 is odd.
The least common multiple of 3 and 121 is 363. Since 3 does not divide h−363, the Reflection
Theorem shows that 3 does not divide h+

121.

Proposition 7.2. The class numbers of Q(ζ123)+, Q(ζ153)+, Q(ζ164)+ and Q(ζ224)+ are 1.

Proof. Let L denote one of these fields, and let K denote the maximal 2-subextension of
L/Q. We have the upper bound for the class number h(L) 6 2. By Theorem 4.3, the class
number of K is odd. We apply the Rank Theorem to the extension L/K to show that h(L) is
odd.

Table 1. Upper bounds for class numbers h+
m of real cyclotomic fields of conductor m, using

parameter c in Lemma 2.3.

m c h+
m 6

115 18 1
119 20 2
121 26 4
123 19 2
125 22 2
129 19 2
133 25 3
141 20 2
145 50 36
147 18 1
148 17 1
152 17 1
153 21 2
159 25 3
164 20 2
165 15 1

m c h+
m 6

171 26 4
172 20 2
176 20 2
177 29 5
184 22 3
188 23 3
189 24 3
195 21 1
196 20 2
200 18 1
204 15 1
208 25 3
216 18 1
220 18 1
224 22 2
228 15 1

m c h+
m 6

232 30 8
236 48 29
240 15 1
252 15 1
260 21 2
264 18 1
276 20 2
280 20 2
288 24 3
300 18 1
312 20 2
324 28 5
336 21 2
348 26 4
360 21 2
420 18 1
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Proposition 7.3. The class number of Q(ζ133)+ is 1.

Proof. We know h+
133 6 3. We apply Theorem 4.5 to the degree 27 extension

Q(ζ133)+/Q(
√

133). The cyclic subextensions are of degree 1, 3 or 9. Since the class number
of Q(

√
133) is 1, by Theorems 4.4 and 4.5, the 2-part of h+

133 must be a power of 4. Since
h+

133 6 3, we have that h+
133 is odd.

For the 3-part, consider the sextic subfield K of Q(ζ133)+ that has discriminant 75 ·193. The
class number of K is 1. The prime integer 19 factors as (19) = P 2 in K for a prime ideal P .
The prime P is the only prime of K that ramifies in Q(ζ133)+, so we can apply the Pushing
Down Theorem to show that 3 does not divide h+

133.

Proposition 7.4. The class number of Q(ζ159)+ is 1.

Proof. We know h+
159 6 3. By the Parity Check Theorem, h+

159 is odd. Every proper subfield
of Q(ζ159)+ is either the quartic subfield K4, or is a subfield of Q(ζ53)+. Using Sage [10], we
can calculate unconditionally that the class number of K4 is 1. Also, Q(ζ53)+ has class number
1. Since Q(ζ53)+/Q is totally ramified at 53, by the Pushing Up Theorem every subfield of
Q(ζ53)+ has class number 1. Therefore, we can apply the Rank Theorem to the extension
Q(ζ159)+/Q to show that 3 does not divide h+

159.

Proposition 7.5. The class number of Q(ζ171)+ is 1.

Proof. We know h+
171 6 4. We apply Theorem 4.5 to the degree 27 extension

Q(ζ171)+/Q(
√

57). The cyclic subextensions are of degree 1, 3 or 9. The class number of
Q(
√

57) is 1, and the four cubic extensions of Q(
√

57) contained in Q(ζ171)+ all have odd
class number (either 1 or 3). So we need only concern ourselves with the degree 9 cyclic
subextensions of Q(ζ171)+/Q(

√
57). Therefore, by Theorems 4.4 and 4.5, the 2-part of h+

171

must be a power of 64. Since h+
171 6 4, we have that h+

171 is odd.
The prime 3 factors as (3) = P 2 in Q(ζ57)+ for a prime ideal P . The prime P is the only

prime of Q(ζ57)+ that ramifies in Q(ζ171)+, so we can apply the Pushing Down Theorem to
show that 3 does not divide h+

171.

Proposition 7.6. The class number of Q(ζ172)+ is 1.

Proof. We know h+
172 6 2. Q(ζ172)+ is of degree 42. Let K denote its sextic subfield. We can

use Sage [10] to show unconditionally that the class number of K is 1. We apply the Rank
Theorem to the extension Q(ζ172)+/K to show that h+

172 is odd.

Proposition 7.7. The class number of Q(ζ177)+ is 1.

Proof. We know h+
177 6 5. By the Parity Check Theorem, h+

177 is odd. Every proper subfield
of Q(ζ177)+ is either Q(

√
177) or is a subfield of Q(ζ59)+. The quadratic subfield Q(

√
177)

has class number 1. Also, Q(ζ59)+ has class number 1, as do its subfields by the Pushing
Down Theorem. Therefore we can apply the Rank Theorem to the degree 58 cyclic extension
Q(ζ177)+/Q to show that neither 3 nor 5 divides h+

177.

Proposition 7.8. The class numbers of Q(ζ184)+ and Q(ζ276)+ are 1.

Proof. These fields have degree 44. Let L denote either of these fields, and K denote the
quartic subfield. We know h(L) 6 3. We can use Sage [10] to show unconditionally that the
class number of K is 1. We apply the Rank Theorem to the extension L/K to show that
neither 2 nor 3 divide hL.
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Proposition 7.9. The class number of Q(ζ188)+ is 1.

Proof. We know h+
188 6 3. By the Parity Check Theorem, h+

188 is odd. The least common

multiple of 3 and 188 is 576. Since 3 does not divide h−576, the Reflection Theorem shows that

3 does not divide h+
188.

Proposition 7.10. The class number of Q(ζ189)+ is 1.

Proof. We know h+
189 6 3. By the Parity Check Theorem, h+

189 is odd. The least common

multiple of 3 and 189 is 189. Since 3 does not divide h−189, the Reflection Theorem shows that

3 does not divide h+
189.

Proposition 7.11. The class numbers of Q(ζ208)+ and Q(ζ288)+ are 1.

Proof. Let m = 208 or 288. We know h+
m 6 3. By the Parity Check Theorem, h+

m is

odd. Consider the degree 4 cyclic extension Q(ζm)+/Q(ζm/4)+. Since we already know that

h+
m/4 = h+

m/2 = 1, we can apply the Rank Theorem to the extension Q(ζm)+/Q(ζm/4)+ to

show that 3 does not divide h+
m.

Proposition 7.12. The class number of Q(ζ232)+ is 1.

Proof. We know h+
232 6 8.

The prime integer 2 is inert in Q(ζ29)+. The prime ideal (2) is the only prime that ramifies

in the degree 4 extension Q(ζ232)+/Q(ζ29)+. Since h+
29 = 1, the Pushing Down Theorem shows

that h+
232 is odd.

Now let K be the octic subfield of Q(ζ232)+. Since the class number of K is 1, we can apply

the Rank Theorem to the degree 7 extension Q(ζ232)+/K to find that h+
232 is not divisible by

3 or 5.

The prime 29 factors as (29) = P 2 in K for a prime ideal P . P is the only prime of K that

ramifies in Q(ζ232)+, so we can apply the Pushing Down Theorem to show that 7 does not

divide h+
232.

Proposition 7.13. The class number of Q(ζ236)+ is 1.

Proof. We know h+
236 6 29. Since the class number of Q(

√
59) is 1, we can apply the Rank

Theorem to the degree 29 cyclic extension Q(ζ236)+/Q(
√

59) to show that no prime less than

29 divides h+
236.

It remains to show that 29 does not divide h+
236. The only prime ideal of Q(

√
59) that ramifies

in Q(ζ236)+ is (
√

59), so we can apply the Pushing Down Theorem to show that 29 does not

divide h+
236.

Proposition 7.14. The class number of Q(ζ260)+ is 1.

Proof. We know h+
260 6 2, and Q(ζ260)+ is of degree 48. Let L denote its degree 16 subfield.

L has three octic subfields. Let K denote the octic subfield with discriminant 28 · 54 · 136.

Sage [10] can show unconditionally that K has class number 1. The prime integer 5 factors

as (5) = P 2 in K for a prime ideal P . The only prime ideal of K that ramifies in L is P , so

by the Pushing Down Theorem, the class number of L is odd. Now we can apply the Rank

Theorem to the extension Q(ζ260)+/L to show that h+
260 is odd.
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Proposition 7.15. The class numbers of Q(ζ280)+, Q(ζ312)+ and Q(ζ360)+are 1.

Proof. Let m = 280, 312 or 360. We know h+
m 6 2. The prime integer 2 is inert in Q(ζm/8)+.

The prime ideal (2) is the only prime that ramifies in the degree 4 extension Q(ζm)+/Q(ζm/8)+.

Since h+
m/8 = 1, the Pushing Down Theorem shows that h+

m is odd.

Proposition 7.16. The class number of Q(ζ324)+ is 1.

Proof. We know h+
324 6 5. By the Parity Check Theorem, h+

324 is odd. The least common
multiple of 3 and 324 is 324. Since 3 does not divide h−324, the Reflection Theorem shows that
3 does not divide h+

324.
Finally, since Q(ζ324)+ is cyclic of degree 54, every proper subfield of Q(ζ324)+ is a subfield

of Q(ζ81)+, which has class number 1. Since Q(ζ81)+/Q is totally ramified at 3, by the Pushing
Up Theorem every subfield of Q(ζ81)+ has class number 1. Therefore, we can apply the Rank
Theorem to the extension Q(ζ324)+/Q to show that 5 does not divide h+

324.

Proposition 7.17. The class number of Q(ζ336)+ is 1.

Proof. We know h+
336 6 2. The prime integer 2 is inert in Q(ζ21)+. The prime ideal (2) is

the only prime that ramifies in the degree 8 extension Q(ζ336)+/Q(ζ21)+. Since h+
21 = 1, the

Pushing Down Theorem shows that h+
336 is odd.

Proposition 7.18. The class number of Q(ζ348)+ is 1.

Proof. We know h+
348 6 4. The prime integer 2 is inert in Q(ζ87)+. The prime ideal (2) is

the only prime that ramifies in the quadratic extension Q(ζ348)+/Q(ζ87)+. Since h+
87 = 1, the

Pushing Down Theorem shows that h+
348 is odd.

Now let K be the octic subfield of Q(ζ348)+. Since the class number of K is 1, we can apply
the Rank Theorem to the degree 7 extension Q(ζ348)+/K to find that h+

348 is not divisible
by 3.

8. The class number of the real cyclotomic field of conductor 145

Under the assumption of the GRH, van der Linden [2] proved that the class number of
Q(ζ145)+ is 2, and he proved unconditionally that 2 divides h+

145. So far, we have obtained
the unconditional upper bound h+

145 6 36. However, it is difficult to pin down the exact class
number; the 2-parts and 7-parts of the class number pose difficulties. We will endeavor to find
an improved upper bound.

We consider the sparse vectors

x = b0 + b1 + a1bj1 + a2bj2 + a3bj3 + a4bj4 + a5bj5 + a6bj6

and

x = b1 + a1bj1 + a2bj2 + a3bj3 + a4bj4 + a5bj5 + a6bj6 ,

where 1 < j1 < j2 < j3 < j4 < j5 < j6 < n and aj ∈ {−1, 0, 1} for 1 6 j 6 6, and

x = c0 + a1ck1 + a2ck2 + a3ck3 + a4ck4 + c5bk5 + c6bk6 ,

where 1 6 k1 < k2 < k3 < k4 < k5 < k6 < n and ak ∈ {−1, 0, 1} for 1 6 k 6 6.

https://doi.org/10.1112/S1461157014000382 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000382


class numbers of fields of composite conductor 415

Let T denote the set of all such elements x, and let U be the set of their norms, up to 1019,
that are congruent to ±1 modulo the conductor m:

U = {N(x) : x ∈ T,N(x) < 1019, N(x) ≡ ±1 (modm)}.

Let S1 be the set of prime norms

S1 = {p : p ∈ U, p prime, p ≡ ±1 (modm)}.

For a field of such large discriminant and nontrivial class group, it is more difficult to find
sufficiently many totally split primes of prime norm. An effective approach is to search for
sparse vectors that have large composite norms, and then take quotients of appropriately
chosen algebraic integers.

Following the above strategy, we define S2 to be the set of primes defined by

S2 = {p : pq ∈ U, p prime, p /∈ S1, q ∈ S1},

noting that if N(x) = pq and N(y) = q, for x, y in the ring of integers O, then x/σ(y) ∈ O
with norm p for some Galois automorphism σ, and p is congruent to ±1 modulo m.

Now put S = S1 ∪ S2 and c = 42. We have the following lower bound for the contribution
of prime ideals:

2
∑
p∈S

∞∑
m=1

log p

pm/2
F (m log p) > 2

∑
p∈S

2∑
m=1

log p

pm/2
F (m log p) > 0.5410.

Applying Lemma 2.3, we have B > 0.1906, so the class number is bounded above by 13.95.
Therefore,

h+
145 6 13.

Now we can prove the following unconditionally.

Proposition 8.1. The class number of Q(ζ145)+ is 2.

Proof. Let K be the octic subfield of Q(ζ145)+. Using Sage [10], we can show unconditionally
that K has class number 2. We apply Theorems 4.4 and 4.5 to the degree 7 extension
Q(ζ145)+/K to find that the 2-part of h+

145 is equal to

2 · 8t

for some nonnegative integer t. Since h+
145 6 13, we have shown that the 2-part of h+

145 is
precisely equal to 2.

We can also apply the Rank Theorem to Q(ζ145)+/K to show that neither 3 nor 5 divides
h+

145. Finally, since h+
145 is even and less than or equal to 13, we know that primes greater than

or equal to 7 do not divide the class number.

9. The class number of the real cyclotomic field of conductors 212, 256 and 512

As we will see, the class group of the real cyclotomic field of conductor 212 is nontrivial, so it is
of course more difficult to find principal prime ideals of small norm. The missing contribution
from these primes of small norm must be replaced by a quite large number of primes of greater
norm. In fact, so many principal prime ideals are required that it is difficult to establish an
unconditional upper bound on the class number. However, if we assume the GRH, it is quite
easy to find an upper bound, as we have already seen in Example 1.
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Proposition 9.1. Under the assumption of the GRH, the class number of Q(ζ212)+ is 5.

Proof. Using Odlyzko’s discriminant lower bounds, we have already shown in Example 1
that

h+
212 6 11

conditional upon GRH.
Let K be the quartic subfield of Q(ζ212)+. Using Sage [10], we can calculate the class number

of K is 5. By the Pushing Up Theorem, 5 divides h+
212. By the Parity Check Theorem, h+

212 is
odd, so we can conclude (conditional on GRH) that h+

212 = 5.

Finally, the calculation of the class numbers of the real cyclotomic fields of conductors 256
and 512 can be found in the author’s earlier paper [4], concluding the proof of Theorem 1.1.

10. Concluding remarks

As part of our main result, we unconditionally calculated the class numbers of nine fields of
conductor pq, with p and q distinct odd primes. The odd parts of their class numbers were all
trivial, which confirms previous results of the thesis of Agathocleous [1].

Also, to reach our main result, we calculated the class numbers of 25 fields of composite
conductor larger than 200, most of which had not previously had their class numbers calculated
even conditionally on the GRH. Of those fields, only the real cyclotomic field of conductor 212
had a nontrivial class group. So the results match closely with our expectation that these fields
should have small class number and be predominantly class number 1.

It is possible use the methods in this paper to unconditionally calculate the class numbers
of even higher conductors, but the amount of required calculation of principal prime ideals
would grow roughly exponentially with the conductor. This problem can be alleviated by
assuming the GRH, requiring us to find far fewer principal prime ideals. However, even under
GRH, the ‘principal ideal problem’ for fields of very large degree or discriminant becomes quite
challenging.

It is possible to extend these techniques beyond cyclotomic fields. For example, the author
is currently investigating the application of the methods of this paper to certain nonabelian
number fields.
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