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A Stochastic Difference Equation with
Stationary Noise on Groups

Chandiraraj Robinson Edward Raja

Abstract. We consider the stochastic difference equation ηk = ξkφ(ηk−1), k ∈ Z on a locally com-

pact group G, where φ is an automorphism of G, ξk are given G-valued random variables, and ηk are

unknown G-valued random variables. This equation was considered by Tsirelson and Yor on a one-

dimensional torus. We consider the case when ξk have a common law µ and prove that if G is a distal

group and φ is a distal automorphism of G and if the equation has a solution, then extremal solutions

of the equation are in one-to-one correspondence with points on the coset space K\G for some com-

pact subgroup K of G such that µ is supported on Kz = zφ(K) for any z in the support of µ. We also

provide a necessary and sufficient condition for the existence of solutions to the equation.

1 Introduction

Stochastic and random difference equations have been considered by many in differ-

ent settings (see, for instance, [Ke73, Ts75, Yo92]). Here we consider the following

type of equation.

Let G be a locally compact (Hausdorff) group. Consider the stochastic difference

equation on G

(1.1) ηk = ξkφ(ηk−1), k ∈ −N,

where ηk and ξk are G-valued random variables and φ is an automorphism of G. The

random variables (ξk) are given and are called the noise process of equation (1.1). We

are interested in finding the law of the unknown process (ηk). We further assume that

for any k, the random variable ξk is independent of η j for j < k, and this assumption

will be enforced whenever an equation of type (1.1) is considered.

B. Tsirelson [Ts75] considered the following stochastic difference equation on the

real line:

(1.2) ηk = ξk + frac(ηk−1) k ∈ −N

to obtain his celebrated example of the stochastic differential equation

(1.3) dXt = dBt + b+(t,X)dt, X(0) = 0

that has a unique, but not strong, solution, where frac(x) is the fractional part of x ∈
R, (ξk) is a given stationary Gaussian noise process, and (Bt ) is the one-dimensional
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Brownian motion. It was also noted that under some conditions the solution of

stochastic difference equation (1.2) determines the solution of Tsirelson’s stochastic

differential equation (1.3) (see [Ts75] for more details).

It is easy to see that the set of all solutions (ηk) of equation (1.1) is a convex set,

hence by extremal solution we mean an extreme point of the convex set of all solu-

tions.

M. Yor [Yo92] formulated equation (1.2) in the form of equation (1.1) on the one-

dimensional torus R/Z when φ is the identity automorphism and (ξk) is a general

noise process. In particular, [Yo92] proved that extremal solutions of the equation

(1.1) are in one-to-one correspondence with points on the coset space (R/Z)/M,

where M is a closed subgroup of R/Z. When φ is the identity automorphism, equa-

tion (1.1) was considered on general compact groups [AkUY08], and when the noise

law (ξk) is stationary, equation (1.1) was considered on abelian groups [Ta09]. The

main results of [AkUY08,HiY10,Ta09] extended the result of [Yo92] and proved that

the extremal solutions can be identified with G/H where H is a certain compact sub-

group of G if G is abelian or compact.

Assuming that the noise process (ξk) is stationary, we obtain the following exten-

sion of [Yo92] to all locally compact distal groups G (that is, e is not in the closure of

{gxg−1 | g ∈ G} for any x ∈ G \ {e}) when the automorphism φ is distal on G (that

is, e is not in the closure of {φn(x) | n ∈ Z} for any x ∈ G \ {e}).

Theorem 1.1 Let G be a locally compact distal group and φ be a distal automorphism

of G. Let (ξk)k∈Z be G-valued random variables with common law µ. Suppose the

equation

(1.4) ηk = ξkφ(ηk−1), k ∈ Z

has a solution. Then there exists a compact subgroup Kµ such that for any z in the

support of µ, µz−1 is supported on Kµ = zφ(Kµ)z−1 and there is a one-to-one corre-

spondence between left Kµ-invariant probability measures λ on G and the laws (λk) of

the solutions (ηk) of the equation (1.4), given by λk = zkφ
k(λ) for all k ∈ Z, where zk

are given by

(1.5) zk =





zφ(z) · · ·φk−1(z) k > 0,

e k = 0,

φ−1(z−1) · · ·φk(z−1) k < 0,

for any z in the support of µ. Moreover, extremal solutions (ηk) of the equation (1.4) are

in one-to-one correspondence with the elements of the coset space Kµ\G.

It is easy to verify by induction that zk (k ∈ Z) given in (1.5) satisfy zk+1 = zφ(zk)

for all k ∈ Z, which is often used here.

2 Preliminaries

Let G be a locally compact (Hausdorff) group and let Aut(G) be the group of all bi-

continuous automorphisms of G. Let φ be an automorphism of G. For a (regular
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Borel) probability measure µ on G, we define probability measures µ̌ and φ(µ) on G

by µ̌(E) = µ(E−1) and φ(µ)(E) = µ(φ−1(E)) for any Borel subset E of G.

For any two probability measures µ and λ, the convolution of µ and λ is denoted

by µ ∗ λ and is defined by

µ ∗ λ(E) =

∫
µ(Ex−1)dλ(x)

for any Borel subset E of G. For n ≥ 1 and for a probability measure µ on G, µn

denotes the n-th convolution power of µ.

For x ∈ G and a probability measure µ on G, xµ (resp., µx) denotes δx ∗ µ (resp.,

µ ∗ δx).

For a compact subgroup K of G, ωK denotes the normalized Haar measure on K

and a probability measure λ on G is called left K-invariant if xλ = λ for all x ∈ K

(which is equivalent to ωK ∗ λ = λ, by [He77, Theorem 1.2.7]).

We say that a sequence (λn) of probability measures on G converges (in the weak

topology) to a probability measure λ on G if
∫

f dλn →
∫

f dλ for all continuous

bounded functions f on G.

A set F of probability measures on G is said to be tight if for each ǫ > 0 there is a

compact set Cǫ of G such that ρ(Cǫ) > 1− ǫ for all ρ ∈ F. It follows from Prohorov’s

Theorem thatF is tight if and only ifF is relatively compact in the space of probability

measures on G equipped with weak topology (cf. [He77, Theorem 1.1.11]).

Let (ξk)k∈Z be G-valued random variables. We are interested in investigating the

law of random variables (ηk) that satisfies the stochastic difference equation

(2.1) ηk = ξkφ(ηk−1), k ∈ Z,

where ξk is independent of η j for all j < k. [AkUY08] and [Yo92] considered only

negative k, we also could have considered k ∈ −N, but that would not have made any

difference. Since we are interested in the law of the solutions of equation (2.1), we

will be studying the corresponding convolution equation

(2.2) λk = µk ∗ φ(λk−1)

for all k ∈ Z, where µk and λk are the laws of ξk and ηk respectively. It may be noted

that [HiY10, Lemma 4.3(ii)] asserts that for a solution (λk)k∈Z of equation (2.2) there

exists a solution (ηk)k∈Z of equation (2.1) whose marginal laws are (λk)k∈Z.

We consider equation (2.1) when ξk is stationary on the following type of locally

compact groups and automorphisms.

Definition 2.1 A group Γ of automorphisms of a locally compact group G is called

distal on G if e is not in the closure of the orbit Γ(x) = {φ(x) | φ ∈ Γ} for any

x ∈ G \ {e}. An automorphism φ of a locally compact group G is called distal if the

group generated by φ is distal on G. A locally compact group G is called distal if the

group of inner-automorphisms is distal on G. A locally compact group G is called

pointwise distal if each inner-automorphism is distal on G.
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Compact extension of nilpotent groups, connected groups of polynomial growth,

and SIN-groups (that is, groups having small invariant neighborhoods) are distal

groups, and distal groups are pointwise distal (cf. [Ro86]). The class of (pointwise)

distal groups is closed under direct product resulting in a rich class of groups satisfy-

ing the distal conditions.

It is easy to see that if an automorphism φ preserves a metric on G, then φ is distal

on G. All unipotent matrices on finite-dimensional vector spaces are distal. It follows

from the definition that inner-automorphisms of distal groups are distal. In the final

section we give examples of compact groups in which all automorphisms are distal.

Given an automorphism φ of a locally compact group G, the following type of

group is useful in our approach to equation (2.1). The semidirect product of Z and

G (with respect to φ) is denoted by Z ⋉φ G and is defined by

(n, g)(m, h) =
(

n + m, gφn(h)
)

for all n,m ∈ Z and g, h ∈ G. Equipped with the product topology of Z × G, Z ⋉φ G

is a locally compact group. Since Z has discrete topology, {(0, x) | x ∈ G} is an open

subgroup of Z⋉φ G and G will be identified with the open subgroup {(0, x) | x ∈ G}
under the map x 7→ (0, x).

Given a probability measure µ on a locally compact group G and an automor-

phisms φ of G, we will also be studying probability measures n⊗µ on Z⋉φ G defined

by

n ⊗ µ(A × B) = δn(A)µ(B)

for any subset A of Z and any Borel subset B of G. The measure 0 ⊗ µ will be simply

written as µ.

3 Distal Groups and Distal Automorphisms

In this section we prove the following result, to be used in the proof of Theorem 1.1.

G is assumed to be a metrizable group.

Proposition 3.1 Let G be a locally compact group. Suppose φ ∈ Aut(G) and Γ is

a subgroup of Aut(G) such that Γ and φ are distal on G and φ normalizes Γ (that is,

φΓφ−1
= Γ). Let Γ̃ be the group generated by φ and Γ. Then Γ̃ is distal on G.

In particular, if a locally compact group G is distal and φ ∈ Aut(G) is distal on G,

then Z ⋉φ G is distal.

We first note that the group generated byφ andΓ is
⋃

n φ
n
Γ =

⋃
n Γφ

n ifφΓφ−1
=

Γ. We now prove Proposition 3.1 for connected Lie groups, for compact groups, and

for totally disconnected groups separately and combine these to obtain the general

case.

Proposition 3.2 Let G be a totally disconnected locally compact group. If Γ, φ, and Γ̃

are as in Proposition 3.1, then Γ̃ is distal on G.

Proof If e is in the closure of Γ̃(x) for some x ∈ G. By [JaR07], G has small

φ-invariant compact open subgroups, hence e is in the closure of Γ(x) as Γ̃ =⋃
n φ

n
Γ. Since Γ is distal on G, x = e. Thus, Γ̃ is distal on G.
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We next consider the connected Lie group case.

Proposition 3.3 Let G be a connected Lie group. If Γ, φ, and Γ̃ are as in Proposi-

tion 3.1, then Γ̃ is distal on G.

Proof Let G be the Lie algebra of G. By identifying each automorphism of G with its

corresponding differential on the Lie algebra of G, we may view Aut(G) as a group of

linear transformations on G. Since Γ and φ are distal on G, [Ab81, Theorem 1.1] im-

plies that Γ and φ are also distal on G. In view of [Ab81, Theorem 1.1], it is sufficient

to prove that Γ̃ is distal on G.

Let V = {v ∈ G | Γ(v) is bounded}. Then V is a non-trivial Γ-invariant sub-

space of G (cf. [CoG74] for non-trivialness of V ). Since Γ is distal on G, Γ is distal

on V . Since Γ(v) is bounded for any v ∈ V , Γ restricted to V is contained in a com-

pact group of linear transformations of V . This implies that V has a basis of small

Γ-invariant neighborhoods of 0. Since φΓφ−1
= Γ, V is φ-invariant. If 0 is in the clo-

sure of Γ̃(v) =
⋃

Γφn(v) for some v ∈ V , then 0 is in the closure of {φn(v) | n ∈ Z}

as V has small Γ-invariant neighborhoods of 0. Since φ is distal, v = 0. Thus, Γ̃ is

distal on V . Since Γ and φ are distal on G, Γ and φ are also distal on G/V . Since

dimension of G/V is smaller than the dimension of G, by induction we get that Γ̃ is

distal on G/V . Hence Γ̃ is distal on G.

We now prove the final case, compact groups.

Proposition 3.4 Let G be a compact group. If Γ, φ, and Γ̃ are as in Proposition 3.1,

then Γ̃ is distal on G.

Proof Since a factor of distal action is distal, using Proposition 3.2, we may assume

that G is a compact connected group. Let I(G) be the group of inner-automorphisms

of G and let ∆ be the group generated by Γ and I(G). Since I(G) is compact, ∆ is

distal on G. Since I(G) is normal in Aut(G) and φ normalizes Γ, φ normalizes ∆. Let

∆̃ be the group generated by ∆ and φ.

Let x ∈ G be such that e is in the closure of Γ̃(x). Let T be a maximal, compact,

connected, abelian subgroup of G containing x (cf. [HoM98, Theorem 9.32]) and

OT = {α ∈ Aut(G) | α(T) = T}. Then Aut(G) = I(G)OT (cf. [HoM98, Corol-

lary 9.87]). Since ∆ and ∆̃ contain I(G), we get that ∆ = I(G)∆T and ∆̃ = I(G)∆̃T ,

where ∆T = ∆ ∩ OT and ∆̃T = ∆̃ ∩ OT .

Let φ1 ∈ I(G) and φ2 ∈ ∆̃T be such that φ = φ1φ2. Since G contains a basis of

I(G)-invariant neighborhoods of e, φ2 = φ−1
1 φ is distal on G. Since both φ and φ1

normalize ∆, φ2 also normalizes ∆. Since φ2 ∈ OT , φ2 normalizes ∆T . Let Λ be the

group generated by φ2 and ∆T . Then T is invariant under Λ.

Let α ∈ ∆̃T . Then α = α1α2φ
n for some α1 ∈ I(G), α2 ∈ Γ and n ∈ Z. Since

φ = φ1φ2 with φ1 ∈ I(G) and I(G) is normalized by all automorphisms of G, we get

that α = α ′
1α2φ

n
2 for some α ′

1 ∈ I(G). Since Γ ⊂ ∆ = I(G)∆T , α = α ′ ′
1 α

′
2φ

n
2 for

some α ′ ′
1 ∈ I(G) and α ′

2 ∈ ∆T . Thus, ∆̃T ⊂ I(G)Λ, hence ∆̃ = I(G)∆̃T ⊂ I(G)Λ.

Since φ2 and ∆T are distal on G and T is invariant under both φ2 and ∆T , φ2 and

∆T are distal on T. Since φ2 normalizes ∆T , [Ra09, Lemma 5.3] implies that Λ is
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distal on T. Since e is in the closure of Γ̃(x) ⊂ ∆̃(x) ⊂ I(G)Λ(x), e is in the closure

of I(G)Λ(x). Since I(G) is compact, e is in the closure of Λ(x). Since x ∈ T and Λ is

distal on T, we get that x = e. Thus, Γ̃ is distal on G.

Proof of Proposition 3.1 Let G0 be the connected component of identity in G. Then

G0 is a Γ̃-invariant closed normal subgroup of G. By [RaS10, Theorem 3.3], Γ and

φ are distal on G/G0. Proposition 3.2 implies that Γ̃ is distal on G/G0. Since G0 is a

connected locally compact group, G0 contains a maximal compact normal subgroup

M such that G0/M is a Lie group. Then M is a characteristic subgroup of G0. By

[RaS10, Theorem 3.1], Γ and φ are distal on G0/M. Proposition 3.3 implies that Γ̃ is

distal on G0/M. Now applying Proposition 3.4 we get that Γ̃ is distal on M. Thus we

have shown that Γ̃ is distal on M, G0/M and G/G0. Hence Γ̃ is distal on G.

For the second part, let G be a distal group and let φ ∈ Aut(G) be distal on G.

Then the group of all inner-automorphisms of G is distal on G, and it can easily be

seen that the group of all inner-automorphisms is normalized by any automorphism.

Thus, the first part implies that the group generated by inner-automorphisms and φ
is distal on G. Since (Z ⋉φ G)/G is discrete, we get that Z ⋉φ G is distal.

4 Dissipating Measures

A probability measure µ on a locally compact group G is called dissipating if for any

compact set C in G, supx∈G µn(Cx) → 0.

In the study of dissipating measures the smallest closed normal subgroup a coset

of which contains the support of µ plays a crucial role. Let Nµ denote this normal

subgroup of G. Let Gµ be the closed subgroup generated by the support of µ. If Gµ

is non-compact and Gµ/Nµ is compact, then [JaRW96] showed that µ is dissipat-

ing. Many sufficient conditions (on Gµ or on µ) for µ to be dissipating have been

provided by [Ja99, Ja07], for instance if Gµ is not amenable, then µ is dissipating

([Ja07, Corollary 3.6]).

We will now provide a necessary and sufficient condition for equation (2.1) to

have a solution.

Proposition 4.1 Let G be a locally compact group and let (ξk)k∈Z be G-valued random

variables with common law µ. Let φ be an automorphism of G. Then there is a solution

(ηk) of the equation

ηk = ξkφ(ηk−1), k ∈ Z

if and only if the probability measure ρ = 1 ⊗ µ on G̃ = Z ⋉φ G is not dissipating.

Remark 4.2 If φ is the identity in Proposition 4.1, then ρn
= n ⊗ µn, hence for any

compact set C of G, supa∈G̃ ρn(Ca) = supx∈G µn(Cx). Since G is open in G̃ and ρ is

dissipating if and only if supx∈G̃ ρn(Ex) → 0 for some compact neighborhood E of e,

we get that ρ is dissipating if and only if µ is dissipating. Thus, when φ is trivial, the

equation in Proposition 4.1 has a solution if and only if µ is not dissipating.

Proof We first define µ j by µ j = µ ∗ φ(µ) ∗ · · · ∗ φ j−1(µ) for j ≥ 1 and let µ0 = δe.

If (ηk) is a sequence of G-valued random variables such that ηk = ξkφ(ηk−1) for all
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k ∈ Z, let λk be the law of ηk. Then the corresponding convolution equation is

λk = µ ∗ φ(λk−1)

for all k ∈ Z. Iterating the convolution equation we get that

λk = µ j ∗ φ
j(λk− j)

for all k ∈ Z and all j ≥ 1. It follows from [He77, Theorems 1.2.21(iii)] that there is

a sequence (g j) in G such that the sequence (µ jg
−1
j ) is tight.

Consider the group G̃ = Z ⋉φ G and the measure ρ = 1 ⊗ µ on G̃. Then ρ j
=

j⊗µ j , hence we get that ρ j( j, g j)
−1

= ( j⊗µ j)(− j, φ− j(g−1
j )) = µ jg

−1
j . This implies

that (ρ j( j, g j)
−1) is tight. Then there is a compact set C of G̃ such that ρ j(C( j, g j)) >

1
2

for all j ≥ 1. This proves that ρ is not dissipating.

For the converse, suppose that ρ on G̃ = Z ⋉φ G is not dissipating. We first

assume that G is separable. Then by [Cs66, Theorem 3.1], there is a sequence (n j , g j)

in G̃ such that (ρ j(n j , g j)
−1) converges (see also [To65]). Now since ρ j

= j ⊗ µ j ,

we get that ρ j(n j , g j)
−1

= ( j − n j) ⊗ µ jφ
j−n j (g−1

j ), hence (µ jx j) converges for

x j = φ j−n j (g−1
j ). Let γ = limµ jx j . Then γ = µ ∗ φ(lim(µ j−1x j−1)) ∗ φ(x−1

j−1)x j ,

hence by [He77, Theorems 1.2.21(ii) and 1.1.11], we get that (φ(x−1
j−1)x j) is relatively

compact. If z is the inverse of a limit point of (φ(x−1
j−1)x j), then γ = µ ∗ φ(γ)z−1.

Now define zk for k ∈ Z as in equation (1.5). Then it is easy to verify by induction

that zk+1 = zφ(zk) for all k ∈ Z. For k ∈ Z, let λk = γzk. Then

λk+1 = γzk+1 = µ ∗ φ(γ)z−1zk+1 = µ ∗ φ(γ)φ(zk) = µ ∗ φ(λk)

for all k ∈ Z.

In general, suppose G is any locally compact group. Let G1 be the closed subgroup

generated by the support of the probability measure 1
2
[1 ⊗ µ + 0 ⊗ µ]. Then G1 is

a σ-compact closed subgroup of Z ⋉φ G and contains the support of µ. Since G1

contains the support of 1 ⊗ µ, (1, e) ∈ G1. This implies that G ∩ G1 is a closed,

σ-compact, φ-invariant subgroup of G containing the support of µ. Now replacing

G by the smallest φ-invariant closed subgroup of G containing the support of µ, we

may assume that G is σ-compact. This implies that Z ⋉φ G is σ-compact. Then

by [HeR79, Theorem 8.7], there exists a compact normal subgroup K of Z ⋉φ G

such that (Z ⋉φ G)/K is separable. Since (Z ⋉φ G)/G has no compact subgroup,

K ⊂ G. Since K is a normal subgroup of Z ⋉φ G, K is φ-invariant. This shows that

G contains a φ-invariant compact normal subgroup K such that G/K is separable.

Let µ ′ be the image of µ on G/K. Since K is compact, 1 ⊗ µ ′ is not dissipating on

(Z ⋉φ G)/K. By the previous case, there exist probability measures λ ′
k on G/K such

that λ ′
k = µ ′ ∗ φ(λ ′

k−1) for all k ∈ Z. It follows from [He77, 1.2.15(iii)] that there

exists probability measures λk on G such that λk ∗ ωK = λk and image of λk on G/K

is λ ′
k. Since K is φ-invariant, µ∗φ(λk−1)∗ωK = µ∗φ(λk−1) for all k ∈ Z. Since both

λk and µ ∗ φ(λk−1) are projected onto the same probability measure λ ′
k on G/K, by

[He77, Theorem 1.2.15(iii)] we get that λk = µ ∗ φ(λk−1) for all k ∈ Z.
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Using Proposition 4.1 we now provide an easy sufficient condition so that equa-

tion (1.4) has a solution. Proposition 4.3 of [Ja99] provides some further sufficient

conditions for equation (2.1) to have a solution.

Corollary 4.3 Let G be a locally compact group and let (ξk)k∈Z be G-valued random

variables with common law µ. Let φ be an automorphism of G. Suppose there is a

compact subgroup K of G such that µ is supported on K and φ(K) ⊂ K. Then there is a

solution (ηk) of the equation ηk = ξkφ(ηk−1), k ∈ Z.

Proof In view of Proposition 4.1, it is sufficient to prove that ρ = 1 ⊗ µ is not

dissipating. If there is a compact subgroup K such that φ(K) ⊂ K and µ is supported

on K, then ρn ∗ δ(−n,e) = µ ∗ φ(µ) ∗ · · · ∗ φn−1(µ) is also supported on K and hence

ρ is not dissipating.

Remark 4.4 If G is compact, then it follows from Corollary 4.3 that there exists

a solution to equation (2.1), but it is easy to verify that λk = ωG for all k ∈ Z is a

solution.

5 Shifted Convolution Property

A probability measure µ on a locally compact group G is said to have the shifted

convolution property if either µ is dissipating or there is a compact subgroup K of

G and a g ∈ G such that µng−n → ωK and gKg−1
= K. The shifted convolution

property was studied in details in [RaS10], where it was shown that all probability

measures on a locally compact group G have the shifted convolution property if and

only if the group G is pointwise distal (see [RaS10, Theorem 6.1]). We first prove

the following result, which provides a sufficient condition for the existence of large

collection of solutions.

Proposition 5.1 Let G be a locally compact group and let µ be a probability measure

on G. Suppose there is a compact subgroup K of G such that for any z in the support

of µ, µz−1 is supported on K = zφ(K)z−1. For any z in the support of µ and for

any left K-invariant probability measure λ, define zk as in equation (1.5) and λk by

λk = zkφ
k(λ). Then (λk) is a solution to the equation

(5.1) λk = µ ∗ φ(λk−1), k ∈ Z.

Proof Assume that there is a compact subgroup K of G such that for any x in the

support of µ, µx−1 is supported on K = xφ(K)x−1. Suppose z is in the support of µ
and λ is a left K-invariant probability measure on G. For any k ∈ Z, define zk as in

equation (1.5) and define λk by λk = zkφ
k(λ). Then it is easy to see that zk+1 = zφ(zk)

for all k ∈ Z and λk+1 = zk+1φ
k+1(λ) = zφ(λk) for all k ∈ Z.

We first claim that λk is left K-invariant for all k ≥ 0. Our claim is based on

induction. For k ≥ 1, if λk−1 is left K-invariant, then φ(λk−1) is left φ(K)-invariant,

hence for x ∈ K, xλk = xzφ(λk−1) = zφ(λk−1) = λk as φ(K) = z−1Kz implies

z−1xz ∈ φ(K). This proves that λk is left K-invariant if λk−1 is left K-invariant. Since

λ0 = λ is left K-invariant, induction implies that λk is left K-invariant for all k ≥ 0.

Similarly, we can prove that λk is left K-invariant for all k ≤ 0.
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Since µz−1 is supported on K = zφ(K)z−1, we get that z−1µ is supported on

φ(K). Since λk−1 is left K-invariant, µ ∗ φ(λk−1) = zφ(λk−1) = λk for all k ∈ Z.

Thus, (λk) is a solution to equation (5.1).

Proposition 5.2 Let G be a locally compact group and let φ be an automorphism of

G. Let (ξk) be a sequence of G-valued random variables with common law µ. Suppose

the measure 1⊗µ is not dissipating and has the shifted convolution property on Z⋉φ G.

Then for any solution (ηk) of the equation

(5.2) ηk = ξkφ(ηk−1), k ∈ Z,

and for any z in the support of µ, we have

(i) a compact subgroup Kµ such that µ is supported on Kµz = zφ(Kµ),

(ii) laws (λk) of solution (ηk) satisfy λk = zφ(λk−1);

(iii) a one-to-one correspondence between left Kµ-invariant probability measures λ on

G and the laws (λk) of the solutions (ηk) of the equation (5.2) given by λk =

zkφ
k(λ), where zk is defined as in (1.5).

Proof Let G̃ = Z ⋉φ G and ρ = 1 ⊗ µ. Since ρ is not dissipating and has the

shifted convolution property, there is a compact subgroup K of G̃ and g ∈ G̃ such

that ρkg−k → ωK and gKg−1
= K. Since G̃/G ≃ Z, we get that K ⊂ G. Let z be in

the support of µ and a = (1, z). Then a is in the support of ρ. By [Ei92, Theorem

4.3] we get that ρka−k → ωK and aKa−1
= K (cf. [RaS10, Remark 1.2]). Then since

K ⊂ G, aKa−1
= K implies that K = zφ(K)z−1. Also, ρka−k → ωK implies that

ρ ∗ ωK = ωK a and hence µ is supported on Kz. This proves (i).

We now prove (ii). Let (ηk) be a solution to equation (5.2) and let λk be the law of

ηk, k ∈ Z. We now claim that for k ∈ Z, λk is left K-invariant. Define zk as in (1.5)

for any k ∈ Z and µ j = µ ∗ φ(µ) ∗ · · · ∗ φ j−1(µ) for any j ≥ 1. Then we get that

ρka−k
= µkz−1

k → ωK . For k ∈ Z,

λk = µ ∗ φ(λk−1) = (µiz
−1
i ) ∗ (ziφ

i(λk−i)), i ≥ 1,

and hence by [He77, Theorems 1.2.21(ii) and 1.1.11], (ziφ
i(λk−i))i≥1 is relatively

compact. Thus, for any limit point ν of (ziφ
i(λk−i)), we get that λk = ωK ∗ ν. Thus,

λk is left K-invariant. By (i), z−1µ is supported on φ(K), hence for k ∈ Z,

λk = µ ∗ φ(λk−1) = zz−1µ ∗ φ(λk−1) = zφ(λk−1),

as λk−1 is left K-invariant. This proves (ii).

Let λ = λ0. Then λ is left K-invariant, and for k ≥ 1,

λk = zφ(z) · · ·φk−1(z)φk(λ) = zkφ
k(λ).

For k < 0, λ = zφ(λ−1) = · · · = zφ(z) · · ·φ−k−1(z)φ−k(λk), hence

λk = φ−1(z−1) · · ·φk(z−1)φk(λ) = zkφ
k(λ).

Thus, any solution of (5.2) is in the form given in (iii).

It follows from (i) that the conditions of Proposition 5.1 are satisfied. Thus, for

a left K-invariant measure λ if we define (λk) as in the proposition, we get that λk

satisfies λk = µ ∗ φ(λk−1) for all k ∈ Z.
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Corollary 5.3 Let G, φ, and (ξk), µ be as in Proposition 5.2. Suppose 1 ⊗ µ has the

shifted convolution property and 1 ⊗ µ is not dissipating. Then there exists a compact

subgroup K such that extremal solutions (ηk) of the equation

(5.3) ηk = ξkφ(ηk−1), k ∈ Z

are in one-to-one correspondence with the elements of the coset space K\G.

Proof Let K be as in Proposition 5.2. Then it follows from Proposition 5.2 that

left K-invariant measures and laws of solutions to equation (5.3) are in one-to-one

correspondence.

Suppose λ is a left K-invariant measure and z is in the support of λ. Let a ∈ K

and U be a neighborhood of az. Then λ(U ) = λ(a−1U ) > 0. This implies that az is

in the support of λ. Thus, support of λ is a union of cosets of K. If the support of λ
contains more than one coset, then the corresponding solution to the equation (5.3)

is not extremal. This proves the corollary.

We have the following converse to Proposition 5.2.

Proposition 5.4 Let G be a locally compact group and let φ be an automorphism of

G. Let (ξk) be G-valued random variables with common law µ. Suppose the laws of the

solutions (ηk) of the equation

ηk = ξkφ(ηk−1), k ∈ Z

are left K-invariant for some compact subgroup K of G such that µz−1 is supported on

K = zφ(K)z−1 for any z in the support of µ. Then 1 ⊗ µ on Z ⋉φ G has the shifted

convolution property.

Proof Let ρ = 1 ⊗ µ. We first assume that G is separable. Since the equation has

solutions, by Proposition 4.1, 1 ⊗ µ on Z ⋉φ G is not dissipating. As in Proposition

4.1, there are x j ∈ G and a probability measure γ on G such that µ ∗ φ(µ) ∗ · · · ∗
φ j−1(µ)x j → γ and a solution (λk) with λ0 = γ. The hypothesis implies that γ is

left K-invariant.

Let z be in the support of µ and define zk as in (1.5). Let µ j = µ ∗ φ(µ) ∗ · · · ∗
φ j−1(µ) for j ≥ 1. We now claim by induction that µ j is supported on Kz j for

all j ≥ 1. If µ j is supported on Kz j for some j ≥ 1, then µ j+1 is supported on

Kz jφ
j(K)φ j(z). Since Kz = zφ(K), we get that φk(z)φk+1(K) = φk(K)φk(z) for all

k ≥ 0. This shows that zkφ
k(K) = Kzk, hence µ j+1 is supported on Kz jφ

j(K)φ j(z) =

Kz jφ
j(z) = Kz j+1. Since µ1 = µ is supported on Kz, the claim follows by induction.

For j ≥ 1, let σ j = µ jx j . Then σ j ∗ σ̌ j → γ ∗ γ̌ and σ jx
−1
j is supported on

Kz j . This implies that σ j ∗ σ̌ j is supported on K, hence γ ∗ γ̌ is supported on K.

Since γ is left K-invariant, γ ∗ γ̌ is also left K-invariant and hence γ ∗ γ̌ = ωK . Now

ρ j
= j ⊗ σ j−1x−1

j−1, hence ρ j ∗ ρ̌ j
= σ j−1 ∗ σ̌ j−1 for all j > 1. This implies that

ρ j ∗ ρ̌ j → ωK . By [Ei92, Theorem 4.3], for any g in the support of ρ, ρ jg− j → ωK .

For any g in the support of ρ = 1 ⊗ µ, there is a z in the support of µ such that

g = (1, z) and hence gKg−1
= zφ(K)z−1

= K. This proves that ρ has the shifted

convolution property.
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We now assume that G is any locally compact group. Then as in Proposition 4.1,

replacing G by the smallest φ-invariant closed subgroup of G containing the support

of µ, we may assume that G is σ-compact and hence Z ⋉φ G is also σ-compact. Then

by [HeR79, Theorem 8.7], each neighborhood U of e in G contains a compact normal

subgroup KU of Z ⋉φ G such that (Z ⋉φ G)/KU is separable. Since KU is a compact

normal subgroup of Z ⋉φ G, KU is φ-invariant. Thus, each neighborhood U of e in

G contains a φ-invariant compact normal subgroup KU such that G/KU is separable.

It can easily be verified that the assumptions in the proposition are valid for G/KU

with KKU/KU and for the image of µ on G/KU . It follows from the previous case

that image of ρ on Z ⋉φ (G/KU ) has the shifted convolution property. By [RaS10,

Proposition 2.3] we get that ρ itself has the shifted convolution property.

We now extend the results of [AkUY08,Ta09,Yo92] when ξk is stationary on distal

groups with distal automorphisms.

Proof of Theorem 1.1 Suppose G is a locally compact distal group and φ is a distal

automorphism. Then as in Proposition 5.4, replacing G by the smallest φ-invariant

closed subgroup of G containing the support µ, we may assume that each neighbor-

hood U of e in G contains a φ-invariant compact normal subgroup KU such that

G/KU is separable. By [RaS10, Theorem 3.1] we get that each G/KU is distal and

φ is distal on each G/KU . Then Proposition 3.1 implies that Z ⋉φ (G/KU ) is distal.

By [RaS10, Theorem 6.1] we get that 1 ⊗ µ has the shifted convolution property on

Z ⋉φ (G/KU ). By [RaS10, Proposition 2.3] we get that 1⊗µ has the shifted convolu-

tion property. Now the result follows from Proposition 5.2 and Corollary 5.3.

Remark 5.5 Theorem 1.1 is true even if Z ⋉φ G is a pointwise distal group. It is

easy to construct examples of pointwise distal groups G with distal automorphisms

φ so that Z ⋉φ G is pointwise distal but not distal (see [Ra09, Example 1.1]).

Remark 5.6 We would like to remark that if 1⊗µ does not have the shifted convo-

lution property, then the conclusion on extreme points of the solutions in Theorem

1.1 may not be true even on compact groups. Consider the two dimensional torus

K = (R/Z)2 and let φ be an automorphism of K such that

C(φ) = {x ∈ K | φn(x) → e as n → ∞}

is dense in K, for instance if we take φ to be φ(x, y) = (x + y + Z, x + 2y + Z) for

all x, y ∈ R, then C(φ) = {(t + Z, ( 1−
√

5
2

)t + Z) | t ∈ R} ≃ R is a vector (non-

closed) subgroup of K and is dense in K. Take µ to be a probability measure on K

such that support of µ is a compact subset contained in C(φ). Since φ on C(φ) is

multiplication by 3−
√

5
2

, [Za96] implies that there is a probability measure ρ on C(φ)

such that µ ∗ φ(µ) ∗ · · · ∗ φi(µ) → ρ in the space of probability measures on C(φ).

This implies that

ρ = limµ ∗ φ(µ) ∗ · · · ∗ φi(µ) = µ ∗ φ
(

lim
(
µ ∗ · · · ∗ φi−1(µ)

))
= µ ∗ φ(ρ).

Taking λk = ρ for all k ∈ Z, we get a stationary solution to equation (2.1). Further,

assume that µ 6= δx for any x ∈ K. Then λk = ρ are also not dirac measures. If xλk =

https://doi.org/10.4153/CJM-2011-094-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-094-6


1086 C. R. E. Raja

λk for some x ∈ K, then since λk(C(φ)) = 1, we get that λk(C(φ)) = 1 = xλk(C(φ)),

hence x ∈ C(φ) as C(φ) is a group. By [He77, Theorem 1.2.4], {g ∈ C(φ) | gρ = ρ}
is a compact subgroup of C(φ). Since C(φ) is a vector group, C(φ) has no non-trivial

compact subgroup, and hence x = e. Thus, λk is not left invariant for any nontrivial

compact subgroup of K. Hence, the conclusion on the extreme points of solutions in

Theorem 1.1 does not hold.

We now present a situation where distality of φ is sufficient to guarantee the con-

clusion of Theorem 1.1; the proof is based on [Ja99, RaS10].

Theorem 5.7 Let G be a locally compact group and let φ be a distal automorphism of

G. Let (ξk) be a sequence of G-valued random variables with common law µ. If e is in

the support of µ and the equation

(5.4) ηk = ξkφ(ηk−1), k ∈ Z

has a solution, then the conclusions of Theorem 1.1 hold.

Proof Assume that e is in the support of µ and equation (5.4) has a solution. Let

G̃ = Z⋉φG and ρ = 1⊗µ. We now prove that ρ has the shifted convolution property.

Since equation (5.4) has a solution, ρ is not dissipating (cf. Proposition 4.1). Let N be

the smallest closed normal subgroup of G̃ such that a coset of N contains the support

of µ. Since G is a closed normal subgroup of G̃ and ρ(G(1, e)) = 1, N ⊂ G. Since N

is normal in G̃, N is a φ-invariant subgroup of G.

If ρ(N(k, g)) = 1 for some g ∈ G and k ∈ Z, then ρ((k,Ng)) = 1. This implies

that k = 1 and µ(Ng) = 1. Since e is in the support of µ, e ∈ Ng, hence g ∈ N. This

implies that ρ(N(1, e)) = 1. By [Ja99, Theorem 3.9], φ restricted to N is contractive

modulo a compact subgroup K (that is, φn(x)K → K for all x ∈ N). Since φ is distal

on G, φ is distal on N. By [RaS10, Corollary 3.2], N = K.

We denote the restriction ofφ to N also byφ. Let H = Z⋉φN. Then ρ is supported

on H. Since N is compact and φ is distal, we get that H is distal. By [RaS10, Theorem

6.1] we get that ρ has the shifted convolution property. Now the result follows from

Proposition 5.2 and Corollary 5.3.

6 Examples

We first provide examples of groups for which the group of automorphisms is com-

pact.

(i) Compact p-adic Lie groups: Let K be a compact p-adic Lie group. Then Aut(K)

is a compact group (see [DidMS99, Corollary 8.35] or [Ra04]). The following are

examples of compact p-adic Lie groups:

(a) If Qp is the field of p-adic numbers with valuation | · |p, then Zpn = {x ∈ Qp |
|x|p ≤ pn−1} is a compact p-adic Lie group.

(b) The group GLk(Zp) of all invertible k × k-matrices over Zp.

(c) Pro-p group of finite rank, that is a totally disconnected group of finite rank in

which every open normal subgroup has index equal to some power of p.
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(ii) A Compact abelian group: For n ≥ 1, let An be the group of all n-th roots of unity

and A =
⋃

An. Then A is a countable abelian group. Equip A with discrete topology.

Let K be the dual of A. Then K is a compact (totally disconnected) metrizable group

with dual A (see [HeR79, 24.15]).

Let Kn be the closed subgroup of K such that K/Kn is the dual of An. Since An is

finite, K/Kn is finite. Then Kn is an open subgroup of K. Now, if x ∈
⋂

Kn, then

x ∈ Kn for all n ≥ 1. This implies that a(x) = 1 for all a ∈ An and for all n ≥ 1. Since

A =
⋃

An, a(x) = 1 for all a ∈ A. Since A is the dual of K, x = e. Thus,
⋂

Kn = e.

Let α be an automorphism of K and let α̂ be the corresponding dual automor-

phism on A. Then it is easy to see that α̂(An) = An for all n ≥ 1. This implies that

α(Kn) = Kn. This proves that (Kn) is a sequence of arbitrarily small characteristic

open subgroups, hence the group of automorphisms of K is compact.

(iii) All automorphisms are distal but the group of automorphisms is not compact: Let

R/Z be the one-dimensional torus and let K be the compact group in (i) or in (ii).

Let G = R/Z × K be the direct product of R/Z and K. Then G is a compact group.

Let τ be an automorphism of G. We now claim that there is an automorphism α
of K and a character χ of K such that τ (z, x) = (z±1χ(x), α(x)) for all (z, x) ∈ G.

Since the connected component of identity in G is R/Z, we get that τ (R/Z) = R/Z,

hence τ (z, e) = (z±1, e) for all z ∈ R/Z. Let α : K → K be defined by α(x) =

p(τ (1, x)) where p : G → K is the canonical projection of G onto K. It is easy see

that α is a continuous homomorphism. If α(x) = e, then p(τ (1, x)) = e, and hence

τ (1, x) = (z, e) for some z ∈ R/Z. But τ (z ′, e) = (z, e) for z ′ = z or z ′ = z−1.

Since τ is an automorphism, (z ′, e) = (1, x), hence x = e. This shows that α is

injective. For x ∈ K, let y ∈ K and z ∈ R/Z be such that τ (z, y) = (1, x) as τ is onto.

This implies that α(y) = p(τ (1, y)) = p(τ (z, y)) = x. This proves that α is bijective.

Continuity of α−1 follows from open mapping theorem, as K is a compact metrizable

group (cf. [HeR79, 5.29 ]). Thus, α is an automorphism of K. Let χ : K → R/Z be

defined by χ(x) = q(τ (1, x)) where q : G → R/Z is the canonical projection of G

onto R/Z. Then χ is a continuous homomorphism. For z ∈ R/Z and x ∈ K,

τ (z, x) = (z±1, e)τ (1, x) = (z±1, e)(χ(x), α(x)) = (z±1χ(x), α(x)). This proves the

claim.

We now claim that τ is distal. Suppose that (1, e) is in the closure of {τ n(z, x) | n ∈
Z}. Then e is in the closure of {αn(x) | n ∈ Z}. Since the group of automorphisms

of K is compact, x = e. This implies that (1, e) is in the closure of {τ n(z, e) | n ∈
Z} = {(z±1, e)}, and hence z = 1. Thus, τ is distal. In fact, one can show that each

τ generates a compact subgroup.

If K is not a finite group, then the group of automorphisms of G is not a compact

group, as it is homeomorphic to {±1} × K̂ × Aut(K), where Aut(K) is the group of

automorphisms of K.
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infinis à termes indépendants dans un groupe topologique. Ann. Inst. H. Poincaré Sect. B
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