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Libby-Sterman analysis and power-counting

Central assertions in setting up the parton model for DIS (Sec. 2.4) were that hard scattering
occurs off a single parton constituent of the target, and that the hard scattering is just the Born
approximation for electron-quark scattering. In fact, both assertions fail if taken literally. So
in this chapter I show how to derive correct statements about the dominant configurations
in DIS and the many other cases of interest. I will interleave a general treatment with a
detailed discussion of specific examples.

Key insights were found by Sterman (1978) and Libby and Sterman (1978b), who
systematized a correspondence between divergences in massless perturbative calculations
and important configurations for high-energy processes. For any suitable process (like
DIS) with an energy scale Q much larger than relevant particle masses, the main results
are:

1. A one-to-one correspondence between mass divergences1 in massless perturbation the-
ory and non-UV regions in loop-momentum space that give the large Q asymptote.

2. That mass divergences are at surfaces where the integral over loop momenta cannot
be deformed away from singularities of propagators. These surfaces are called pinch-
singular surfaces (PSSs).

3. Simple and very general geometrical arguments in four-dimensional momentum space
to locate the PSSs for a massless theory. The PSSs are in the typically higher-dimension
space of all loop momenta.

4. Simple power-counting results for the strengths of the possible PSSs, and for the power
dependence on Q of the contribution of the region associated with each PSS.

5. From the derivation of the power-counting results it is made evident what approximations
are appropriate to each region, as needed to derive factorization theorems.

6. Hence error estimates are also obtained for the difference between an exact graph and
its approximation in any of the regions.

These results form the logical basis of most further work in perturbative QCD, and in
particular for the derivation of factorization theorems. The methods apply not only to QCD
but to a general QFT.

1 That is, divergences that appear when fields or particles are made massless, to be distinguished from ultra-violet (UV)
divergences, for example.
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88 Libby-Sterman analysis and power-counting

pA
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q

Fig. 5.1. Green function for e+e− annihilation to a quark-antiquark pair.

Practical calculations in QCD, as in Sec. 4.2, involve the facile manipulation of mass
divergences, so that it is easy to attribute to the divergences an existence in the real world.
But this is definitively incorrect: some of the fields have a non-zero mass, so that many of
the mass divergences are not actually present. Moreover, even though QCD does have a
massless gluon field, color confinement cuts off the divergences and prevents there from
being asymptotic quark and gluon states in the exact theory.

The true relation between mass divergences and asymptotic behavior is that the PSSs for
the divergences form a skeleton for important regions of momentum space. We use PSSs
to label the regions, with the regions being neighborhoods of the PSSs.

As one gains experience with the methodology, the results gain a reality whose intuitive
justification goes far beyond the Feynman-graph domain to which the strict mathematical
justification is currently restricted. We have already explored some of these issues in
Sec. 4.3, and we will see more in the generalization of the parton model to full QCD. Many of
the issues have not been properly formalized. As a symptom, consider the Lund string model
(Andersson, 1998), summarized in Sec. 4.3.1. This model gives a useful account of the
hadronization of high-energy systems of quarks and gluons. To connect it to the fundamental
underlying QCD theory, one needs to formulate the quantum-mechanical evolution of states
locally in space-time in highly relativistic situations. A complete appropriate formalism
is not yet available. This problem is closely related to important foundational issues in
quantum mechanics and QFT.

5.1 High-energy asymptotics and mass singularities

5.1.1 Sudakov form factor, γ ∗ → qq̄

Many of the general principles can be discerned from a paradigmatic example, which is
termed the Sudakov form factor, from its discussion by Sudakov (1956). We use the Green
function for a quark field, an antiquark field, and a current (Fig. 5.1):

�μ def=
∫

d4x d4y eipA·x+ipB ·y 〈0 T ψ(x)ψ̄(y)jμ(0) 0
〉

= G
μ
irred × full external quark propagators.

(5.1)

Here jμ is the electromagnetic current, and ψ and ψ̄ are fields for some flavor of quark.

The photon momentum is q = pA + pB , with invariant size Q
def=
√

q2. Our aim is to
understand the asymptotics when Q gets large with p2

A and p2
B fixed, but not necessarily
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5.1 High-energy asymptotics and mass singularities 89

on-shell. Factoring out external propagators gives the definition of the irreducible amplitude
indicated in the last line. The off-shell amplitude appears in high-energy e+e− annihilation,
as a subgraph of the full amplitude for the process.

In fixed-order perturbation theory, taking pA and pB on-shell gives IR divergences
because the gluon is massless. Beyond perturbation theory, we expect color confinement in
QCD to force on-shell quark amplitudes to be zero, and to cut off the IR divergences. But
these issues are quite separate from the association we wish to make between properties of
the large Q limit and divergences in a completely massless theory.

In setting up methods for factorization later in this book, a convenient model example is
the Sudakov form factor with on-shell quarks treated in an abelian gauge theory, normally
with a massive gluon (Ch. 10).

We work in the overall center-of-mass frame, oriented so that the external 4-momenta
in ordinary Cartesian coordinates are

pA = Q

2

(
1, 0, 0,

√
1− 4p2

A/Q2

)
, (5.2a)

pB = Q

2

(
1, 0, 0,−

√
1− 4p2

B/Q2

)
, (5.2b)

q = Q (1, 0) . (5.2c)

5.1.2 Scaling in units of Q

Consider a particular L-loop graph G for the 1PI factor Girred. Let k denote its loop
momenta, and let I denote the integrand, so that

G = g2L

∫
dnLk I (k, pA, pB ; m)+ UV counterterms. (5.3)

Imagine first that we were in a situation where all internal momenta have components
of order Q, and have virtuality of order Q2. After using the renormalization group to set
the renormalization scale to Q, we could use weak-coupling perturbation theory, and, to
the leading power in Q, we could neglect masses. Errors in the massless approximation,
from an expansion in powers of m/Q, p2

A/Q2, and p2
B/Q2, would be asymptotically much

less than corrections from higher orders in αs(Q).
Of course our initial supposition on the sizes of the internal momenta is in general false.

Nevertheless, the region of k that it covers forms a useful standard for treating the general
situation.

Relatively benign alternative regions are where some or all components of k are much
bigger than Q. Since the external momenta are much smaller than these large components,
this is the situation handled by renormalization. So let us add renormalization counterterms
and then apply an RG transformation to set the renormalization scale μ of order Q. As we
saw in Sec. 3.4, this procedure effectively cuts off the integration at around Q.

Therefore the interesting regions are where relevant components of momenta are of
size Q or smaller, and where some lines have small virtuality, i.e., their momenta l obey
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|l2| � Q2. For these lines, a lowest-order Taylor expansion in masses compared with
virtuality fails. Such regions form a small part of the whole of loop-momentum space, but
they can give large contributions to the integral, because of small propagator denominators.

To systematically locate relevant regions with low virtuality, we use an analysis with
momenta and masses scaled in units of Q. Thus we define

p̃A
def= pA

Q
→ 1

2 (1, 0, 0, 1) , (5.4a)

p̃B
def= pB

Q
→ 1

2 (1, 0, 0,−1) , (5.4b)

q̃
def= q

Q
= (1, 0) , (5.4c)

where the limits apply as Q→∞. The scaled external quark and antiquark momenta
become light-like, while q̃ is a fixed time-like vector. Similarly we have scaled loop

momenta, k̃
def= k/Q, and mass(es), m̃

def= m/Q→ 0.
Dimensional analysis applied to (5.3) gives

G = QD(G)g2L

∫
dnLk̃ I (k̃, p̃A, p̃B ; m̃)+ UV counterterms. (5.5)

Here D(G) is the dimension of the integral (in powers of energy), with the coupling
excluded. In a space-time dimension n = 4− 2ε, we have

D(G) = nL+ dim I = dim G− 2L dim g = −2Lε. (5.6)

Equations (5.4) and (5.5) show that the infinite Q limit at fixed mass is closely linked
to the zero-mass limit at fixed Q, in the scaled integral on the right-hand side of (5.5).
As observed earlier, if there were no singularities in the zero-mass limit, we could just
set p2

A = p2
B = m2 = 0 to obtain an elementary RG-controlled calculation of the large Q

behavior. Moreover, the Q dependence would just be QD(G). From (5.6), we see that because
of the dimensionless of a gauge theory coupling at the physical space-time dimension, the
power of Q is the same for all graphs, viz. zero.

5.1.3 Importance of pinch-singular surfaces in massless limit

We now need to locate the situations where the zero-mass limit fails. These situations arise
from regions where one or more lines have virtuality much less than Q2. But often the
contour of integration can be deformed away from such regions, and the above scaling
arguments work equally well on a deformed contour for k. So our concern is regions where
there is an obstacle to any possible deformation to where the lines have virtuality of order
Q2. In fact, as we now show, the only obstacles are those that give a pinch-singular surface
(PSS) in the massless limit.

Consider first some region of scaled loop momentum k̃ where certain propagator denom-
inators are not part of a pinch in the massless theory. Then in the scaled integral and on
some deformed contour, these denominators have a non-zero minimum size. In the original
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5.2 Reduced graphs and space-time propagation 91

integral, before scaling, the same denominators have a minimum size proportional to Q2 in
the corresponding region of k. Then the simple massless limit applies for the contribution
to the large Q asymptote by these denominators.

Next we consider unscaled momenta in a neighborhood of a PSS of the massless theory.
Even with a massless PSS, the minimum virtuality of unscaled lines often stays finite as
Q gets large, even on a deformed contour. Typically, this virtuality would be of order a
mass-squared. But in some cases the minimum virtuality may grow with Q, but less rapidly
than Q2, for example, it might be of order Qm. Even so, in all these cases, the scaled
virtuality, i.e., relative to Q2, goes to zero as Q→∞. This corresponds to an exact pinch
in the massless theory: that is, with masses set to zero, the scaled momenta k̃ in (5.5) have
a minimum distance of zero from the lines participating in the PSS.

In the actual case, with non-zero masses and finite Q, the relevant momenta are forced
to go close to the PSS, the closeness in units of Q decreasing as Q increases. I summa-
rize this by saying that the PSSs of the massless theory form a skeleton for the impor-
tant non-UV regions of loop momentum space. This can happen even in a field theory
where all the fields have non-zero mass, so that the exact massive theory has no literal
PSS.

5.1.4 Location of pinch-singular surfaces: Landau criterion

Therefore we now have to find all possible PSSs in the massless limit and determine their
strengths. The general task of locating PSSs is made quite simple by the Landau criteria
(e.g., Eden et al., 1966) in the form particularly emphasized by Coleman and Norton (1965):
The PSSs (for the physical region, which is all that concerns us) are where the on-shell
propagators and momenta correspond to classically allowed scattering processes treated in
coordinate space.

Each point on a PSS (in loop momentum space) corresponds to a space-time diagram
obtained as follows. First we write a reduced graph by contracting to points all of the lines
whose denominators are not pinched. Then we assign space-time points to each vertex
of the reduced graph so that the pinched lines and their momenta correspond to classical
particles. That is, to each line we assign a particle propagating between the space-time
points corresponding to the vertices at its ends. The momentum of the particle is exactly
the on-shell momentum carried by the line, correctly oriented to have positive energy. If,
for some set of momenta, it is not possible to construct such a reduced graph, then we are
free to deform the contour of integration.

Although our argument to this point was presented in the context of the Sudakov form
factor, it is in fact a general argument and can be applied to many processes with a
large scale Q.

5.2 Reduced graphs and space-time propagation

The construction of the most general reduced graph becomes extremely simple in the zero-
mass limit, since at a PSS all pinched lines must carry either a light-like momentum or zero
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momentum. Moreover, each light-like momentum must be parallel to one of the light-like
external lines.

To understand this, we just need to obtain the simple rules for how massless on-shell
momenta combine at vertices of a reduced graph.

1. First, adding zero momentum to anything leaves the second momentum unaltered. So a
zero-momentum line can attach anywhere.

2. Two non-zero light-like momenta in the same direction are proportional to each other
and add to make another parallel light-like momentum, with a special case of giving
zero when they are equal and opposite. If we orient the momenta of the lines for a
particular light-like direction so that they all have positive energy, then as we follow
them forward, the momenta can split and recombine arbitrarily, but the total momentum
is fixed.

3. Adding two non-zero light-like momenta with different directions produces a non-light-
like momentum, necessarily off-shell in a massless theory. Either the non-light-like
momentum is external or it is on an internal line. An external non-light-like momentum
would be like the virtual photon in the form factor or in DIS. An internal line is off-
shell, so it is internal to a reduced vertex, i.e., it does not participate in the pinch under
discussion.

4. It is possible for a reduced vertex to correspond to a non-trivial wide-angle scattering
of massless particles. But for the classical scattering condition to hold, the other ends
of the light-like lines are a long way from the reduced vertex. So further rescattering of
the same particles is not possible. See the discussion of Fig. 5.3 below on p. 94 for an
example.

The results for massless PSSs can be presented in two forms: (a) the structure of the
reduced graphs, with a labeling of lines by momentum type, and (b) the locations of the
vertices of the corresponding classical processes in space-time; see the illustrative examples
in Sec. 5.3 below.

It is convenient to present the results with the aid of massless but unscaled momenta
corresponding to high-energy external lines. For example, in the case of Fig. 5.1, from the
limits in (5.4a), we define unscaled massless momenta by

pA,∞
def= Q

2
(1, 0, 0, 1) , (5.7a)

pB,∞
def= Q

2
(1, 0, 0,−1) . (5.7b)

5.3 Examples of general reduced graphs

5.3.1 Vertex graph

For the vertex graph of Fig. 5.1, a typical reduced graph and the corresponding space-time
diagram are shown in Fig. 5.2. In the reduced graph, there is a subgraph H which includes
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AB
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Fig. 5.2. Typical (a) reduced graph, and (b) space-time diagram, for a general PSS for the
vertex graph.

the vertex for the current jμ. This subgraph is intended to be a vertex of the reduced graph,
i.e., none of its lines participate in the pinch. Thus, in the space-time diagram all of the
lines and Feynman-graph vertices that compose H are contracted to a single point.

From H exit two sets of lines in what we call collinear subgraphs. One collinear
subgraph, A, has lines in the pA,∞ direction, and the other, subgraph B, has lines in the
pB,∞ direction. Finally the soft subgraph S, not necessarily connected, consists of lines of
zero momentum at the PSS, and it can connect to any of the other subgraphs. Notice that
we labeled the collinear graphs by the light-like momenta pA,∞ and pB,∞ rather than the
actual external momenta pA and pB , since we are discussing PSSs in the massless limit.

In the space-time picture the hard subgraph corresponds to a single point at the origin,
and the collinear subgraphs A and B correspond to propagation outward along light-like
directions. Within each collinear subgraph, there can be arbitrary splitting and recombina-
tion of the collinear momenta. Any number of lines can join the A and B subgraphs to the
H subgraph. Finally the S subgraph corresponds to zero momentum and so to arbitrarily
large separations in space and time. The zero-momentum lines can interact arbitrarily with
each other, and any number of lines can connect their subgraph to the other subgraphs.

From the reduced diagram point of view, the collinear and soft subgraphs contain lines
of the stated kind, i.e., parallel to pA,∞, pB,∞, or zero. But it should be noted that the
reduced-graph vertices that join them within each subgraph may comprise non-trivial (one-
particle-irreducible) graphs from the Feynman graph point-of-view.

The collinear lines go outward from the hard vertex and eventually combine to form the
momenta pA,∞ and pB,∞ of the outgoing external lines of the vertex, treated as massless
momenta. There can be no other massless lines propagating in other directions, or from
the past. Any such line would just give a dangling end with no external line(s) to absorb or
generate the non-zero momentum.

These conclusions depend not only on the on-shell condition for the lines of the reduced
graph, but, critically, also on the condition that they correspond to a physical scattering. As
an example, consider the configuration illustrated in Fig. 5.3. Here there are two intermediate
massless on-shell lines with 3-momenta not along the z axis:

pC,∞ = Q

2
(1, n), pD,∞ = Q

2
(1,−n). (5.8)
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pD ,∞

pC ,∞

pB ,∞

pA ,∞

Fig. 5.3. Non-pinched on-shell configuration for Sudakov form factor.

t

z

A

B

S

Fig. 5.4. Space-time diagram for PSSs for the vertex graph when the A line is incoming,
so that the momentum transfer is space-like.

These rescatter at the right-hand reduced vertex to make the standard external lines. This
reduced vertex is for elastic scattering with large momentum transfer. The on-shell con-
figuration obeys momentum conservation, and does contribute in a computation of the
imaginary part of the amplitude from on-shell intermediate states. But for the rescattering
to be classical, in the sense used for the Landau criterion, the two wide-angle particles have
to meet at a single point to rescatter. Thus they would travel only a zero distance from their
generation at the electromagnetic vertex, and not the arbitrary non-zero distance needed for
classicality. Hence this configuration does not participate in a pinch.

A minor variation can be made by letting the pA line be incoming rather than outgoing,
with the momentum transfer now being space-like. This would be appropriate for a subgraph
inside a deeply inelastic scattering amplitude. The general reduced graphs stay the same,
except for the orientation of the momenta in the A subgraph. Correspondingly, the space-
time structure changes to that shown in Fig. 5.4.

5.3.2 Leading regions for vertex graph

Comparing Fig. 5.2(a) to the structure Fig. 2.5(b) that was used to obtain the parton-model
formula for DIS, we see a lot of extra connections between the subgraphs. This endangers
the derivation of a factorization theorem. In the parton-model ansatz for DIS, the hard
scattering involves only a single parton, and the target and outgoing collinear subgraphs
are not otherwise coupled. Similar remarks evidently apply to all other processes.

When we derive rules for power-counting, later in this chapter, we will find that for
many of the massless PSSs, the corresponding contributions to the actual vertex are in
fact suppressed by a power of Q. Generally, we will neglect these power-suppressed
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pB

q kB S

kAS

Fig. 5.5. Typical reduced graphs for the vertex graph, but now restricted to those PSSs
relevant for the leading power.

contributions. Then we will find that the leading regions for the Sudakov form factor are
restricted to those of Fig. 5.5. Compared with the general PSS, Fig. 5.2(a), the changes are
that: no lines connect S to H , only gluons connect S to the collinear subgraphs, and exactly
one fermion but arbitrarily many gluons connect the collinear subgraphs A and B to the
hard subgraph.

The arbitrary number of gluons linking the different subgraphs of a reduced graph still
leaves us with an apparent difficulty for proving factorization. A final power-counting
result will come to the rescue, concerning the dominant polarization for the extra gluon
connections.

Here we only summarize what we will prove later. The relevant polarizations are such
as to allow us to use Ward identities to sum over the ways of connecting the extra collinear
gluons to the hard subgraph and of connecting the soft gluons to the collinear subgraphs.
The end product will be a factorized form, with definitions of parton densities and other
non-perturbative quantities as matrix elements of certain non-local operators. Without
the extra gluon connections, the operators would not be gauge invariant. Summing the
extra gluon connections between the subgraphs converts the operators to a gauge-invariant
form.

5.3.3 DIS from uncut amplitude

A very straightforward application of the Landau analysis is to DIS, if we apply the same
trick as we used in Sec. 4.4 for the e+e− −→ hadrons cross section.

Instead of the hadronic tensor Wμν defined by (2.18), we use the corresponding uncut
amplitude2 where the current operators are time-ordered:

T μν(q, P ) = 1

4π

∫
d4z eiq·z 〈P, S T Jμ(z/2) J ν(−z/2) P, S〉 . (5.9)

This amplitude is analytic in the plane of ν = p · q, with cuts along the positive and
negative real axis starting from ν = ±Q2/2 (Fig. 5.6). The ordinary hadronic tensor is the

2 Warning: Definitions in the literature disagree on the normalization.
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Q2/2

Fig. 5.6. Complex plane in ν = P · q for T μν , with its cuts.

H

S

C

t

z

H

C

(a) (b) (c)

Fig. 5.7. (a) Typical general reduced graph, and (b) space-time diagram, for the most general
PSS for the uncut amplitude for DIS. (c) For a leading PSS, there is no soft part, and beyond
the main partons, an arbitrary number of gluons connect the collinear and hard subgraphs.

discontinuity

Wμν(q, P ) = T μν(ν + i0)− T μν(ν − i0). (5.10)

See Ch. 14 of Collins (1984) for more details and an account of earlier work on DIS.
There the analyticity properties of T μν were exploited to allow the use of the short-distance
operator product expansion to analyze integer moments of DIS structure functions.

Just in e+e− annihilation (Sec. 4.4), a local averaging should be applied, after which we
only need to treat T μν away from its singularities in the complex plane.

The massless PSSs for the amplitude are illustrated by the reduced graph in Fig. 5.7(a).
There is a single collinear subgraph C, where the target comes in and undergoes arbitrary
collinear splittings and recombinations until the target is reconstituted. The hard scattering
H is at the origin in space-time, and there is a soft subgraph S. In a general PSS, there are
arbitrarily many lines joining the subgraphs. The graphical structure, Fig. 2.5(b), that we
used to formulate the parton model is the simplest example. It corresponds to a minimal
PSS where only two lines join the collinear and hard subgraphs, where there is no soft
subgraph, and where the hard subgraph is a lowest-order Feynman graph.

The Landau analysis has now indicated, in Fig. 5.7(a), the maximum complication to
be considered in the general case. We can again anticipate the power-counting results, in
Fig. 5.7(c). At leading power, the soft subgraph is absent. The connections between the
collinear and hard subgraphs consist of the primary pair of parton lines, just as in the
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k

l

Fig. 5.8. A graph for uncut amplitude for DIS with multiple PSS.

Ha

Ca

Hb

Cb

Hc

Cc

(a) (b) (c)

Fig. 5.9. The three leading regions for Fig. 5.8 correspond to these decompositions into
hard and collinear subgraphs.

parton model, but they are now accompanied by any number of gluon lines with the special
polarization that allows the use of Ward identities to give a factorization theorem.

5.3.4 Higher-order corrections to hard scattering

The following consequence of the general region analysis contains a critical difference
between the true results of QCD and the parton model: This is that there are higher-order
perturbative corrections to the hard scattering.

Although we will work out the details only in later chapters, it is possible to understand
the basic ideas from our analysis so far. First we observe that any particular Feynman graph
might have multiple leading PSSs. For example, consider Fig. 5.8, which can appear in a
model for DIS in which the target is treated as elementary. This graph, of the form of what
is often called a “ladder graph”, has three decompositions of the form of Fig. 5.7(c), but,
in this particular case, without any of the extra gluonic connections. In one of its PSSs all
the quark lines on the sides of the ladder are collinear to the target, i.e., the momenta k

and l are target-collinear. This corresponds to the decomposition of Fig. 5.9(a), where the
hard subgraph Ha is the smallest possible, and is indeed exactly the same as in the parton
model.

A second PSS corresponds to Fig. 5.9(b), where the upper loop momentum k is of high
virtuality, while the lower momentum l is still target-collinear. This has a one-loop hard
subgraph Hb. Physically it corresponds to production of two jets in the hard scattering, as
in the experimental event shown in Fig. 5.10. A third PSS corresponds to Fig. 5.9(c), where
both k and l are of high virtuality; this situation corresponds to production of three jets.
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(a)

(b)

Fig. 5.10. Scattering event with two high-transverse-momentum jets in an ep collision in
the H1 detector (H1 website, 2010). The final state contains an electron track (to the right
in the side view), and two jets of hadrons.

Fig. 5.11. Another graph for uncut amplitude for DIS in which some of the same hard
subgraphs occur as for the previous graph.

Each of these hard-scattering subgraphs can occur in other graphs for T μν . For example,
the hard subgraphs Ha and Hb also appear in PSSs for Fig. 5.11.

The momentum regions associated with the three PSSs are represented in Fig. 5.12,
where the smaller PSSs are boundaries of the bigger ones. Disentangling the contributions
associated with different PSSs gives interesting mathematical and technical issues, which
occupy much of this book.

We will see that larger hard subgraphs Hb, etc., can be treated as higher-order corrections
to the lowest-order subgraph Ha , but with subtractions to compensate for double counting
between different contributions.
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(c)

(b)(a)

k

l

Fig. 5.12. Momentum regions associated with the PSSs in Fig. 5.9. Each axis corresponds
to the deviation of the associated momentum from exact collinearity, and the labels “(a)”,
“(b)” and “(c)” correspond to the PSSs associated with the graphical decompositions in
Fig. 5.9.

The idea of higher-order corrections to the hard scattering is readily accommodated by
the original space-time motivation for the parton model. This asserted that the cross section
was governed by a short-distance scattering of the electron and a single constituent of the
target, as in Fig. 2.2. The true hard scattering is the short-distance structure at the origin in
the space-time representation, Fig. 5.7(b), but it need not be a lowest-order graph.

A scaling argument of the kind given in (5.5) shows that the power of Q is determined
only by the number of external lines of the hard scattering, in any renormalizable theory
like QCD, since then the coupling is dimensionless. Thus there is no power-law suppression
of higher-order hard scattering. The only suppression is from the smallness of the effective
coupling αs(Q) at large Q. The appropriate scale for the coupling in the hard scattering is
of order Q, so that the asymptotic freedom of QCD allows low-order perturbation theory
to give useful predictions of the hard scattering.

Physically, the hard subgraph H is not literally at a single point, but is spread over
a space-time range of order 1/Q. Similarly, the collinear subgraph is not exactly on the
light-like line indicated in Fig. 5.7(b), but is spread out as appropriate for a highly boosted
composite particle. Lorentz contraction indicates that the width of the collinear lines is
of order 1/Q in the t-z plane, but of order 1/M transversely, while time dilation gives a
large longitudinal scale to Fig. 5.7(b), of order Q/M2. This interpretation is another way
of explaining the statement that the massless PSSs form a skeleton for the location of the
actual physical phenomena. A formal derivation from first principles within QFT of the
detailed space-time interpretation would be very useful.

5.3.5 DIS from cut amplitude

To understand how the final states in DIS arise, we now restore the final-state cut. It is
evident from our calculations of e+e− annihilation that there is a close connection between
divergences from virtual gluon emission and those from real gluon emission. Therefore, it
is useful to extend our analysis with reduced graphs and space-time diagrams to include
the integrals over final states.
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Fig. 5.13. (a) Reduced graphs and (b) space-time diagram, for DIS amplitude, in the case
that only one jet arises from the hard scattering. The lighter hatching at the top of (b)
corresponds to the low momentum or soft particles from the soft subgraph S.

The basic idea is unchanged: taking Q→∞ at fixed mass is equivalent to a massless
limit at fixed Q, and we need to know where propagator denominators fail to have virtuality
of order Q2. Just as before, it is the locations of PSSs in the massless theory that label
all the interesting regions. But for final-state lines, we no longer have to appeal to a
technical argument as to whether or not a contour deformation is possible. Final-state
lines are necessarily on-shell, so they have to be considered always pinched. Since final-
state particles can be observed, it is appropriate not to even consider deforming any of
the integrals over final-state momenta. Some lines are not part of any loop, as in the real
emission graphs considered in Ch. 4; their virtuality is entirely determined by the external
lines. At a collinear singularity, it is simply from the topology of the graph plus the simple
rules for combining light-like momenta that we get the condition of a classical process. We
supplement this by the Landau criterion for lines that are part of a loop.

In the case that we only have one direction for the particles from the hard scattering,
the reduced diagrams and space-time picture are shown in Fig. 5.13, for an amplitude
〈X, out|j |0〉. These correspond quite directly to the picture shown in Fig. 2.2, and the
actual scattering event in Fig. 2.3. The collinear subgraph A corresponds to the target
hadron, its evolution and its remnants after a quark has been struck out of it. The remnants
are around the beam pipe in the actual event. The subgraph B corresponds to collinear
evolution of the struck partonic system into an observed jet. Some lines can go out to the
final state from the S subgraph; at the exact mass singularity, these have zero momentum.
The corresponding actual particles, all of whose momentum components are much less
than Q to be close to the PSS, are those that fill in the rapidity gap between the jet and the
beam remnant.

Other PSSs arise when there are two or more groups of parallel lines emerging from the
hard scattering, as in Fig. 5.14. In experiments one manifestation of momentum configura-
tions near to such singularities are events with extra jets, as in Fig. 5.10.

Naturally, the full DIS cross section has an integral over all accessible final states.
This integral includes all intermediate configurations between the extremes given by the
reduced diagrams and their associated massless PSSs. Proper factorization theorems, and
their proofs, handle the intermediate cases once the extremes are dealt with.

https://doi.org/10.1017/9781009401845.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.005


5.3 Examples of general reduced graphs 101

H

A

S

Fig. 5.14. Reduced graph for DIS, in the case that partons in more than one direction arise
from the hard scattering. For clarity the connections between the soft subgraph and the
other subgraphs have been omitted.

P p

qq

P p
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Fig. 5.15. (a) The double deeply virtual Compton scattering process, including the attached
leptons. (b) The Bethe-Heitler pair production process that also contributes to the scattering.

5.3.6 Deeply virtual Compton scattering, etc.

So far, we have treated the uncut hadronic tensor T μν merely as a tool for analyzing DIS,
whose true cross section arises from the discontinuity, i.e., from the cut amplitude.

But it is also interesting to examine this quantity in its own right as the hadronic part
of an appropriate scattering amplitude. It actually provides the conceptually simplest of all
QCD factorization theorems. We therefore take the opportunity to introduce the relevant
processes. For this, we attach leptons at the other ends of virtual photon lines. To obtain a
realizable scattering, one of the virtual photons is time-like, creating a lepton pair. Thus the
relevant process is lP → l′p′e+e− or lP → l′p′μ+μ−; Fig. 5.15(a). Since one photon has
space-like momentum q and the other has time-like momentum q ′, the hadronic amplitude
is not diagonal, unlike the case for DIS. A complication for the analysis of data is that
one needs to separate the contribution where the lepton pair arises from a virtual photon
attaching to the other leptons: Fig. 5.15(b).

This leads (Müller et al., 1994; Blümlein and Robaschik, 2000) to the study of
the process γ ∗(q)+ P → γ ∗(q ′)+ p′, which corresponds to the off-diagonal hadronic
tensor

Aμν
(
γ ∗(q)+ p→ γ ∗(q ′)+ p′

)
= 1

4π

∫
d4z eiz·(q+q ′)/2

〈
p′ T Jμ(z/2) J ν(−z/2) P

〉
. (5.11)

https://doi.org/10.1017/9781009401845.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.005


102 Libby-Sterman analysis and power-counting

A

S
H

B

P

pB
t

z

A

S
H

P

pB

(a) (b) (c)

Fig. 5.16. (a) Reduced graphs and (b) space-time diagram, for DVCS and exclusive elec-
troproduction of mesons. (c) Extra reduced graphs for DVCS, but not exclusive meson
electroproduction, with photon directly connected to H.

This was investigated by Berger, Diehl, and Pire (2002), who called it “timelike Compton
scattering”, and then by Guidal and Vanderhaeghen (2003), who called it “double deeply
virtual Compton scattering” (DDVCS), the term we use here. The analysis closely corre-
sponds to the DIS case, when we take a generalized Bjorken limit. In this limit q2, q ′2, etc.
are large, and the hadron momenta P and p′ become parallel.

Thus the analysis in terms of massless PSSs is identical to that for T μν for DIS; the
reduced graphs and space-time picture are exactly the same. DDVCS has great fundamental
importance as the simplest quantity to which factorization methods can be applied. However
the cross sections at the leptonic level are high order in electromagnetism and thus very
small; see Berger, Diehl, and Pire (2002); Guidal and Vanderhaeghen (2003).

What is studied experimentally at present is the case that the outgoing photon is real.
This is deeply virtual Compton scattering (DVCS): Müller et al. (1994); Blümlein and
Robaschik (2000); Belitsky, Müller, and Kirchner (2002):

γ ∗(q)+ P → γ (pB)+ p′. (5.12)

The outgoing photon is light-like in what we can choose to be approximately the −z

direction. Thus it is convenient to change notation to use pB for the photon momentum; this
corresponds to our notation for other processes with two high-energy particles. Another
closely related process has the photon replaced by a meson:

γ ∗(q)+ P → M(pB)+ p′, (5.13)

the measured meson being typically a ρ. This is actually an exclusive two-body subprocess
of DIS, called exclusive electroproduction of mesons. The reduced graphs now acquire a
collinear-B subgraph going out from the hard scattering, Fig. 5.16(a), with a corresponding
space-time diagram. The power-counting is a bit more subtle, and depends on the
polarization of the meson (Brodsky et al., 1994; Collins, Frankfurt, and Strikman, 1997).

For the case of a photon, i.e., DVCS, there are also reduced graphs without the B

subgraph, i.e., with the photon connecting directly to the hard subgraph. These are, of
course, the same as for a highly virtual photon; it is these reduced graphs that turn out to
be the leading ones (Müller et al., 1994; Blümlein and Robaschik, 2000; Belitsky, Müller,
and Kirchner, 2002).
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5.3.7 Drell-Yan process

Another important process is the Drell-Yan (DY) process, i.e., inclusive production of
high-mass lepton pairs in hadron-hadron collisions:

PA + PB → (γ ∗ → l+l−)+X, (5.14)

where we have indicated that in lowest order in electromagnetism, the lepton pair arises
from a virtual photon. Essentially all the same theoretical considerations apply to the
production of high-mass electroweak bosons, like the W , Z, and Higgs particle, as well as
innumerable conjectured particles in extensions of the Standard Model.

In light-front coordinates, we write the momenta as

PA =
(
P+A , m2

A/2P+A , 0T
)
, (5.15a)

PB =
(
m2

B/2P−B , P−B , 0T
)
, (5.15b)

q =
(

xAP+A
√

1+ q2
T/Q2, xBP−B

√
1+ q2

T/Q2, qT

)
. (5.15c)

Here the scaling variables are defined by

xA = Qey/
√

s, xB = Qe−y/
√

s, (5.16)

where y = 1
2 ln q+P−B

q−P+A
is the center-of-mass rapidity of the lepton pair, and Q =

√
q2 is its

invariant mass. In the center-of-mass, the large components of the hadron momenta are
P+A and P−B , both equal to

√
s/2 up to power-suppressed corrections. Frequently, the cross

section is integrated over qT , and is presented as d2σ/(dQ2 dy).
We first discuss the DY amplitude. Its reduced graphs are constructed by an elementary

generalization of the construction for DIS. We now have two collinear subgraphs, A and B,
associated with each incoming particle. As in DIS, we classify the reduced graphs by the
number of outgoing directions of lines from the hard scattering H . Now H has incoming
lines from each of the A and B subgraphs, and has the virtual photon taking out momentum.
This allows the minimal situation, illustrated in Fig. 5.17, with no extra collinear groups at
all going out from H . The soft subgraph can create particles in the final state that fill in the
rapidity gap between the beam remnants.

This is illustrated by the microscopic view of a collision shown in Fig. 5.18 (which
corresponds to Fig. 2.2 for DIS). Here we have shown the simplest possibility: a single
parton from each parent hadron collides over a short distance scale, of order 1/Q at the
position indicated by a star, and we have not depicted the possible soft interactions.

One new possibility is that we could have a second hard part, disconnected from the first
in which other collinear lines from A and B collide to undergo a wide-angle scattering.
Physically, this corresponds to a second partonic collision in Fig. 5.18, typically occurring
at about the same time as the one that creates the DY pair, but at a different transverse
separation. Later, from the power-counting rules, we will see that this case is power-
suppressed.
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Fig. 5.17. (a) An important reduced graph for the amplitude for the Drell-Yan process.
(b) Space-time diagram for collinear subgraphs.

Fig. 5.18. Microscopic view of a DY process, corresponding to Fig. 2.2 for DIS.
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Fig. 5.19. A reduced graph for the amplitude for Drell-Yan process when one extra jet of
high transverse momentum is produced.

After this, we will find the usual situation for the leading power that only one main
parton from each beam hadron enters a single hard scattering. Each is accompanied only by
extra gluons of the longitudinal polarization that can be reorganized by Ward identities into
gauge-invariant parton densities. Also the soft subgraph at leading power only connects to
the collinear subgraphs and by gluons.

It is possible for the single hard scattering to produce, in addition to the lepton pair, one
or more extra partons of high transverse momentum, Fig. 5.19. These manifest themselves
as jets in the hadronic final state, just as in the corresponding situation for e+e− annihilation
or DIS.

If instead we restrict to a minimal reduced graph, and then multiply by the com-
plex conjugate amplitude, we get the cut graph shown in Fig. 5.20. This is the natural
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PB

PA

q

kB

kA

Fig. 5.20. Minimal reduced graph for cross section for the Drell-Yan process.
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Fig. 5.21. One-loop vertex graph.

generalization of the corresponding structure that led to the parton model in DIS,
Fig. 2.5(b). The most elementary treatment of this situation leads to the parton model
formula for lepton-pair production, first worked out by Drell and Yan (1970). Here the
lepton pair is produced in the lowest-order annihilation of a quark out of one hadron, and
an antiquark out of the other, with the same parton densities as in DIS.

We thus see a general pattern: Libby and Sterman’s insight leads to the reduced diagram
analysis. Approximating the situation by configurations corresponding to the simplest
reduced graphs gives us the parton model, with the natural space-time interpretation. The
general reduced graph plus the restriction to leading power delimits the maximum way in
which we have to distort the parton model to get the results of real QCD.

5.4 One-loop vertex graph

To illustrate the properties of the regions associated with PSSs, we examine the PSSs for
the one-loop vertex graph of Fig. 5.21:

G1 = ig2

(2π )n

∫
dnk

numerator

(k2 −m2
g + i0) [(pA − k)2 −m2

q + i0] [(pB + k)2 −m2
q + i0]

.

(5.17)

The numerator factor is irrelevant for determining the positions of the PSSs. But it is impor-
tant in computing their strengths, for which different field theory models give interesting
characteristic effects. We also allow a gluon mass, which is zero in QCD, but not necessarily
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(a) (b) (c)

Fig. 5.22. Reduced graphs for PSSs RA, RB , and RS of Fig. 5.21. The dot represents the
short-distance reduced graph, the diagonal lines are collinear in the appropriate directions,
and the dashed line is soft (zero momentum).
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RARB

RS

RARB

Fig. 5.23. Location of massless PSSs of Fig. 5.21 in the space of the gluon momentum. The
singularities are all in the plane of zero transverse momentum, so we just show the plane
of k0 and kz, with the 2− 2ε transverse dimensions out of the paper.
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Fig. 5.24. Space-time description of PSSs of Fig. 5.22. For all three plots, the scale for the
separation of the vertices is Q/λ2, where λ is the radial integration variable in (5.29) for a
collinear region, but λ2/Q is the radial variable in (5.49) for the soft region.

in other model theories. Generally, I will assume that the external quark lines are on-shell,
equipped with Dirac wave functions as appropriate.

5.4.1 Geometry and topology of PSSs

Useful insights are obtained from each of several ways of examining the PSSs: in
terms of reduced graphs (Fig. 5.22), in terms of PSSs’ locations in the space of loop
momenta (Fig. 5.23), and in terms of the locations of the graph’s vertices in space-time
(Fig. 5.24).
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The criterion, of a classically allowed process in the massless limit, gives the following
PSSs, which I label by the nature of the gluon’s momentum, (RA, RB , etc.3):

1. Gluon collinear to A: We label this PSS RA. It has two massless on-shell lines: k and
pA,∞ − k, each parallel to pA,∞:

RA :

{
k = zpA,∞,

pA,∞ − k = (1− z)pA,∞,
(5.18)

with z between 0 and 1. The line pB + k has virtuality of order Q2: (pB,∞ + k)2 = Q2z.
In the reduced graph, Fig. 5.22(a), the far off-shell line pB + k is contracted with

the current vertex to form a composite reduced vertex. Out of this come two massless
on-shell momenta in the pA,∞ direction, which later combine to make a single massless
on-shell momentum pA,∞.

The momentum fraction variable z must be between 0 and 1, since other values of z

do not give a classical scattering configuration. For example, if z is negative, the quark
goes out to the future from the current vertex, but the gluon comes in from the past.
Thus they are unable to meet at the recombination point if z < 0.

2. Gluon collinear to B: This PSS, labeled RB , with reduced graph Fig. 5.22(b), is exactly
like the first PSS, but with the roles of the quark lines exchanged:

RB :

{−k = zpB,∞,

pB,∞ + k = (1− z)pB,∞.
(5.19)

3. Soft gluon: k has zero momentum on this PSS, which we call RS . Its reduced graph is
Fig. 5.22(c), and the quark lines have massless momenta pA,∞ and pB,∞. The quark and
antiquark come out of the electromagnetic vertex and a soft gluon is exchanged. This is
a rather special case of the Landau-Coleman-Norton criterion.

4. Soft quark: Here it is the internal quark instead of the gluon that is soft. Since the gluon
now has a maximal collinear momentum k = pA,∞, we label this region RA′ .

5. Soft antiquark: Here the internal antiquark is soft, and the gluon has k = −pB,∞. The
PSS’s label is RB ′ .

The locations of the PSSs in loop-momentum space are shown in Fig. 5.23, from
which can be seen some topological relations between the different PSSs. For example,
RS is at the intersection of RA and RB , while RA′ is an endpoint of RA. When we derive
factorization theorems, we will find contributions and approximations associated with each
PSS. The topological relations between different PSSs will determine subtractions that
prevent double counting between different contributions. There will also be a contribution
from the region RH where all internal lines are far off-shell. We therefore will speak about
regions; intuitively a region connotes a particular part of loop-momentum space. But as a
precise mathematical notion we will use the PSSs supplemented by the hard region RH .
The intuitive notion of a region means, roughly, momenta near the corresponding PSS.

3 The subscripts should not be confused with the same symbols used to denote the various subgraphs of a reduced
graph.
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To formalize the relations between regions we first define a manifold for each PSS:

Name Manifold Dimension
RS {k = 0} 0
RA′ {k = pA,∞} 0
RB ′ {k = −pB,∞} 0
RA {k = zpA,∞ : 0 < z < 1} 1
RB {k = −zpB,∞ : 0 < z < 1} 1
RH {all k such that k /∈ RA,RB,RS, RA′ , RB ′ } 4

(5.20)

Each manifold excludes the manifolds for smaller PSSs. For example, in the regions RA

and RB we exclude the point z = 0, i.e., k = 0, since this does not give a collinear gluon
momentum.

There is evidently a hierarchy of sizes of region:

RA

RB

RS

RA

RB

RH (5.21)

where the biggest region is on the left. A formal definition of the hierarchy is not by simple
set-theoretic inclusion, since the manifolds for smaller regions are not part of those for the
bigger ones. Instead we define the hierarchy in terms of the topological closures R̄ of the
manifolds R for the various regions. For example, R̄A = {k = zpA,∞ : 0 ≤ z ≤ 1}, with
the endpoints at z = 0 and z = 1 included. Then we define the statement that a PSS R1 is
bigger than a PSS R2, R1 > R2, to mean that R̄1 ⊃ R̄2.

For the actual graph with massive propagators, and possibly off-shell external quarks,
we have already argued that there are important contributions from momenta close to the
PSSs. This suggests a coordinate-space interpretation in terms of the relative positions of
the vertices. For example, near the PSS RA, the upper quark line pB + k has virtuality
of order Q2, and therefore the vertices at its ends are separated by order 1/Q. The other
two lines, k and pA − k, have low virtuality, so the invariant separation of their ends is
much larger than 1/Q. Moreover, the lines are highly boosted in the +z direction. This
gives typical locations for the vertices as shown in Fig. 5.24(a), which corresponds closely
to the classical scattering picture given by the Coleman-Norton criterion. Corresponding
situations for the PSSs RB and RS are also shown in Fig. 5.24(b) and (c). The arguments
just given are quite heuristic, and it is left as an exercise to derive them more formally
(problem 5.1).

5.4.2 Pinch- and non-pinch-singular surfaces: collinear-to-A

PSS RA was restricted to k = zpA,∞ with z between 0 and 1. But the massless limit of the
integrand in (5.17) is singular for any value of z; it is the criterion of a pinch that restricts z,
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(a) 0 < z < 1 (b) z < 0 (c) z > 1

Fig. 5.25. The k− plane, showing the singularities for the lines k and pA − k for the three
cases 0 < z < 1, z < 0, and z > 1, together with appropriate choices of contour. The scale
of the diagram is roughly (k2

T +m2)/p+A ; the pole for the pB + k line is far off-scale, at
k− = −O(Q2/p+A ).

as we now verify explicitly. We use light-front coordinates, as is natural for collinear PSSs,
to give

G1 = ig2

(2π )n

∫
dnk

numerator

[2(p−B + k−)(zp+A + p+B )− k2
T −m2

q + i0]

× 1

(2zp+Ak− − k2
T −m2

g + i0) [2(1− z)p+A (p−A − k−)− k2
T −m2

q + i0]
. (5.22)

Here we wrote k+ = zp+A , so that dnk = dz p+A dk− dn−2kT.
In the following discussion, there are order-of-magnitude estimates for denominators,

and it is convenient to use the symbol m as a generic size for all masses in the problem.
To understand the RA region, we choose kT to be much less than Q, and we examine

the contour integral for k−. In the center-of-mass frame, the large components of external
momenta are p+A and p−B , of order Q, while the small components, p−A and p+B , are of order
m2/Q. The poles on the collinear lines k and pA − k are at small values of |k−|, of order
(k2

T +m2)/Q, and, when 0 < z < 1, they are on opposite sides of the real axis, trapping the
contour, as in Fig. 5.25(a). In contrast, the remaining pole, from the pB + k line, is much
further away, at k− � −p−B = −O(Q), corresponding to the line’s large virtuality in the
RA region.

Naturally, when z approaches 0 or 1, the accuracy of this argument degrades. For
example, the separation of the poles in k− is of order

k2
T +m2

p+A

(
1

z
+ 1

1− z

)
, (5.23)

and this gets large close to the endpoints of RA, i.e., near the RS and RA′ regions. This
formula also exhibits the exact pinch in the massless limit. That is, when m = 0, the
minimum distance between the poles is zero, obtained at kT = 0.

Outside the PSS region, i.e., for z below 0 or above 1, the two collinear denominators
are on the same side of the real axis: Fig. 5.25(b) and (c). Then we can deform k− to
be of order Q, so that all the denominators are of order Q2, i.e., the momenta are in the
hard region. Note that we cannot deform the contour all the way to infinity, to give a zero
integral, because of the singularity on the pB + k line.
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5.4.3 Multidimensional contour deformation

For one variable, like k−, the analysis of the pinch condition is straightforward, because the
contour deformation is visualizable. But the actual integral is multidimensional, and thus
hard to visualize. Is there a cunning deformation of the contour in z and/or kT that would
allow the four-complex-dimensional4 contour to avoid the poles? The Landau criterion
asserts in complete generality that this cannot be done.

A devil’s advocate would search for a proof in the literature that the Landau equations
are both necessary and sufficient for a PSS, and would be rewarded by not finding a
published explicit and complete proof. Textbook treatments, when examined closely, are
incomplete. For example, in the authoritative book on analyticity properties in QFT, by
Eden et al. (1966), we read (p. 48): “A proper proof needs the use of topology; . . . We
shall be content with plausibility arguments.” The reference given for a real proof is an
unpublished paper, by Fotiadi, Froissart, Lascoux, and Pham; the paper, as far as I can find
out, is still unpublished forty years later. Devil’s advocates are recommended to investigate
further (problem 5.3); there is something in this subject that is not fully understood.

I now present some techniques to help formalize issues about contour deformation in
the general case, with the momentum integral for L loops having nL dimensions. The aim
is to make very transparent the concepts that relate exact PSSs in the massless theory to
properties of actual integrals with non-zero masses but large Q.

First we write the loop momentum in terms of real and imaginary parts:

k = kR + iκ kI (kR). (5.24)

Here a contour deformation is characterized by increasing the real parameter κ from 0
to 1, with each point on the contour labeled by its (nL-dimensional) real part kR . The
imaginary part is some function of the real part, and naturally dnLk includes a Jacobian for
the transformation between k and kR . An allowed contour deformation is one for which no
poles are crossed in going from κ = 0 to κ = 1. We also require a uniform upper bound on
the derivatives ∂kIa/∂kRb, so that the Jacobian stays finite; otherwise, an arbitrarily large
size for Jacobian would ruin our derivation of power-counting. Thus in a one-dimensional
contour integral we might require the deformed contour to have an angle of at most 45◦ to
the real axis. The precise bound does not matter, but having an angle close to 90◦ would
give a very big Jacobian.

Next consider a denominator D(k)+ i0 at a zero of D(k). Our aim is to determine
whether this denominator participates in a pinch at this value of momentum, or whether
the contour of k can be deformed away. We avoid the corresponding pole if D acquires a
positive imaginary part when κ becomes slightly positive, i.e., if

kI · ∂D

∂k
> 0 pole avoidance criterion (5.25)

at the zero of D. We have an exact pinch if, no matter what choice we make for kI , (5.25)
fails for at least one of the on-shell lines.

4 Or 4− 2ε-dimensional contour.
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The criterion just stated applies to determining whether there is an exact pinch. In our
context, the PSSs we are cataloging are those of the massless theory. But our use of these
PSSs is also in the massive theory, where we are concerned not with whether or not there
is an exact pinch, but with whether or not the integration contour is forced to be close to
particular propagator poles. So we now ask: What are the appropriate criteria for avoiding
or not avoiding poles in the massive theory?

We do not consider a particular pole to be avoided unless the minimum value of |D(k)| on
the deformed contour is of order Q2 in a whole neighborhood of some candidate for a PSS.
The neighborhood should be of a size of order Q in the components of loop momentum
kR . Now all the momentum components of interest are at most of order Q, and similarly
for the derivatives ∂D/∂k. For the denominator to be of order Q2 when the real part of k

is at a zero of D(k), it must be true that the imaginary part has a component of order Q.
It also follows that the first-order term in an expansion in powers of kI , i.e., the l.h.s. of

(5.25), must itself be of order Q2. Otherwise the first derivative would change sign near our
initially chosen kR , since the second derivative is of order unity, and then we would find
places where, as we deform the contour, the denominator gets a negative imaginary part.
Because of the limit on the gradient of kI with respect to kR , the pole avoidance condition
(5.25) is obeyed, not just exactly at the PSS, but in a neighborhood. It also follows that the
component of ∂D/∂k in the direction kI is of order Q.

In the example of the two collinear denominators for region RA of the vertex graph, the
derivatives are

∂(k2 −m2
g)

∂k
= 2k � 2zpA,∞,

∂((pA − k)2 −m2)

∂k
� −2(1− z)pA,∞. (5.26)

On PSS RA, these two vectors are opposite in direction, so that the pole avoidance criterion
(5.25) cannot be simultaneously satisfied by both denominators. The exact PSS is in the
massless theory, but small changes in the pole positions, to allow for masses, do not
break this argument. As just explained, any contour deformation that successfully avoids
a singularity has to work over a large neighborhood of the propagator poles. If we tried
deforming another component of k than k−, its imaginary part would multiply a small
derivative on the l.h.s. of (5.25), and would not make this l.h.s. of order Q2.

In contrast, when we extrapolate the PSS to z < 0 or to z > 1, the two derivative vectors
have the same direction. Therefore if we choose kI to give one denominator a large positive
imaginary part, then the other denominator also gets an imaginary part of the same sign.
Thus we can avoid the pole. Since kI · pA,∞ = k−I p+A,∞, it is the minus component of kI

that needs to be made large to avoid the pole; this again justifies our choice to examine
contour integration only over k−. Therefore the singular surfaces at z < 0 and z > 1 are
not PSSs.

5.5 Power-counting for vertex graph

I next use the one-loop vertex graph to motivate the primary tools for power-counting.
In addition, we will encounter the so-called Glauber region of gluon momenta. Glauber
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momenta form a subset of soft momenta, but require a different treatment than generic soft
momenta; in particular standard factorization is only obtained after a contour deformation
away from momenta in the Glauber region.

For the power-counting, I will usually set the space-time dimension to n = 4. But to
discuss properties of regulated integrals, I will sometimes change to n = 4− 2ε.

Characteristic differences between QFTs are controlled by the numerator factor in (5.17),
and we can see the spectrum of possibilities from specific examples:

• A φ3-type theory where both the quarks and gluons are scalar fields, and the vertex for
the electromagnetic current is replaced by one for a φ2 operator. It gives a numerator
factor of unity.

• A Yukawa theory with a scalar “gluon” and fermionic quarks. It gives a numerator
ūA

[
γ · (pA − k)+mq

]
γ μ

[− γ · (pB + k)+mq

]
vB , where uA and vB are Dirac wave

functions.
• A gauge theory with fermion quarks. The numerator factor is

ūAγ κ
[
γ · (pA − k)+mq

]
γ μ

[− γ · (pB + k)+mq

]
γ λvB Nκλ. (5.27)

In Feynman gauge, the gluon part of numerator is Nκλ = −gκλ.

(Further cases are left as an exercise; problem 5.6.) In addition, we will examine how the
power laws change with the dimension of space-time.

Our main interest is in the size and power law of the loop graph relative to the lowest-
order graph. For the φ3 theory, the lowest-order graph is unity, but for the other two theories,
the lowest-order graph is of order Q, since the largest component of a Dirac wave function
grows like Q1/2.

5.5.1 Hard region RH : power corresponds to UV divergence

In region RH , all momentum components are of order Q and all virtualities are of order
Q2. As we found around (5.6), the power of Q is given by dimensional analysis, and is the
same as for UV divergences. Thus in φ3 theory at n = 4, region RH ’s contribution to
the vertex graph is of order 1/Q2. In Yukawa and gauge theories, which are renormalizable,
the numerators provide factors of Q2 times Dirac wave functions, so the contribution is
of the same power as the lowest-order vertex, and we call RH a leading region. Of course,
if we increased the space-time dimension to 6 in φ3 theory we also get leading behavior.
These arguments apply after UV renormalization, provided we apply an RG transformation
to set the renormalization scale μ of order Q.

In any of the renormalizable theories, we therefore write the contribution of region RH

as

G1 in RH = O(1)× LO. (5.28)

This simply means that we have a bound. That is, for large Q/m, the size of this contribution
is less than some constant number times the lowest-order graph. In QCD (for example), a
useful bound is the product of
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k0

kz

(a) (b) (c)

Fig. 5.26. (a) Integration domain used for region H ; it excludes the blanked-out area around
the PSSs. The size of the regions shown is a modest factor less than Q. This diagram
should be treated as having two more dimensions perpendicular to the ones shown. (b)
Integration domain used for region A, the cross-hatched area. (c) Integration domain used for
region S.

• a factor of a few, from the approximations on the denominators and from the multiple
terms in the Dirac algebra;

• a factor g2/(16π4) explicitly in the Feynman rules; and
• π2 from an angular integral in four space-time dimensions.

This gives a modest factor times g2/16π2. In principle there could be cancellations, since the
sign and complex phase of the integrand are not fixed. But, in general, if such cancellations
occur frequently and are strong, we should expect this to have a specific cause.

The integration domain for an actual numerical estimate should be like that in
Fig. 5.26(a). Here we cut out pieces surrounding each of the (smaller) PSSs, perhaps
of size Q/2. The precise positions of the borders will not bother us. But we must insist
that a contour deformation is applied to stay away from all propagator poles where there
is not a PSS. For example, suppose k is close to a negative number times pA,∞. Without
the contour deformation, we would have two low-virtuality denominators, which falsifies
the derivation of the estimate. A convenient way of interpreting Fig. 5.26(a) is to treat the
variables plotted there as the real parts kR . Imaginary parts, as in (5.24), give denominators
of order Q2, for example from the contour deformation in Fig. 5.25(b).

5.5.2 Basic treatment of collinear region RA

Next we integrate around the PSS for region RA, Fig. 5.26(b), excluding neighborhoods of
the smaller PSSs, RS and RA′ . The dimensionless variable z parameterizes the PSS; we call
it an intrinsic variable for the PSS. At fixed z, consider the integral over k− and kT, which
parameterize the deviation from the PSS, and which we therefore term normal variables for
the PSS. Near the PSS the momentum pB + k is off-shell by approximately zQ2. On the
other hand, the momenta k and pA − k, which we call collinear, are approximately parallel
to pA.

To understand the integral’s behavior near the PSS as an example of a general case, we
change to a set of dimensionless variables k parameterizing a surface surrounding the PSS,
together with a radial variable λ with the units of mass that scales this surface and is chosen
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Fig. 5.27. Surface of fixed λ surrounding a collinear PSS. The surface is drawn asymmet-
rically, to correspond to the scalings defined in (5.29).

to lie in the range 0 ≤ λ ≤ Q. Observe that the collinear denominators are quadratic in kT

but linear in k−. So we choose different scalings for k− and kT:

Collinear to A: k− = λ2k
−
/p+A, kT = λkT, (5.29)

as illustrated in Fig. 5.27. These variables should be thought of as generalized polar
coordinates, with k being treated as two-dimensional angular variables. The definition is
non-unique, and we can specify it by giving λ as a function of k− and kT:

λ = f (|k−|, |kT|, p+A ), (5.30)

of a form consistent with the scaling law (5.29). I choose

f (|k−|, |kT|, p+A ) =
√
|p+Ak−| + |kT|2. (5.31)

Such a definition is not Lorentz invariant, but is intended to be applied in a natural frame
for the process, which is the center of mass. I have arranged for the definition to be invariant
under z boosts, and for the angular variables k

−
and kT to be dimensionless. Given (5.29)

and (5.31), the angular variables satisfy the normalization condition |k−| + |kT|2 = 1.
To understand the size of the integrand, and the consequent power-counting, we examine

the dependence on λ. In each collinear denominator there are terms of order λ2 and of

order m2, e.g.,−λ2 × 2(1− z)k
− − λ2 k

2
T + p2

A(1− z)−m2 for pA − k. Since the angular
variables parameterize a (two-dimensional) surface surrounding a point on the PSS, they
cover over a finite range independent of λ, and only one of p+Ak

−
and kT can go to

zero simultaneously. Thus in estimating sizes, we write the collinear denominators as
λ2O(1)+m2O(1), where “O(1)” denotes a quantity that goes over a finite range, never
approaching infinity.

However, this is not sufficient to obtain a result for the integral. The problem is that the
argument so far only gives us an upper bound on the denominators, and the denominators
can and do get arbitrarily small. Thus for the integral itself we cannot directly deduce an
upper bound. But we can limit the closest approach to the poles by applying a contour
deformation like that in Fig. 5.25(a), where the separation of the poles is given by (5.23).
On the deformed contour there is a minimum size for each denominator, and a minimum
size for k−, for a given value of kT.

Now the definition of λ in (5.30) was deliberately written with absolute values of the
momentum components. Thus it can be applied on the deformed contour, and the integration
over the purely real-valued radial variable λ can be regarded as a slicing of the k integral.
We now find that on the deformed contour we can always treat the denominator as being
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of order λ2 +m2, but in a much stricter sense. The size of each collinear denominator
obeys C1(λ2 +m2) < |denom.| < C2(λ2 +m2), where C1 and C2 are two constants with
C1 strictly non-zero and C2 finite. These bounds apply uniformly for all values of k on the
contour and for all relevant values of λ. We could use separate bounds for the λ2 and m2

terms, but we would not gain anything useful.
There is in fact a notation for this which has become standard in some areas, and which

is defined in App. A.17:

|collinear denominator| = �
(
λ2 +m2

)
. (5.32)

The use of �
(
λ2 +m2

)
instead of O

(
λ2 +m2

)
indicates that we have a lower as well as

an upper bound, so that we can deduce a similar result also for the inverse∣∣∣∣ 1

collinear denominator

∣∣∣∣ = �

(
1

λ2 +m2

)
. (5.33)

This lets us obtain the power law associated with the RA region. We have the following
sizes, in the sense of the � notation:

• 1/Q2 for the far off-shell denominator;
• dλ λ3 for the radial integration;
• 1/(λ2 +m2) for each of the two collinear denominators;
• unity for the integral over the angular variables k;
• a numerator factor.

First, we ignore the numerator, and provide an estimate for the φ3 theory:

RA region = g2

Q2

∫ Q

0

dλ λ3

�
(
λ2 +m2

)2 (5.34)

= O

(
g2 ln(Q2/m2)

Q2

)
. (5.35)

Since the integrand has a variable complex phase, there is a possibility of a cancellation, so
that we must use the symbol O(. . .) rather than �(. . .) for our estimate of the integral.

From (5.34), we see that for large λ, of order Q, the estimate matches our result
1/Q2 for the hard region RH in φ3 theory. For small λ, when m is set to zero, we get a
logarithmic (collinear) divergence at λ = 0, i.e., the degree of collinear divergence is zero.
This symptomizes two properties of the actual massive integral: (a) for λ of order m, we
get the same size as in the hard region RH ; (b) there there is a logarithmic enhancement
from the region m� λ� Q. This is an example of a general result, that if the two regions
have the same power law, then there is a logarithmic enhancement from the integral between
the extremes, with the exponent of the power being unchanged.

If we change the space-time dimension from 4 to n, the power for λ ∼ m is changed
to g2mn−4/Q2. Thus in φ3 theory, i.e., without the numerator factor, the collinear region
always has a 1/Q2 suppression independent of space-time dimension; i.e., this region is
never leading. There is a contribution from the hard region of order g2Qn−6.
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5.5.3 Where are the vertices in space-time?

We did not associate the space-time picture of a classical space-time process at a PSS
with any specific distance scale. We now remedy this defect. The argument is sketchy, and
making a more detailed argument is left for problem 5.1.

It is reasonable that the typical time between two ends of a line of a Feynman graph is
the inverse of the deviation of its energy from being on-shell:

�t ∼ 1

|k0 − Ek| =
|k0 + Ek|
|k2 −m2| ∼

Ek

|k2 −m2| . (5.36)

Naturally, we assume that the integration contour has been deformed as far away as possible
from propagator poles.

For a collinear line, with its momentum scaled as in (5.29), we find a time of order Q/λ2.
This can be interpreted as a time 1/λ in the rest-frame of the collinear system multiplied
by a time-dilation factor Q/λ. The boost argument shows that this is also the separation of
the vertices in x+, and that the separation in the other light-front coordinate x− is of order
1/Q, the same as the size of the hard scattering. The separation in transverse position is
invariant under a boost in the z direction, and is therefore 1/λ.

This therefore gives a scale for the drawings in Figs. 5.24(a) and (b), and for their
generalizations to higher-order graphs.

One caveat is needed. When λ becomes less than the quark and gluon masses, the
virtuality of the lines remains of order m2 instead of scaling down like λ2, so we should
really equip the estimate with a minimum:

�t ∼ Q

max(λ2,m2)
, (5.37)

from the pole separation value given in (5.23). Naturally, if both the quark and gluon have
zero mass, then the time scale goes to infinity as λ goes to zero; this corresponds to the
actual collinear divergence in the massless case.

5.5.4 Collinear region boosted from rest frame

We now consider a general case of a collinear subgraph, and more generally a non-
perturbative amplitude for a collinear subgraph, as in the lower bubble in Fig. 2.5(b)
for the parton model for DIS. We can regard a collinear subgraph or amplitude as being
obtained by a boost from its rest frame. We always define a collinear subgraph to include
all its attached collinear lines and the integral over all the small components of the collinear
momenta.

For scalar fields, a collinear subgraph is boost invariant. Thus the collinear subgraph
counts as Q0, and the power law for the whole graph is just that for the hard part of the
graph, i.e., 1/Q2 in our one-loop example, independent of the space-time dimension.

For a field with spin s, the biggest component of a matrix element of its field grows like
(Q/m)s under a boost to energy of order Q from a rest frame associated with mass m. This
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gives enhancements that we now investigate. We will find them to be particularly notable
for the exchange of a field of the highest spin, i.e., for the gluon.

5.5.5 Yukawa theory, region RA

First we examine the on-shell electromagnetic vertex of a fermion in Yukawa theory. The
Dirac wave functions for a spin- 1

2 fermion grows like Q1/2 in the center-of-mass frame, so
the tree-graph amplitude grows like Q.

For the one-loop graph in the Yukawa theory in a collinear region, the boost argument
of Sec. 5.5.4 shows that the same Q1/2 growth applies to the whole collinear subgraph
(lines k and pA − k) as to the Dirac wave function. Thus the power of Q for the whole
graph in the RA region is given by the off-shell propagator i[−γ · (pB + k)+m]/[(pB +
k)2 −m2]. This now has dimension −1, so it contributes 1/Q, and we get a power
suppression.

From the overall numerator factor,
[
γ · (pA − k)+mq

]
γ μ

[− γ · (pB + k)+mq

]
, this

is not quite so obvious, since it contains two factors with momentum components of order
Q. These might compensate the 1/Q2 suppression from the pB + k denominator. But the
large part of the pA − k numerator can be eliminated by the equations of motion for a Dirac
spinor:

ūAγ−(p+A − k+) = (1− z)ūAγ−p+A = (1− z)ūA(m− γ+p−A ). (5.38)

The boost argument shows that this is part of a general result, not an accident of a one-loop
calculation.

5.5.6 Gauge theory, region RA

The situation changes when the exchanged line is for a vector field, as in QCD. The collinear
part of the graph is proportional to∫

d4k
ūAγ κ

[
γ · (pA − k)+mq

]
γ μ

(k2 −m2
g + i0)

[
(pA − k)2 −m2

q + i0
] . (5.39)

Under a boost, the κ = + component gains a factor of order Q relative to the size in a
Yukawa theory; this removes the 1/Q suppression from the off-shell pB + k line. The gluon
collinear region is therefore leading, independently of the space-time dimension. The same
leading power applies to any graph in which arbitrarily many gluons go from a collinear
subgraph to a hard subgraph. This immediately implies that substantial modifications are
needed to the derivation of even the elementary parton model. Instead of considering
graphs like Fig. 2.5(b), we must allow extra gluon exchanges to the hard subgraph, as in
Fig. 5.7(c).

The resulting complications are tamed, as we will see in later chapters, by noticing that
the enhancement is associated with the one component, κ = +, of the gluon field that scales
like Q/m under the boost to the collinear-to-A direction. In (5.27), the dominant part of
the gluon numerator is N+−. This dominance can be eliminated by a gauge transformation,
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e.g., by a suitable choice of axial gauge n · A = 0, for which the gluon numerator is

N
axial-gauge
κλ = −gκλ + kκnλ + nκkλ

k · n − kκkλn
2

(k · n)2
. (5.40)

If we choose n at rest in the center-of-mass, say n ∝ pA + pB , the all-important N+−
component is−k−k+n2/(k · n)2. It is readily checked that when k is a collinear momentum,
this is of order m2/Q2; the contribution of region RA in this gauge is thus suppressed by
two powers of Q.

Another common choice is the light-front gauge: n · A = A+ = 0; in that case N+− is
exactly zero. However, this gauge is not symmetric between pA and pB , so that it causes
difficulties in a general treatment. Even the non-light-like case, with n2 �= 0, is not adequate
for our later work, because the singularity at k · n = 0 breaks standard analyticity rules for
propagators that are needed in proofs of factorization; see Ch. 14.

Therefore we will generally stay in the Feynman gauge, with the implication that regions
with collinear gluon exchange, such as region RA, will be leading. However, the fact that
these regions can be made non-leading by a certain choice of gauge, implies that important
simplifications can be made by the use of Ward identities.

We can see the basic idea of the argument by the following chain of approximations for
the numerator. We consider a general situation in which one gluon connects a collinear-to-A
subgraph to a hard subgraph:

collinear-Aκ Nκλ hardλ � collinear-Aκ Nκ− hard−

= collinear-AκNκ−
1

k+
k+hard−

� collinear-Aκ Nκ−
1

k+
k · hard. (5.41)

All the approximations are accurate at the leading power of Q. In the first line, we replaced
the hard subgraph by its minus component, that dominates in the contraction with the
collinear-to-A subgraph. Then we multiplied and divided by k+, which allows us in the last
line to replace k+ . . . by k · . . . for the gluon connecting to the hard scattering, accurate to
the leading power of Q. Having k contracted with the hard subgraph is exactly of the form
to which a Ward identity applies. This method was obtained by generalizing the argument
of Grammer and Yennie (1973) that was devised for treating IR divergences in QED.

5.5.7 Effect of different degree of divergence

The above calculations exhibit some quite general phenomena in the estimation of the sizes
of the contributions of different regions. For each PSS, we parameterize the approach to
the PSS by a radial variable λ. The general structure of the momentum-space integrands
for Feynman graphs is of products of very simple rational functions. This generally gives
a power-law behavior in λ as λ→ 0, with a cutoff provided by masses.

Because the power-law dependence gives useful order-of-magnitude estimates all the
way from λ = 0 to λ = Q, we can now obtain some interesting relations between the power
laws for different regions. The basic general form of the size of the contribution from a
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region is

1

Qα

∫ Q

0

dλ λβ

�
(
λ2 +m2

)γ , (5.42)

where we now allow general exponents. Situations with nested leading regions often require
us to modify these estimates by logarithmic corrections from integrals over the angular
variables, but this will not change the basic power laws and exponents. See p. 115 for an
explanation of the � notation.

For order-of-magnitude estimates we have a power-law integral dλ λβ−2γ cutoff at the
lower end by mass effects. Let us define the infra-red degree of divergence in the massless
limit by � = 2γ − β − 1.

A common, but not universal, situation in QCD and other theories in four-dimensional
space-time is that we have a logarithmic divergence, � = 0. Then, as we have seen, the
total contribution has the same power 1/Qα as the contribution from the hard region, i.e.,
from λ ∼ Q, but there is a logarithmic enhancement. If the integrand is modified by a
logarithm, then the number of logarithms increases by one after integration, e.g.,

1

Qα

∫ Q

0

dλ λ2γ−1

�
(
λ2 +m2

)γ lnδ

(
Q

λ

)
= O

(
lnδ+1(Q/m)

Qα

)
. (5.43)

In this situation all scales between m and Q are important.
In contrast, if we have a power-law divergence � > 0, then the lower end of the integral,

λ ∼ m, dominates, and the power there is 1/Qα (times O(1/m�)). The power from the
hard region λ ∼ Q is weaker: 1/Qα+�. From a UV-centric point of view, we can say that
in this situation there are power-law enhancements as we go from large to small momenta.
Alternatively we can take an IR-centric view: momenta near the IR scale dominate, and
there is a convergent extrapolation of the integral to infinite λ. This situation is typical in a
model super-renormalizable QFT in a space-time of dimension less than 4.

The reverse holds if � is negative. In that case the hard region λ ∼ Q dominates and we
can legitimately neglect masses.

In all cases, the power law for the region for the PSS at λ = 0 is 1/Qα and the power for
the hard region is 1/Qα+�, with the proviso that we may have logarithmic enhancement(s)
associated with IR degree of divergence zero.

5.5.8 Soft-gluon region RS

For the soft-gluon region RS we integrate over a domain like that in Fig. 5.26(c) that
surrounds RS (a single point in this case). To parameterize the approach to RS , we use the
same scaling for all components of k:

kμ = λSk
μ
. (5.44)

Again the radial variable λS has the dimensions of mass and is specified by a (non-Lorentz-
covariant) function

λS = fS(kμ), (5.45)
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S

k0

kz

RA
RB

Fig. 5.28. Surface of fixed λS surrounding the soft PSS RS . In contrast to the collinear case,
Fig. 5.27, we have the same scaling on all components of k. The diagonal lines are the soft
ends of the PSSs RA and RB .

with an appropriate scaling property. We choose

fS(kμ) =
∑

μ

|kμ|. (5.46)

(Three-dimensional) surfaces of fixed λS surround the point k = 0, which is the PSS for
RS (Fig. 5.28). From (5.46), the angular variables are normalized to

∑
μ |k

μ| = 1.
Many interesting complications in perturbative QCD arise from soft gluons and their

couplings to collinear subgraphs. One is simply that soft gluon connected to collinear
subgraphs give leading-power contributions. As we will see in Sec. 5.5.10, another compli-
cation arises because soft loop momenta circulate through collinear subgraphs, so that the
power-counting for λS depends non-trivially on properties of the collinear subgraphs and
the relative sizes of the components of soft momenta.

We first derive a basic scaling argument for the integral near the PSS RS for the one-
loop vertex graph. It applies for generic values of the angular variables k, i.e., when any
considered combination of the components of k is of order unity. Later, in Sec. 5.5.10, we
will consider the relatively small Glauber region, where the argument needs to be changed.
For the generic case:

1. The integration measure is dλS λn−1
S dn−1k, which gives a power λn

S , where n is the
dimension of space-time.

2. The gluon denominator k2 −m2
g is λ2

Sk
2 −m2

g , i.e., its size is O(λ2
S +m2). In the

massless limit, or when mg is negligible, this is simply O(λ2
S). The gluon mass becomes

important when λS is around mg .
3. The lower quark denominator is

(pA − k)2 −m2
q = p2

A −m2
q − 2pA · kλS + λ2

Sk
2
. (5.47)

Since we treat all the components of k as comparable, the biggest k-dependent term
is −2p+Ak

−
λS , so that the denominator is O(λSQ+m2). In the massless limit, the

dominant term is −2p+Ak
−
λS , i.e., O(λSQ).

4. The upper antiquark denominator is treated similarly, with its dominant part in the
massless limit being 2p−B k

+
λS , also O(λSQ).
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5.5 Power-counting for vertex graph 121

As regards the massless limit, this gives an overall result of order∫
dλS λn−1

S

1

λ2
S

1

(λSQ)2
× numerator =

∫ ∼Q

0
dλS λn−5

S Q−2 × numerator. (5.48)

When we set n = 4, the physical space-time dimension, and restore the mass cutoff, we
find a logarithmic enhancement multiplying the explicit power 1/Q2.

The dependence on the spin of the soft line is rather interesting. The boost argument
of Sec. 5.5.4 shows that the numerator gains a factor of Q2s , where s is the spin of the
exchanged soft line. This is an enhancement relative to the power obtained for coupling the
collinear graphs to the hard subgraphs. Hence:

• For the case of both φ3 and Yukawa theory, the exchanged gluon is a scalar. There-
fore the explicit power 1/Q2 in (5.48) shows that the region RS gives a non-leading
power.

• For a vector gluon, the boost argument shows that the case κ = + and λ = − gives an
extra factor of Q2. So the soft region RS is leading, independently of the space-time
dimension n.

We have now seen that in a gauge theory all of the regions RA, RB , and RS for the vertex
graph are of leading power. In contrast, none is leading in theories without a gauge field.
The remaining regions RA′ and RB ′ are always non-leading. In the absence of a vector field,
only the hard region RH could be leading. Hence a large number of complications in the
parton physics of QCD result from QCD being a gauge theory.

5.5.9 Where are the vertices in space-time for the soft region?

Although the virtualities are different for soft and collinear lines (λ2
S and λSQ respectively),

both kinds of line give the same time scale 1/λS in the center-of-mass frame. This arises
from time dilation of the collinear lines, and can be deduced from (5.36).

When we work with more complicated regions, it is useful for the time scale to match
the one in (5.37) for the collinear region. So we define λ by λS = λ2/Q, so that

Soft: kμ = λ2

Q
k

μ
. (5.49)

Then the time scale is the same as for the collinear region, i.e., Q/λ2, to the extent that we
neglect masses. It is naturally appropriate to use the λ as a redefined radial variable for the
soft region.

The effect of masses is different for collinear and soft momenta. For the collinear case,
masses give a lower cutoff of m on λ. For the soft region, this also applies to the quark
mass. But the gluon mass implies a more stringent cutoff, at λ ∼ √

mgQ. So for the soft
region we replace (5.37) by

�t ∼ Q

max(λ2,mgQ,m2)
. (5.50)
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122 Libby-Sterman analysis and power-counting

Of course this makes no difference if the gluon is massless. But in real QCD there is some
kind of non-perturbative infra-red cutoff due to confinement, so in real QCD physics mg in
the above equation should be replaced by �.

Even so, the two widely different scales of cutoff indicate that when we go to higher-
order diagrams there can be complications. It will turn out that most of these will be avoided
after we use Ward identities to sum over different ways of attaching soft lines to collinear
subgraphs. Moreover the non-perturbative cutoff does not apply directly to Feynman graphs,
so there will be some interesting issues in the leading regions and their interpretation in
Feynman graphs with massless gluons and massive quarks, that will involve us with regions
that are not really physical.

5.5.10 “Glauber” region

Just as with the collinear regions, there are certain parts of the integration over angular
variables k where denominators get much smaller than the estimates used above. Again we
need to investigate to what extent contour deformation can rescue them, but the conclusions
will now be less trivial. The necessary contour deformations work for some situations like
the vertex graph, but fail for others.

This issue does not concern only the determination of the power law associated with
the soft region. More importantly, it gives a danger of violating the Grammer-Yennie
approximation that is essential in deriving factorization, by allowing us to apply Ward
identities to the sum over soft gluon connections to collinear subgraphs. The approximation
is a simple generalization of (5.41):

(coll. A)κ Nκλ (coll. B)λ � (coll. A)+ N−+ (coll. B)−

� (coll. A) · k N−+

k+ k−
k · (coll. B). (5.51)

Here, our aim is a formula in which the gluon momentum k is contracted with each
collinear factor, so that we can apply Ward identities. The critical step is in the second
line, where we use the following approximations that are valid to the leading power of
Q if the components of k are not too much different: k · (coll. A) � k−(coll. A)+ and
(coll. B) · k � (coll. B)−k+.

When these approximations are valid, we will find that in our actual applications further
approximations of k in the collinear factors are useful and valid: to replace k inside the
collinear-B part by its plus component and to replace k inside the collinear-A part by its
minus component.

These approximations rely on all components of k being comparable. Thus one or more
of the approximations fails when k− and/or k+ gets too small with respect to the other
components. By examining the relative sizes of components of collinear momenta, we find
that the approximations are accurate under the following conditions:

m2

(p−B )2
�

∣∣∣∣k+k−
∣∣∣∣� (p+A )2

m2
, (5.52)∣∣∣∣k+kT

∣∣∣∣� m

p−B
,

∣∣∣∣k−kT

∣∣∣∣� m

p+A
. (5.53)
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5.5 Power-counting for vertex graph 123

The first line simply states that the rapidity of the gluon must be well inside the range
between the collinear rapidities, which is essentially the simplest definition of the soft
region. The conditions on the second line are that the longitudinal components of k should
not be too much smaller than the transverse momentum. Where the approximations and
standard power-counting hold for the soft region, we deduce that

∣∣k−k+∣∣� k2
T
m2

Q2
. (5.54)

We now ask when the conditions fail. If the failure is only of the conditions on the rapidity
of k, that simply takes us to one of the collinear regions; this does not concern us here since
we treat the collinear regions separately. However, a failure of (5.54) is problematic. When
this condition fails, we have |k+k−| � k2

T. This puts k in a region called the Glauber region
(Bodwin, Brodsky, and Lepage, 1981) in view of its importance in final-state interactions in
high-energy scattering. The same region was also termed the “Coulomb region” in Collins
and Sterman (1981).

In the case we are currently treating, the vertex function, we can perform a contour
deformation on either or both of k+ and k− to get out of the Glauber region. Consider
first the k+ integral in the Glauber region. We can neglect k+ compared with p+A in the
pA − k denominator; this is generally true when k is soft. We can also neglect k+ in the
gluon denominator, specifically because of the Glauber-region condition |k+k−| � k2

T. This
leaves the denominator (pB + k)2 −m2 + i0 � 2p−B k+ − k2

T + p2
B −m2 + i0, and we can

therefore deform k+ into the upper half plane. Similarly we can deform k− into the lower
half plane.

The limits of the deformation on k± are given by other poles, notably that of the gluon.
The deformed contour no longer goes through the Glauber region. So on the deformed
contour in the soft region, the standard power-counting and the Grammer-Yennie approx-
imation are valid. However, the denominators in the Grammer-Yennie approximation give
extra singularities at k+ = 0 and k− = 0, i.e., in the Glauber region close to the poles on
the quark propagators. Thus the denominators must be equipped with i0 prescriptions that
do not block the contour deformation:

(coll. A)κ Nκλ (coll. B)λ � (coll. A) · k 1

k− − i0
N−+

1

k+ + i0
k · (coll. B). (5.55)

In the previous paragraphs, there is a change of the kind of pole avoidance under
discussion compared with the earlier part of this chapter. Initially, we viewed momenta
relative to the large scale Q, and determined whether or not momentum components were
forced go through regions where they are much smaller than Q. Now we are examining a
soft momentum, of size λS � Q, and are determining whether or not its plus and/or minus
components are forced to go through regions where they are much smaller than λS .

Although we derived it only for the one-loop graph, the contour deformation applies
very generally to avoid the Glauber region in our process. Consider a general reduced
graph (Fig. 5.29) for the vertex, and let k be a momentum flowing down on a soft line
from the upper collinear graph B. We know that the flow of minus momentum in the B
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H

A

S

B

pApA

pB

k

Fig. 5.29. Reduced graph for vertex.

Fig. 5.30. Contour deformations out of Glauber region for (a) k+, (b) k−. The crosses near
the origin are final-state Glauber-region poles in collinear subgraphs. The crosses near the
edges are other poles that limit the contour deformation.

subgraph is all towards the future, from the hard subgraph H to the final-state particle
pB . There must be a sequence of lines in B that gets to the vertex with line k from H by
going forward with the flow of the minus component of momentum. We can choose to set
up k as a loop momentum that goes along these lines, and completes its loop through H

and A.
If k+ is small enough for k to be in the Glauber region, then the only important depen-

dence on k+ is in B. Since k goes with the flow of collinear minus momentum, all the
nearby poles are in the lower half plane, as in

1

(kB + k)2 −m2 + i0
� 1

2k−B k+ −D + i0
. (5.56)

Here kB is a generic collinear momentum on a line of subgraph B, and D does not depend
on k+. Thus the same contour deformation into the upper half plane works as for the
one-loop graph. A similar argument applies to a Glauber momentum attaching to the A

subgraph.
This situation is illustrated in Fig. 5.30, and we characterize it by saying that all singu-

larities in subgraphs A and B are in the final state; the lines in A and B all go out to the
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future from the hard scattering. To see a direct relation to a space-time picture, we simply
Fourier-transform (5.56) into coordinate space, with the soft-gluon approximation that only
the k+ dependence of the propagator is retained:

f (x) =
∫

d4k

(2π )4

e−ik·x

2k−B k+ −D + i0
� −i

2k−B
δ(x+)δ(2)(xT) θ (x−)e−ix−D/(2k−B ). (5.57)

When x− < 0, we get zero, because the integrand decreases rapidly to zero in the upper
half plane of k+, so that we can close the k+ contour in the upper half plane. But when
x− > 0 we close the contour in the lower half plane and pick up the residue of the pole.
More generally, for any function whose singularities in k+ are only in the lower half plane,
its Fourier transform is non-zero only for positive values of x−. This is so general a property
that the contour-deformation result applies beyond perturbation theory.

The delta functions in (5.57) show that, from the point of view of a soft gluon, the
collinear subgraph is a line going to the future in a light-like direction from the hard
scattering, so that the soft gluon does not resolve any internal structure of the collinear
system.

5.5.11 Soft-quark regions, RA′ and RB ′

The remaining PSSs for the one-loop vertex graph are RA′ and RB ′ where one of the
fermion lines is soft. Power-counting like that for the soft-gluon case, RS , gives a sup-
pression by at least one power of Q. Our general treatment, Sec. 5.8, will show that this
happens because one end of a soft-quark line is at the hard subgraph instead of a collinear
subgraph.

5.6 Which reactions have a pinch in the Glauber region?

For the vertex graph, the ability to deform out of the Glauber region is tied to the collinear
lines all being final-state lines. We now ask for situations in which we cannot perform
this deformation. This requires reactions in which both initial-state and final-state collinear
lines are present. See Ch. 14 for some of the resulting complications. The reduced-diagram
technique enables us to diagnose these cases very readily, and in fact we already have a
supply of interesting examples.

Reactions for hadron production in e+e− annihilation via a single virtual photon will
always have the hadrons in the final state. Hence these reactions are always safe from the
Glauber region.

For DIS (Figs. 5.13 and 5.14) the jets are always outgoing, so contour deformation out
of the Glauber region is possible for k−. Target-collinear lines can be in both the initial
and final state (Fig. 5.13(b)) so k+ is trapped. But to avoid the Glauber region, it turns out
to be sufficient that a deformation can be made on k− (Collins, 1998b; Collins and Metz,
2004). This applies equally to variations on DIS, like deeply virtual Compton scattering
and exclusive meson production in DIS.
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kA − k

)b()a(

Fig. 5.31. (a) Simple Feynman graph for DY process. (b) The same with addition of a gluon
exchanged between the spectator lines; the gluon’s momentum is trapped in the Glauber
region.

5.6.1 Remnant-remnant interactions in Drell-Yan

The situation changes for the Drell-Yan (DY) process,5 since the initial state has two
oppositely moving hadrons, and the final state contains the beam remnants (Fig. 5.17).

Physically, what happens can be seen in the microscopic view of a scattering reaction
in Fig. 5.18. One parton out of each hadron collides at the short-distance hard interaction
indicated by the star. The transverse separation of these two active partons is of order
1/Q, corresponding to the scale of the hard collision. Inside the hadrons, partons are
spread out over a transverse area proportional to r2, where r � 1 fm is the size of a
hadron. The transverse area is not changed under a boost. The probability that a pair of
partons is within 1/Q of each other in the transverse direction is therefore proportional
to 1/(Qr)2, which corresponds to a hard-scattering cross section decreasing with 1/Q2 at
large Q.

But when the active partons collide, the remnants of the two hadrons overlap, and can
therefore interact. Remnant-remnant interactions of small momentum transfer occur with
high probability, since such hadronic interactions are strong. One direct manifestation is
that the total hadron-hadron cross section is of order r2 (Amsler et al., 2008). Thus we
know experimentally that interactions happen with high probability whenever the impact
parameter of a pair of hadrons is less than about r . The strong remnant interactions involve
momentum exchanges in the Glauber region.

5.6.2 Glauber pinch in momentum space

We now verify from an example that spectator-spectator interactions are trapped in the
Glauber region for the Drell-Yan process, and that they give a leading power. In Fig. 5.31
are shown two graphs for the Drell-Yan amplitude when the beam particles are modeled by
elementary particles. In both graphs, each beam particle splits into a quark-antiquark pair.
A quark out of one beam annihilates with an antiquark out of the other to make a high-mass

5 And generally for hard processes in hadron-hadron collisions.
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virtual photon. Graph (a) gives an example of pure parton-model physics, but graph (b) has
a gluon exchanged between the beam remnants, and I will show that the gluon is trapped
in the Glauber region.

The value of graph (a) is

−ūB �B

−/kB +m

k2
B −m2 + i0

γ μ
/kA +m

kA −m2 + i0
�A vA. (5.58)

Here uB and vA are the Dirac wave functions for the final-state fermions. The matrices �B

and �A give the coupling between the beam particles and quarks. We choose the kinematic
region where the fermions are prototypically collinear, with transverse momenta of order m,
as is appropriate for the parton model. The large components of kB and kA are determined
by the virtual photon momentum (5.15), so that

kA = (xAP+A , 0, 0T)+ (O(m2/Q),O(m2/Q),O(m)
)
, (5.59)

kB = (0, xBP−B , 0T)+ (O(m2/Q),O(m2/Q),O(m)
)
. (5.60)

Graph (b) gives

ig2
∫

d4k

(2π )4

1

k2 −m2
g + i0

ūB γ−
/P B − /kB − /k +m

(PB − kB − k)2 −m2 + i0

×�B

−/kB − /k +m

(kB + k)2 −m2 + i0
γ μ

/kA − /k +m

(kA − k)2 −m2 + i0

×�A

− /P A + /kA − /k +m

(PA − kA + k)2 −m2 + i0
γ+ vA, (5.61)

where the gluon couplings are replaced by their dominant minus and plus components.
The gluon has transverse momentum of order the usual radial variable λS for the soft
PSS, and the most characteristic value to model non-perturbative hadronic interactions is
λS ∼ m.

We first make approximations that are always valid when the gluon is soft, independently
of whether it is in the Glauber subregion. So we neglect k− with respect to k−B in the
collinear-to-B denominators, and similarly for k+ in the collinear-to-A denominators. Thus

(kB + k)2 −m2 + i0 � 2(k+ + k+B )k−B − (kT + kB T)2 −m2 + i0

= 2k+k−B + k2
B −m2 − 2kT · kB T − k2

T + i0

= 2k+k−B +O(m2,mλS, λ
2
S)+ i0. (5.62)

This approximation needs the assumption that all components of k are much less than Q,
but it needs no assumption on the relative sizes of the components.

If k were in the generic part of the soft region we could further approximate by noting
that k+k−B would be of order λSQ, so that

(kB + k)2 −m2 + i0 � 2k+k−B + k2
B −m2 + i0. (k not Glauber) (5.63)

But this further approximation fails in the Glauber region, |k+k−| � k2
T.
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The relevant part of the integral (5.61) now becomes∫
dk+ dk−

(2π )2

numerator

2k+k− − k2
T −m2

g + i0

× 1

[−2k+(P−B − k−B )+ . . .+ i0] [2k+k−B + . . .+ i0]

× 1

[−2k−k+A + . . .+ i0] [2k−(P+A − k+A )+ . . .+ i0]
,

(5.64)

where the terms indicated by “. . .” are independent of k+ and k−, and are of order
m2,mλS, λ

2
S . In the Glauber region, |k+k−| � |kT|2, only the poles on the collinear

lines are relevant. We see immediately that k+ and k− are trapped there, with k± =
O(m2,mλS, λ

2
S)/Q, to be compared to kT = O(λS).

The dominant contribution is in fact where λS = O(m). Smaller values are cut off by
the gluon mass, while there are enough powers of k2

T in the denominators to suppress larger
values, given our assumption about the collinear kinematics of kA and kB .

The asymmetric sizes, k± = O(m2/Q) and kT = O(m), correspond to the momentum
exchanged in small-angle elastic scattering. They are therefore natural values for spectator-
spectator interactions. The sizes of k± correspond to the small components of collinear
momenta.

To obtain the power law in Q, we compute the size of the graph compared with the basic
graph, Fig. 5.31(a). The extra Glauber gluon brings in the following powers:

• integration measure: m6/Q2, from the sizes of k± and kT;
• three denominators each of order 1/m2;
• a numerator of order Q2 because the gluon is a vector particle.

This is independent of Q, with the numerator canceling the small range of k±. If the
space-time dimension is changed from n = 4, we still get the same power of Q. The basic
graph, Fig. 5.31(a), has the power-counting of the parton model, which we use to define
the leading power for the process. Therefore, there is an unsuppressed contribution from
Glauber corrections. This result is unchanged if we make the collinear subgraphs arbitrarily
complicated.

5.6.3 Generalized Landau-equation analysis for Glauber region

The actual integrals for Feynman graphs are in a high dimension. So, as in the elementary
association between regions and massless PSSs, one can ask whether there is a possibility of
an unforeseen exotic deformation in the high-dimensional complex space, and one can ask
for a general characterization of Glauber regions. In a one-loop example, it was sufficient
to visualize the relevant one-dimensional contour integrals. I now give an appropriate
argument, generalized from the Libby-Sterman method.

In the first part of this chapter, we scaled all momentum components with Q. From this,
we showed that integration momenta are trapped at small virtualities in the vicinity of exact
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PSSs in the massless limit. The Landau method determined the locations of the PSSs quite
generally.

To determine the existence or non-existence of a Glauber pinch, we generalize this
strategy. We devise a scaling such that a trapping in a Glauber region corresponds to an
exact pinch in a certain limit. Then we use a variation of the Landau analysis to locate the
exact pinches systematically.

First I show that an exact Glauber pinch occurs when we replace the collinear denom-
inators by just the terms of the form that are the non-dotted terms in (5.64). These terms
are given by taking the asymptotics of large Q while holding the overall size of the soft
momentum fixed at order λS , and treating the collinear scaling factor as λS . (Thus the
transverse parts of collinear momenta are treated as order λS .) For this limit we also require
that λS is of order m or bigger. Asymptotically, the propagator of the soft line remains
unaltered, but the collinear denominators are simplified, so that they are just a factor of k+

or k− times a large component of the collinear momentum, e.g.,

1

k2 −m2
g + i0

× 1

[−2k+(P−B − k−B )+ i0] [2k+k−B + i0]

× 1

[−2k−k+A + i0] [2k−(P+A − k+A )+ i0]
. (5.65)

The trapping of k± at k± � λS has now become an exact pinch at k± = 0. The on-shell
condition for the collinear-to-B propagators is k+ = 0, and for the collinear-to-A propa-
gators is k− = 0. In the chosen scaling limit, the on-shell conditions apply independently
of kT, which represents a significant change from the standard Landau analysis. At the
singularities, at k+ = 0 and/or k− = 0, the gluon denominator is non-zero, so the gluon
line counts as part of a vertex of a reduced graph for this analysis: it is a hard subgraph
relative to the collinear propagators.

To determine allowed directions of contour deformation, we need derivatives of the
collinear propagators, as in (5.25). The derivatives of the collinear denominators are now
exactly light-like directions. In space-time, these correspond to propagation along a light-
like line, as in (5.57). For example, the collinear-to-B lines give

∂D(PB − kB − k)

∂kμ
−→

⎛
⎝−2(P−B − k−B )

0
0T

⎞
⎠ , (5.66)

∂D(kB + k)

∂kμ
−→

⎛
⎝2k−B

0
0T

⎞
⎠ . (5.67)

We have used column vectors for the derivatives, to distinguish them from the row vec-
tors we use for normal contravariant momentum vectors. In the asymptotic limit these
vectors are opposite in direction, so that when we apply a contour deformation, as in
(5.24), the imaginary parts generated by the deformation are opposite; the deformation
fails.
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Applying this analysis in general shows that the general Glauber-pinch configuration
is like having one or more extra hard scatterings (of the spectator collinear lines). The
condition for a classical scattering applies, and the only change with respect to the standard
hard-scattering case is the much lower momentum transfer.

5.7 Coordinates for a PSS

We now resume our general analysis. So far, we have used the Landau-equation/reduced-
diagram method to locate PSSs; this led to a catalog of important momentum regions. We
next formalize and systematize the variables we use for a general treatment, after giving a
general characterization of the class of problems we address.

For each PSS R we will define “intrinsic coordinates”, which parameterize location
on the PSS itself, and normal coordinates, which parameterize deviations off the PSS.
The normal coordinates are required to be zero on the PSS. From the normal coordinates, we
will define a radial coordinate λR , with the dimensions of mass, to give a notion of distance
from the PSS. Then we will define what we term angular coordinates to parameterize
surfaces of fixed λR surrounding the PSS.

This gives us a language, which lets us perform power-counting in Sec. 5.8, to determine
which PSSs are leading. These results then support all the later work in this book.

For any of the reactions that we discuss, there is an intimidating multiplicity of regions,
and this comes from a genuine complexity: there are infinitely many graphs, and high-order
graphs have high-dimensional loop integrations, with a large number of leading regions. In
QCD, unadorned low-order perturbative calculations are not adequate for estimating cross
sections, except in very few cases, as in Ch. 4. So, to get a useful and productive analysis
of the behavior of some amplitude or cross section, we need general methods that do not
require detailed analysis of individual graphs.6

The general strategy is essentially a recursive divide-and-conquer. We discuss each
leading region separately, and arrange to analyze it in terms of diagrammatic decompositions
such as Fig. 5.17. By our choice of coordinates, the analysis of a general region can be
visualized by a diagram that appeared in one of our examples, Fig. 5.28. At the end, it will
(perhaps) be evident that there are structures here that go beyond the perturbatively based
situations in which we derive them.

5.7.1 Relations between regions

The key elements of a general discussion are the geometrical and topological relations
between different regions, as in (5.21) and in Fig. 5.28. We take a particular point on some
PSS R for a graph, and examine a neighborhood, parameterized by a radial variable λR .

• Some propagators are off-shell at the PSS. For these, the effect of varying λR is suppressed
by a power of λR/Q, and the denominators have a fixed order of magnitude.

• Denominators of the other propagators go to zero when λR and masses go to zero.

6 But motivations can be obtained by analyzing suitable low-order graphs.
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z

R

Fig. 5.32. Representation of line/surface of constant λ surrounding a PSS R at a particular
value of the intrinsic coordinate(s), together with the relation to bigger and smaller PSSs.
See the text for details.

• At a generic point around a surface of fixed λR , we perform elementary power-counting
for the order of magnitude of the graph at R.

• But close to certain submanifolds of a fixed λR surface, some denominators get much
smaller than the power-counting estimate. The location of these submanifolds will be
obtained in Sec. 5.10 by iterating the Libby-Sterman analysis. With certain exceptions,
each such submanifold corresponds to the intersection of the surface of fixed λ with the
PSS for another region R′ larger than the first one.

The general situation is illustrated in Fig. 5.32. The thick vertical line represents the
PSS R, and there may be smaller PSSs, represented by the dots at the ends of R. There
may be one or more larger PSSs, exemplified by the shaded plane at the left of the figure.
Surrounding R, at a fixed value of the intrinsic coordinate(s), is a line of constant λR .
The integration contour, and therefore Fig. 5.32, is deformed in the space of complex
momenta to avoid non-pinch singularities.

In the figure the dimension of R is one, while the dimensions of the smaller and
larger PSSs are zero and two. But in general, R may have any dimension from zero for
a soft-gluon region in a one-loop vertex to a very high dimension in a multiloop graph,
with appropriate ranges for the smaller and bigger PSSs.

• There are exceptions to the rule that, in the integration over angular variables, intersec-
tions with larger PSSs determine the locations where the integrand gets much smaller than
the standard for R. These are typified by the Glauber region we met in Secs. 5.5.10 and
5.6. In processes without a Glauber pinch, we do not have to worry about the exceptions.

• After the intrinsic coordinates for R are integrated over, the integration includes smaller
PSSs, and we need to mesh the analysis of R with the analysis of the smaller PSSs.

• Factorization theorems generalizing the parton model are obtained by expanding in
powers of λR about a PSS, and then (typically) taking the leading power. The previous
items will tell us how to modify this analysis to deal with multiple regions.

5.7.2 Formulation of problem

We denote by G(p1, . . . pn; q1, . . . ; m,μ, as(μ)) the Green function, amplitude or cross
section to be treated. It depends on external momenta p1, p2, . . . ; q1, . . . We divide these
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into two classes, to be defined below, distinguished by the letters p and q. This gener-
alizes the usage in DIS, where p is the target momentum and q is the virtual photon
momentum.

The asymptotic behavior to be treated is specified by a scalar variable Q that gets large.
We work in a particular frame like the center-of-mass frame for the DY process, or the Breit
frame for DIS. We call this the reference frame for the process. In this frame all the external
momenta have some components of order Q. The pj momenta have fixed masses, while
the qj momenta have invariant sizes of order Q2. [Here we mean �(Q2) in the notation
of App. A.17.] The qj s are typically fixed vectors proportional to Q, or are obtained from
such a vector by at most a finite, bounded boost from the reference frame. We also rule out
the trivial but irrelevant case of giving a common large boost to a set of fixed momenta pj .
A Lorentz-invariant characterization is as follows.

1. Define scaled momenta by p̃
μ
i = p

μ
i /Q, q̃

μ
i = q

μ
i /Q.

2. We take Q large (i.e., much larger than particle masses) with each of the scaled external
momenta smoothly approaching a fixed limit as Q→∞.

3. The limit of each p̃i is a light-like vector, and the limit of each q̃i is a non-light-like
vector.

4. From the light-like limit vectors, we construct a set of unscaled light-like momenta
pA,∞, pB,∞, etc., as in our examples, e.g., pA,∞ = Q limQ→∞ p̃A. Associated with each
collinear subgraph is one such light-like momentum, which we will call the reference
momentum for the subgraph. At the PSS, the momenta of the lines of the collinear
subgraph are proportional to its reference momentum.

5. At least one of the Lorentz invariants qi · qj , qi · pj , and pi · pj increases like Q2 as
Q→∞; none increases more rapidly.

Since this is intended to be a universal characterization, the following caveats apply.

• Some of the limiting light-like vectors may be proportional to each other. This is the
case, for example, for the momenta p and p′ in the DVCS process. So we just pick one
of these to be in the set of pA,∞, etc.

• Certain minor variations on the theme are also covered; for example:
– In the Drell-Yan cross section, the transverse momentum may range from very small

to order Q; it may also be integrated over. The key point for the asymptotic analysis
is that the invariants q2, pA · q, pB · q, and pA · pB are all of order Q2.

– Some quark and hadron masses may be large, of order Q or bigger.
• There may be no need for the qj momenta. This is the case for high-energy elastic

scattering at wide angle, where the momenta of the external particles are sufficient to
specify the process. The previously stated principles tell us to define Q = √s, up to
some constant factor.

• We take G to be connected. A disconnected amplitude can always be discussed in terms
of its connected components.

A more serious complication is when the invariants have a range of sizes. A typical
and important case is DIS at small x, when p · q ∝ Q2/x � Q2. Another case would be
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high-energy elastic scattering at small angle, where |t | � s. A complete discussion of such
situations requires a generalization of our analysis.

5.7.3 Intrinsic and normal coordinates

We now show how to define intrinsic and normal coordinates for a PSS. These generalize
our earlier examples.

For the collinear-to-A PSS of the vertex graph, we used z = k+/p+A as the sole intrinsic
coordinate, in (5.18), with k− and kT as the normal coordinates. The smallest PSSs, RS ,
RA′ and RB ′ , were just points. Thus they had no intrinsic coordinates, while suitable normal
coordinates were 4-momentum deviations from the PSS, e.g., k for RS .

Naturally, the choice for these coordinates is non-unique. But certain general guidelines
apply. Each coordinate system is particularly useful in a neighborhood of its own PSS. But
it must apply to the whole of loop-momentum space, or at the very least to a large region of
size of order Q including the PSS. The transformation from the local coordinates around
the PSS to ordinary momentum variables must be analytic, certainly near the PSS and its
smaller PSSs. The intrinsic coordinates extend uniquely beyond the boundaries of their
PSS. Without this requirement, artificial coordinate singularities would complicate all our
discussions.

Each line in a reduced diagram for a PSS in a massless theory has a momentum parallel
to one of the light-like limit momenta, or is zero. For the collinear lines we choose intrinsic
coordinates as fractional momenta, each with respect to the light-like limit momentum,
e.g., pA,∞, of its collinear subgraph. The remaining intrinsic variables are the hard loop
momenta. Now each PSS is a segment of a flat hyperplane in loop-momentum space.
So with the definitions just given, the intrinsic coordinates of a PSS extend simply and
naturally to the whole of the hyperplanes, beyond the boundaries of the regions where
there is a pinch. Similarly we take the normal coordinates to be ordinary linear coordinates
in momentum space. Thus there is a unique natural extension of the coordinates to the
whole of loop-momentum space. (Our treatment of collinear regions for the vertex graph
illustrated this.)

5.7.4 Radial coordinates

We obtain the power-counting for a PSS from the integral over a radial coordinate λ,
for which we now present a suitable definition. We choose λ to have the dimensions of
mass.

To make the definition, we split the normal coordinates into two sets. One set consists of
soft loop momenta circulating through soft and possibly some collinear and hard subgraphs.
The other set consists of collinear loop momenta each circulating through a particular
collinear subgraph and possibly through hard subgraph(s).

We will write each individual normal component as a power of λ times a dimensionless
angular variable and a possible Q-dependent normalizing factor, as in (5.29) and (5.49),
with a chosen normalization condition on the angular variables.
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General collinear momenta

We specify the scalings for a collinear momentum exactly as for a collinear region for
the vertex graph, but we need to define a light-front coordinate system separately for each
collinear subgraph.

Let k be a collinear momentum in a particular collinear subgraph, and let p∞ be the light-
like reference momentum for the subgraph. We define time and spatial parts of vectors in the
reference frame (e.g., center-of-mass) of the process as a whole. Plus and minus coordinates
relative to p∞ are

k± def= 1√
2

(k0 ± n · k). (5.68)

Here n is a unit vector for the spatial direction of p∞. Then the transverse momentum is

kT
def= k − k+√

2
(1, n)− k−√

2
(1,−n), (5.69)

where the representations of vectors are in normal time-space coordinates, in the reference
frame.

Then the scalings of k are defined by exactly (5.29), with p+A replaced by p+∞ ∝ Q; that
is, a scaling with λ2 for k− and a scaling λ for kT.

Note that a covariant specification of the plus and minus coordinates needs two 4-vectors.
In effect, we have taken these as the light-like reference vector for the collinear subgraph,
and the rest vector of the overall reference frame for the process.

Soft momenta

As in Sec. 5.5.9, we define the scaling for soft momenta by

kS = λ2

Q
kS. (5.70)

Thus the power-counting of a soft momentum flowing through a collinear subgraph is the
same as the smallest component of a collinear momentum, and the time scales of the soft
and collinear lines are the same.

Normalization condition

A possible normalization condition on the angular variables is∑
collinear k

(
|k−| + |kT|2

)
+
∑
soft k

∑
μ

|kμ|, (5.71)

which generalizes (5.31) and (5.46), with suitable homogeneity properties under rescaling
of λ.

5.8 Power-counting

A basic issue in analyzing processes of the kind described in Sec. 5.7.2 is to understand the
general size of the cross section or amplitude. The primary complication is that propagator
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denominators vary widely in size in the integration over loop momenta. To handle this
issue, we use the language of PSSs in the massless theory.

In this section, for each PSS R, we categorize by a power of Q the contribution from
integration over a neighborhood of R. We will identify those PSSs that give the leading
power for the processes we consider. For deriving factorization, we normally only retain
the leading power, e.g., for DIS the power Q0, which corresponds to Bjorken scaling. The
restriction to the leading power is important because PSSs with a non-leading power often
have a much more complicated structure than those for the leading power.

In deriving the power laws, we will see that logarithmic enhancements arise from
integrations between different nested regions. But logarithms do not affect the utility of
dropping non-leading power terms.

The derivation involves estimates of the sizes of propagator denominators near a PSS.
In later chapters a consequence will be the construction of an appropriate approximation
for each leading PSS. These approximations enable the derivation of useful factorization
theorems.

We will vary terminology between “PSS” and “region”. Precise formulations use PSSs
in the massless theory. But we talk about a region, rather than the associated PSS, when we
wish to emphasize, for example, that the associated power of Q concerns the contribution
from a neighborhood of the PSS in the real theory.

The present formulation originates in the work of Sterman (1996), but with improve-
ments, closely following the treatment of Collins, Frankfurt, and Strikman (1997). This
treatment relies on general properties of dimensional analysis and of Lorentz transforma-
tions rather than on a detailed analysis of the numbers of loops, lines and vertices of graphs
and subgraphs. Using such general properties, in particular the transformation of collinear
subgraphs under large boosts, gives the results a validity beyond strict perturbation theory.
Although much of the treatment concerns Feynman graphs, the collinear and soft factors
should really be non-perturbative.

Much earlier work used an axial gauge (e.g., A0 = 0, A3 = 0, or A+ = 0) or the Coulomb
gauge. However, the unphysical singularities in the gluon propagator for such “physical
gauges” prevent us from using contour deformation arguments. Thus we prefer to work in a
covariant gauge – see the discussion of the Glauber region in Sec. 5.5.10, where unphysical
singularities in physical gauges would have obstructed a contour deformation out of the
Glauber region.

Therefore we normally use a covariant gauge, like the Feynman gauge. The price is that
leading regions (e.g., Fig. 5.7(c) for DIS) have arbitrarily many extra gluons joining the
collinear and hard subgraphs. But these gluons have a particular “scalar” polarization for
which Ward identities apply to convert the sum over all possibilities to a factorized form.

5.8.1 Comments on power of Q and dimensions

A danger in formulating general results is that one misses nuances of particular cases.
Consider the simplest general statement of the leading power of Q, that it corresponds
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Fig. 5.33. Elementary contribution to Drell-Yan with single spectator.

to the dimension of the cross section or amplitude under consideration, as in (5.5). This
rule is indeed correct for the DIS structure functions F1 or F2, with their power Q0 that
corresponds to Bjorken scaling. But modifications are needed for certain other cases. For
example, in Sec. 5.8.2 we will find that a different power is needed for the Drell-Yan cross
section, in the case that the transverse momentum qT is much less than Q.

The culprit is a delta function for transverse-momentum conservation. Essentially the
derivations of power-counting are at their most straightforward when applied to ordinary
functions, not to delta functions.

In general, a reliable strategy for dealing with such issues is to start by analyzing very
simple graphs for the process under consideration, e.g., graphs such as Fig. 5.20 that gives
the parton model for the Drell-Yan process, or, better still, just the lowest-order case,
Fig. 5.33. A general region for the process can have more-complicated region subgraphs,
and can have more lines joining the subgraphs. The changes relative to the simplest graph are
robustly handled by our general derivation of the power-counting rules, in later sections.
It is just the most basic situation that needs to be treated in a more process-specific
fashion.

5.8.2 Power-counting for DY

To see these issues concretely, consider the fully differential cross section for the Drell-
Yan process (5.14). This can be written as dσ / d4q d�, where q is the momentum of the
lepton pair and d� is for the polar angles θ and φ that give the directions of the individual
leptons. Since the lepton pair results from a single virtual photon, the angular distribution
is a second-order polynomial in the sine and cosine of the polar angles; thus no special
issues arise that depend on different regions of θ and φ. The cross section has an energy
dimension of−6, and the natural power law is Q−6, where Q is the mass of the lepton pair
Q =

√
q2, assumed to be comparable with the center-of-mass energy.

This power law is in fact correct when the transverse momentum qT of the lepton pair is
comparable with Q. But I will now illustrate, by examining graphs of the form of Fig. 5.33,
that when qT is much smaller than Q, the power law must be changed to the much bigger
value 1/(Q4q2

T). This power is cut off by the effects of hadronic masses when qT is of order
a hadronic mass.

https://doi.org/10.1017/9781009401845.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.005


5.8 Power-counting 137

Let us write the graph as∫
d4kA d4kB B(kB, PB ) A(kA, PA) H (kA, kB, q) δ(4)(q − kA − kB), (5.72)

where A and B represent the upper and lower bubbles, while H represents the product of
the amplitudes for the qq̄ → μ+μ− amplitude. Initially, we assume that the initial particles
PA and PB are elementary, and for the purposes of understanding the power-counting it is
sufficient to take the subgraphs A and B to be the simplest tree graphs, as in Fig. 5.33.

We must now investigate the following regions for Fig. 5.33, which can be distinguished
by the values of the transverse components of the loop momenta:

• the purely hard region, where the whole graph forms the hard subgraph, so that both kA T

and kB T are of order Q;
• the single-collinear regions where only one transverse momentum is of order Q; the

other is power-counted as order λ� Q;
• the double-collinear region, where both kA T and kB T are much less than Q; they are both

counted as order λ.

In the purely hard region, dimensional analysis applies unambiguously to give the basic
1/Q6 power. There are delta functions in A and B to put the spectator particles on-shell.
But these set the sizes of momentum components that are of order Q, and the dimensional
analysis argument still works. In this region of loop momenta, the 1/Q6 power law applies
independently of the value of the external transverse momentum qT. The hadronic final
state contains two jets of high transverse momentum, corresponding to the remnant partons,
which have large transverse momentum.

Next, consider a single-collinear region; for definiteness let us choose kA to be collinear
to PA, so that kA T is of order λ. The other transverse momentum kB T is large and must
therefore flow out into the virtual photon. Hence this region only exists when the lepton pair
has transverse momentum of order Q. This large transverse momentum is approximately
balanced by a final-state jet formed by a remnant parton on the B side.

We can think of the collinear subgraph as having an approximate rest frame in which
all components of its momenta are of order λ. Given that parton A is a quark, the collinear
subgraph has dimension −3; the measure of the kA integral has dimension +4, for a total
dimension of +1. This corresponds to a power λ, instead of a power Q which we would
obtain for the same subgraph in the purely hard region. But the subgraph is boosted from its
rest frame. Each of the lines connecting it to the hard subgraph has spin- 1

2 , so that largest
components of the spinors on each line gain a factor of (Q/λ)1/2 from the boost, for a
total of Q/λ. Thus the complete power law is (λ/Q)0 relative to the purely hard case; that
is, the overall power remains unchanged. Thus we still get the overall power Q−6 for a
single-collinear region, but this region only exists for the large-qT region.

It is worth noting that although the detailed argument depends on the spin of the quark,
the power law does not. If we were to use a model with a scalar quark, then there would be
no Q/λ enhancement from the boost, but the collinear subgraph, complete with its integral,
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has dimension 0. So the overall power is unchanged. The same argument applies to gluons
with transverse polarization. But a virtual gluon can also have a polarization in the direction
of the large momentum, and boosting each of two gluons gives an enhancement by a factor
(Q/λ)2. But a Ward-identity argument will show that this part cancels after a sum over all
possible hard subgraphs: see Ch. 11 for the simplest such derivation.

Finally, we examine the double-collinear region. The virtual photon has transverse
momentum kA T + kB T, which is of order λ. The separate collinear subgraphs give an
unchanged power of Q just as in the single-collinear region. However, in the delta function
for transverse momentum conservation, δ(2)(qT − kA T − kB T), all the momenta are of order
λ. So the delta function power counts as 1/λ2 instead of 1/Q2. As previously announced,
the result is an enhanced overall power of 1/(Q4q2

T) instead of 1/Q6.
The phenomenological result is a strong enhancement at small qT, as we will see in

the data in Fig. 14.13. Evolution effects, to be treated in Chs. 13 and 14, will strongly
modify the actual power law, so the power law just derived has exact applicability only for
individual graphs. Of course the decrease is cut off at small enough λ that mass effects need
to be taken into account.

We made an initial assumption, for simplicity, that the initial-state particles are elemen-
tary. But the dimensional-analysis argument applies to the collinear subgraphs even when
the initial particles are composite. So we get the same power laws when the initial-state
particles are normal hadrons, which entails the use of bound-state wave functions.

It is also useful to examine the cross section integrated over the transverse momentum
qT of the pair and also over the angle of the leptons, to give dσ / dQ2 dy, where y is the
rapidity of the lepton pair relative to the center-of-mass. In the small-qT region, a factor
λ2 arises from the integration measure d2qT, which compensates the 1/λ2 factor in the
differential cross section. Hence the integrated cross section power counts as Q−4 in all
regions. Naturally there is a logarithmic enhancement from the integral to small transverse
momentum, which leaves the power law itself unchanged.

We can summarize the source of the enhancement in the differential cross section at
small qT as being in the creation of virtual photon from two oppositely moving collinear
partons, without production of extra jets. Technically the enhancement is associated with
the transverse-momentum delta function in this situation, so that the collinear transverse-
momentum integrals are linked. In regions with production of jets of high transverse
momentum, as in Fig. 5.19, there is no enhancement. We therefore see a simplification
of the leading regions relative to the case that qT is of order Q. In compensation, the
linking of the collinear transverse-momentum integrals introduces some very interesting
extra features in the derivation and formulation of factorization, as we will see in Chs. 13
and 14.

5.8.3 Powers of Q and λ

We consider a generic point in the intrinsic variable(s) z, and examine the integral over the
radial variable λ. There is an angular integral, represented by the ellipse in Fig. 5.32. Over
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most of the angular integration, the sizes of the denominators (with masses neglected for
now) obey the standard power-counting, Sec. 5.5.8:

Hard: Q2,

Collinear: λ2,

Soft: λ4/Q2 = λ2
S.

(5.73)

These sizes are not exceeded. Much smaller values may be obtained, but only close to
certain submanifolds of the intrinsic variables or of the angular integration. These are
where z gets close to the PSS for a smaller region than or where the angular variables get
close to a larger region: Sec. 5.10.

Our basic strategy is to use dimensional analysis to convert these estimates for single
lines to estimates for the whole hard, collinear and soft subgraphs. This is supplemented
by factors implementing boosts of collinear subgraphs from their rest frame: these produce
enhancements that increase with the spin of the lines connecting the collinear to hard and
soft subgraphs.

For small λ all the denominators participating in the PSS R get small. For large λ ∼ Q,
they all become hard, i.e., they all have virtualities of order Q2. (Of course, this is holds
except for neighborhoods of PSSs R′ that are bigger than R. In neighborhoods of these,
some denominators remain small. But this happens only in a small part of the angular
integration.)

To obtain the power of Q for a region, we start from an estimate of the λ-dependent part
of the integral in the form

Qp1

∫ O(Q)

0

dλ

λ
λp2 , (5.74)

or some variation thereof, with the exponents p1 and p2 to be determined. At small λ, we
should cut off the integral by the effects of masses, and at large λ we get to a purely hard
region when λ ∼ Q. We distinguish three different cases:

• The power of λ is zero: p2 = 0. Then the integral is logarithmic and each order of
magnitude in λ contributes equally. The resulting Q dependence is Qp1 modified by
logarithms, a very typical situation in QCD.

• The power of λ is negative. Then the integral would have a power-law divergence
at λ = 0 were it not for mass effects. The physical result is therefore dominated by
small λ, and we must examine the cutoff provided by masses. If the dominant cutoff
is on collinear lines, then it is at λ ∼ m, and the power law is still Qp1 . If the dom-
inant cutoff is on soft lines, then the cutoff on λ is

√
mQ, and the power of Q is

Qp1+p2/2.
• The power of λ is positive. Then the integral is dominated by its upper end, λ ∼ Q,

i.e., by a hard region rather than R. The power of Q for this hard region is Qp1+p2 .
The contribution of the region R for a particular size of λ is of order Qp1λp2 , which is
a power of Q less than the contribution of the hard region. Thus the region R itself is
non-leading.
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5.8.4 Overall form of power law

We now derive the power law for a general PSS R in the form

Qp

(
λ

Q

)α(R)(
λS

Q

)β(R)(
m

Q

)s.r.(H )(
m

λ

)s.r.(C)(
m

λS

)s.r.(S)

. (5.75)

The first factor is the characteristic power of Q for the process, e.g., the dimensional-
analysis power for the Sudakov form factor or for DIS. As such, it is independent of the
particular PSS R. The exponents in the second and third factors indicate how the power
is modified by collinear and soft subgraphs. We will obtain formulae for the exponents in
terms of the numbers of external lines of the various subgraphs defining the process and
the regions.

The last three factors arise if there are super-renormalizable couplings in the theory.
Although super-renormalizable couplings do not exist in QCD, it is useful to work with
models with extra couplings. First, they allow us to see the result for a general QFT. Second,
they do arise when we dimensionally regulate QCD. Finally, they help to give insight into
the physical phenomena associated with the power-counting theorems. Furthermore, some
equivalents of super-renormalizable couplings occur when external particles are bound
states and collinear subgraphs contain their wave functions.

The above power law is intended to apply when we integrate over λ of some order
of magnitude. Similarly, we assume that we have integrated over a range of the intrinsic
variables that is of order their typical size, all the while staying away from smaller PSSs.
Notice that, to let us easily read off the different effects of masses in the collinear and
soft subgraphs, we wrote some factors in terms of λ and some in terms of the soft scaling
variable λS = λ2/Q. Factors involving λS are associated with the soft subgraph.

5.8.5 Basic power Qp

Subject to the caveat in Sec. 5.8.1, the first factor Qp in (5.75) is the dimensional analysis
power for the amplitude or cross section under discussion. For a connected amplitude,
dimensional analysis gives

p = 4− #(ext. lines), (5.76)

where #(ext. lines) is the number of external particles and external hard currents. In this
estimate are included Dirac wave functions for external spin- 1

2 fermions, which grow with
energy like Q1/2; the exponent is independent of the types of the external particles.

For example, for the current-quark-antiquark vertex of Fig. 5.1, we have three external
lines, and therefore the power is Q1. In the case of a scalar quark, at lowest order the power
is from the factor of momentum at the photon-quark-quark vertex. In the case of an ordinary
Dirac quark, the vertex is a Q-independent Dirac matrix γ μ; the two external Dirac wave
functions give the overall power Q1.

Another example is the DIS structure tensor Wμν , for which there are four external lines.
This gives Q0, i.e., Bjorken scaling.
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5.8.6 Formulae for the other exponents

I first state the formulae for the exponents α(R) and β(R):

α(R) = #(CH )− #(scalar pol. glue CH )− #(ext. lines) , (5.77)

β(R) = #(0 or 1, SH )+ 3

2
#
(

1
2 , SH

)+ 1

2
#
(
0 or 1

2 , SC
)
, (5.78)

and explain the meanings of the terms on the r.h.s.; these give the exponents in terms of
the numbers of external lines of the different subgraphs for the PSS. Then I will state the
formulae for the remaining exponents. In later sections I will derive the formulae.

In (5.77), #(CH ) is the number of lines joining the collinear and hard subgraphs. When
α(R) is used in (5.75) there is therefore a power suppression as the number of collinear lines
joining the subgraphs is increased. We will see in Sec. 5.8.8 that, in the polarization sum for a
gluon connecting a collinear to the hard subgraph, there is no power suppression when gluon
has what we call scalar polarization. The second term on the right, #(scalar pol. glue CH ),
provides the necessary compensation to the first term. Finally #(ext. lines) is the number of
external particles of collinear subgraphs (e.g., a total of two for the two collinear subgraphs
in a PSS for the Sudakov form factor).

The power β(R) in (5.78) depends on the numbers of lines connecting the soft subgraph
to the other subgraphs. The value depends on the spin of the lines, so we write, for example,
#
(
0 or 1

2 , SC
)

for the number of lines of spin 0 or 1
2 connecting the soft to collinear

subgraphs, and similarly for the other terms.
Notice that the formula for β(R) implies that there is generally a suppression by a

power of Q whenever lines join the soft to the collinear or hard subgraphs, the suppression
increasing with the number of lines. But there is an exception, that there is no penalty for
gluons joining soft to collinear subgraphs. Thus β(R) is zero when the connections of the
soft subgraph consist only of gluons to the collinear subgraphs. In all other cases β(R) > 0.

Finally, the other exponents in (5.75), s.r.(H ), s.r.(C), and s.r.(S), are the dimensions
of the super-renormalizable couplings in the hard, collinear and soft subgraphs. In the
corresponding factors, we use m to denote a mass scale for the typical size for these
couplings.

5.8.7 Exponent for hard subgraph

Let the hard subgraph H have NF external fermionic (Dirac) lines and NB external boson
lines. In normal QCD processes, this means that NF is the number of quark plus antiquark
external lines, while NB is the number of external gluon lines, plus the number of external
photon, W , Z, and Higgs lines. We always take the hard part to be one-particle irreducible
in its external lines, so the dimension of H is dH = 4− 3

2NF −NB. In the usual case that
all the couplings are dimensionless, the power associated with the hard subgraph is just the
usual UV power from dimensional counting with all momenta of order Q:

QdH = Q4− 3
2 NF−NB . (5.79)
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The use of dimensional analysis shows that this power depends only on the external lines
of the subgraph, not on the internal details. We will combine the above exponent with the
results for collinear and soft subgraphs to give (5.75), (5.77), and (5.78).

If there are super-renormalizable couplings with combined mass-dimension D, they
count as mD instead of QD . This gives a correction factor relative to (5.79) of (m/Q)D ,
i.e., the fourth factor in (5.75).

5.8.8 Exponents for collinear subgraph

Rest frame

The region may have one or more collinear subgraphs C, as in Figs. 5.7 and 5.16. For
each collinear subgraph, we express the momenta of its lines in the light-front coordinates
defined in (5.68) and (5.69). Our definition of the radial variable λ in Sec. 5.7.4 gives
exactly the same power-counting as in the one-loop example in Sec. 5.5.2, so that both the
integration measure for a generic collinear momentum k and denominators for collinear
propagators count according to their dimensions, λ4 and λ2 respectively. In a collinear
subgraph we include any collinear loop momenta that circulate through the hard subgraph.

In the collinear subgraphs, we also include the wave functions for external particles of
the relevant collinearity class, and numerator factors. Their effect is assessed by boosting
from (an approximate) rest frame.

Now in the rest frame of the collinear momenta, the power of λ is just given by its
dimension: λdim of subgraph, apart from super-renormalizable couplings. The dimension of a
connected collinear subgraph, including external Dirac wave functions, is

#(C to H )+ 1

2
#
(

1
2 : C to H

)− #(S to C)− 1

2
#
(

1
2 : S to C

)− #(C to ext.) , (5.80)

with a notation like that in (5.77), and with #(C to ext.) representing the number of external
lines connecting to the collinear subgraph. The different signs of the terms in (5.80) arises
from the differences between amputated and unamputated lines at the edge of the subgraph,
and from the loop integrals coupling the graph to the hard subgraph. If there are super-
renormalizable couplings, they give a correction factor which is the fifth factor in (5.75),
similarly to the case of the hard subgraph.

We sum (5.80) over all the connected collinear subgraphs, and obtain the same formula,
with the terms like #(C to H ) now denoting the number of lines connecting all collinear
subgraphs to the hard subgraph.

Boost of collinear subgraph

Next we boost each collinear subgraph to the overall center-of-mass frame. The result
depends on the spins of the lines connecting the subgraph to the hard and soft subgraphs.
For a field of spin-s, standard properties of representations of the Lorentz group show that
its biggest component increases under the boost like (Q/λ)s . For a Dirac field we have a
power (Q/λ)1/2, while for a gluon7 we have Q/λ. For a whole collinear subgraph, we need

7 Any result for a gluon applies also to any other spin-1 field, e.g., for the photon.
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the product of one such power for each line joining it to the hard subgraph, and for each
line joining it to the soft subgraph. (We have included external Dirac wave functions in the
collinear subgraph(s), so they do not need to be allowed for separately.) Combining all the
powers so far gives (5.75) except for soft-subgraph associated factors:

Result in (5.75)× λ
−#(S)− 1

2 #( 1
2 :S)

S . (5.81)

With one exception, the exponents, p, α(R), and β(R) in the referenced formula (5.75) are
given by (5.76)–(5.78), while #(S) is the number of all external lines of the soft subgraph,
and #( 1

2 : S) is its number of spin- 1
2 external lines [which also count in #(S)]. We wrote the

second factor in (5.81) in terms of λS = λ2/Q, since that is the natural variable for the soft
factor.

The exception about (5.81) concerns the gluons, where the derivation so far gives

Preliminary: α(R) = #(CH )− #(spin 1: CH )− #(ext. lines) . (5.82)

This is the exponent of λ/Q, so it implies that we have a penalty for every extra line joining
the collinear and hard subgraphs, except for the gluons. The non-suppression of gluons
arises from the plus component of the gluon polarization (in the direction of the collinear
group it belongs to), because of the corresponding boost factor Q/λ.

But we will also use the transverse components, which do not undergo this boost. We
now examine how to separate the contributions.

Collinear gluon polarization

We have already seen this phenomenon in examples. So let us examine a general decom-
position of a connection of a gluon of momentum k from a collinear subgraph C to the
hard subgraph H . We have a factor C(k) ·H (k), where there is a contraction of the Lorentz
index at the H end of the gluon. The gluon is collinear, so we define the collinear factor
C to include the gluon’s propagator. We decompose C ·H with respect to the light-front
components for C:

C ·H = C+H− + C−H+ − CT · HT. (5.83)

After the boost from the rest frame for the collinear subgraph, the largest component of
Cμ is the C+ component, which increases like Q/λ. Next is the transverse component CT,
which is boost invariant, and finally C−, which decreases like λ/Q.

The largest term is therefore C+H−, and this gives the power derived above, in (5.81)
and (5.82). So we define a Grammer-Yennie decomposition:

H · C = H · kC+

k+
+ Hμ

(
Cμ − kμ C+

k+

)
. (5.84)

The highest power Q/λ for Cμ is in the first term alone, which we call the scalar polarization
term, since it has a polarization vector proportional to the momentum of the gluon. It is of a
form suitable for applying a Ward identity. The second term, a transverse polarization term,
has the highest power removed: the quantity in parentheses is exactly zero when μ = +.
Therefore this term power counts as 1 instead of Q/λ.
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We now apply this decomposition to every gluon joining the collinear subgraphs and H .
Each gluon line gives a scalar polarization term and a transverse polarization term. This
converts the exponent α(R) from the one in (5.82) to the one in (5.77).

The importance of this operation is as follows. We start with a case like the parton model
for DIS where the hard scattering is induced by fermion lines, and to get a leading power,
we use the minimum possible number of such lines, which is two for the structure function
in DIS. Replacing the fermions by scalar polarized gluons increases the power of Q to
Q2, giving a super-leading contribution. The super-leading contribution in fact cancels, as
shown by the use of Ward identities (Labastida and Sterman, 1985). The remaining term is
leading, and involves transversely polarized gluons.

Similar decompositions can be applied on fermion lines, but we will not need them here,
because we will not have the same cancellation of the highest power.

5.8.9 Derivation of exponent for soft subgraph

We now bring in the soft subgraph S. All its external lines attach to the collinear and hard
subgraphs. We include in S the integrals over loop momenta that circulate from S through
the hard and collinear subgraphs, since these loop momenta are necessarily soft. The soft
subgraph S may have one or more connected components.

A complication we have already noticed is that of choosing an appropriate scaling of the
momenta. We let λS be the scaling factor for all the components of soft momenta. We have
seen that to match the time scales of soft and collinear graphs, we need to take λS = λ2/Q,
where λ is the overall radial variable for the region under discussion. This contrasts with
the treatment in Sterman (1996) where λS and λ were taken to be the same.

Without super-renormalizable couplings, our usual dimensional analysis argument
applies in terms of λS to give a power

λ
#(S)+ 1

2 #( 1
2 :S)

S , (5.85)

where the exponent is the dimension of the soft subgraph, including its loop integrals to the
collinear and hard subgraph. This power applies independently of the number of connected
components of the soft subgraph. This power evidently cancels the second factor in (5.81),
so the final power law is (5.75), with the exponents defined in (5.76), (5.77), and (5.78).
If there are super-renormalizable couplings, they give the last factor in (5.75), by the same
reasoning as for the other subgraphs.

5.8.10 Other scalings

The derivation of the power law assumed what we can call the canonical scaling of momenta
for a region R – (5.29), (5.49), which led to (5.73) for the denominators. Could other cases
matter? We have cataloged all pinch-singular surfaces of massless graphs for our process.
The scalings parameterize a neighborhood of each region by a radial variable. To the extent
that the estimates of the denominators in (5.73) are correct, our derivations are correct.

https://doi.org/10.1017/9781009401845.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.005


5.8 Power-counting 145

Where the denominators are much smaller than the estimates, our derivation is incom-
plete. We will see in detail later that these situations occur in three ways. One is around
an intersection of a surface of constant λ with the PSS for a bigger region than R, as in
Fig. 5.32. The second is where the intrinsic variables of R approach a smaller PSS. The
final possibility is where there is a trap of the integration region in a Glauber-type region.

We will show that the power laws remain correct in the first two cases, but if there
is logarithmic behavior in λ, i.e., a power λ0, then logarithmic enhancements in the Q

dependence occur relative to the basic power. This is quite common.
For many processes of interest, the Glauber region does not contribute or cancels after

a sum over allowed final-state cuts.
One complication arises when some particle masses are actually zero, and we have

an actual infra-red or collinear divergence at λ = 0. In a theory of confined quarks and
gluons these divergences are not genuinely physical, but they do appear in Feynman
graphs. They are handled by a sufficiently careful treatment of the soft region as we have
defined it.

5.8.11 Power of Q

From (5.75), we derive the power of Q associated with a region after integration over λ.
An important case is that all the exponents α(R), . . . , s.r.(S) are zero, which corresponds to
leading regions for processes like DIS and Drell-Yan. Then we simply get Qp, which is the
power corresponding to the dimension of the amplitude or cross section under consideration.
There is no λ dependence in (5.75), so the integral (5.74) gives a logarithm of Q divided by
a mass scale. When we discuss nested regions, in Sec. 5.10, we will find an extra logarithm
for every level of nesting where power-counting gives a logarithmic radial integral. The
actual result is then

Standard leading power: Qp × logarithms. (5.86)

When one or more of the exponents is non-zero, the precise power of Q will depend on
how masses cut off the integral at small λ. If there is no soft subgraph, then the cutoff is
dominated by masses on collinear lines, so that the power of Q is determined by setting
λ ∼ m and we get

Coll. cutoff: Qp−α(R)−s.r.(H )mα(R)+s.r.(H ) × logarithms. (5.87)

If there is a soft subgraph, then the cutoff is at λS ∼ m, i.e., λ ∼ √mQ, and we get

Soft cutoff: Qp− 1
2 α(R)−β(R)−s.r.(H )− 1

2 s.r.(C)

× m
1
2 α(R)+β(R)+s.r.(H )+ 1

2 s.r.(C) × logarithms. (5.88)

If there are both collinear and soft loops, the cutoffs can be different on the collinear and soft
loops. This will result in an important contribution where the k variables [see (5.29)] are
particularly small on collinear lines. This will refer to a small part of the angular integral.
In our discussion of nested regions, we will assign this part to another region.
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5.9 Catalog of leading regions

We now obtain general rules for determining the leading regions for a process.

5.9.1 General principles

The general power law was given in (5.75). Rather than presenting a power of Q alone, we
have have included powers of λ and λS . Thus we can read off the effects of masses that cut
off the integrals at their lower ends.

For each process there is a minimum number of collinear lines entering the hard scattering
if the process is to occur kinematically. For example, this is one on each side of the final-
state cut in DIS, and two on each side of the final-state cut for Drell-Yan. In all these
cases this is the same as the number of external hadrons for the process as a whole. With
this minimum number of lines, we get α(R) = 0. This is provided that we exclude gluons
of scalar polarization in the minimally connected graphs; as will be proved later, we get
zero after summing over graphs when all the lines joining a collinear subgraph to the hard
scattering are zero.

Thus with the minimal number of connections between the collinear and hard subgraphs,
the power of Q is the same as the pure UV power, Qp = Q4−#(ext. lines), which we define to
be the leading power for the process, e.g., Q0 for DIS.

After this we read off from (5.75)–(5.78) that we get a power suppression, when we do
any of the following:

• attach extra collinear lines to the hard scattering, except for scalar polarized gluons;
• attach any soft lines to the hard scattering;
• attach the soft subgraph to the collinear subgraphs by anything but gluons.

But there is no penalty for extra scalar-polarized collinear gluons attaching to the hard
scattering, and there is no penalty for soft subgraphs that attach to collinear subgraphs by
gluon lines only.

As to super-renormalizable couplings, they always give a penalty in the hard scattering.
But in the collinear and soft subgraphs, there is no penalty as long as the momenta are
at the lower end of their range, near the mass cutoff. Note that in the limit of zero mass,
super-renormalizable couplings convert otherwise logarithmic IR singularities to power-law
singularities.

It is worth observing that our rules give no penalty for having quark loops inside the
soft subgraph. This is a fact that is sometimes forgotten, because in the corresponding
IR-divergence problem in QED, no loops of massive fermions need to be considered.

One complication that sometimes arises is that when one actually does a particular
calculation, the coefficient of the leading power might be zero. Typically this arises
because of some symmetry. A simple example is the polarization dependence of DIS.
The power-counting argument permits a Q0 behavior in Wμν for the dependence on both
longitudinal and transverse polarization. In fact only longitudinal polarization gives this
behavior, in the structure function g1 – see (2.20). But for transverse polarization, there is a
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power suppression – see Sec. 6.1.4 for the parton-model case – which results from the
chiral symmetry of QCD and QED perturbation theory for hard scattering.

5.9.2 Prescription for leading regions

From the results just derived, the leading regions in the examples earlier in this chapter are
indeed those stated: e.g., Fig. 5.5 for the quark-quark-current vertex, Fig. 5.7(c) for DIS
and DVCS. The general principles are:

1. The soft subgraph connects only to collinear subgraphs and only by gluons.
2. The collinear subgraph(s) each connect to the hard subgraph(s) by the minimum number

of lines consistent with the desired process or reaction occurring at all.
3. In addition, arbitrarily many gluons of scalar polarization may connect a collinear

subgraph to a hard subgraph.

Thus in DIS, two quarks, one on each side of the final-state cut, can join the target-collinear
subgraph to the hard subgraph. This exactly corresponds to the idea that motivated the
parton model. But the rules just stated show that it is possible to replace the quark lines
by transversely polarized gluon lines. This corresponds to a short-distance scattering off
a gluon constituent in the target, compatible with the basic short-distance scattering idea.
However, the minimal hard scattering is the reaction γ ∗ + g→ qq̄, for which the amplitude
is one order higher in QCD perturbation theory than for scattering off a quark.

5.9.3 Possibility of multiple hard scatterings

A particularly non-trivial example is elastic scattering of protons at wide angle. The reaction
is P1 + P2 → p3 + p4. The incoming protons are in opposite directions, and the outgoing
protons are in very different (and again opposite) directions. Thus there are four collinear
directions, two in the initial state and two in the final state.

If we restrict our attention to reduced graphs with collinear and hard subgraphs, then
one possibility is a single hard subgraph, as in Fig. 5.34(a). Now a single quark has baryon
number 1

3 , so a minimum of three quarks out of the collinear subgraph for each proton must
attach to the hard scattering; otherwise, for example, remnants of the incoming protons
would be left in the final state, approximately parallel to the incoming hadrons.

The connected hard scattering subgraph has 12 quark lines, which, from (5.76), cor-
responds to a power 1/Q8 in the amplitude, or equivalently 1/s4. Converting to a cross
section gives dσ / dt ∝ 1/s10, as first found by Brodsky and Farrar (1973).

But it is also possible to have three separate quark-quark hard scatterings: Fig. 5.34(b).
As shown by Landshoff (1974), this results in less of a suppression, giving dσ / dt ∝ 1/s8.
The derivation needs a generalization of the results earlier in this section, both because
the hard scattering is disconnected, and because of the associated momentum-conservation
delta functions.

There are also a number of other possibilities that need to be examined, including a single
quark-quark hard scattering, with the other quarks being soft. Soft quarks normally give
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Fig. 5.34. Possible reduced graphs for wide-angle elastic proton-proton scattering: (a)
with connected hard subgraph, (b) with three separate hard subgraphs. The elliptical blobs
labeled Cj are collinear, and the unlabeled circular blobs are hard.

(a)
P1

P2

(b)
P1

P2

Fig. 5.35. Side views of the spatial structure corresponding to the reduced graphs
of Fig. 5.34.

a power-suppression, but here this is compensated by not needing so many lines entering
the hard-scattering subgraph(s). A correct analysis also needs to account for the Sudakov
suppression of the hard scattering in the Landshoff graph, because each subgraph involves
isolated color.

The difference between the mechanisms can be understood in space-time. With a single
hard scattering, all the quarks in each proton must come down to within a transverse distance
1/Q of each other: Fig. 5.35(a). This gives a strongly power-suppressed probability, since
the normal transverse separation of the quarks is of the order of 1 fm.

For the Landshoff process, it is merely necessary that each quark in one hadron comes
within 1/Q of one of the quarks in the other hadron, Fig. 5.35(b), which is more probable.
In order for this to match the same picture for the outgoing protons, the three intersections
must line on a line transverse to the scattering plane, which gives a further suppression in
the final result in Landshoff (1974).

5.10 Power-counting with multiple regions

The power-counting scheme of the preceding section arose from estimates of the sizes
of propagator denominators around any given region R. We call this the canonical power
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estimate. It not only gives us the power of Q associated with the region; it also indicates what
kind of approximator is appropriate, where we neglect certain components of momentum
on a line. Such approximators are critical to deriving factorization theorems.

So we must ask where the estimates fail. As we will now show, with a certain exception,
the failures occur in two situations: (a) where the particular values of the intrinsic variables
for R approach a smaller PSS; and (b) where the angular variables take us to the vicinity
of a larger PSS. The true results in these cases are essentially obtained from the canonical
power-counting for these other regions. The canonical power law of Q will be modified by
logarithmic corrections. The one exception to the above statements concerns regions of the
Glauber type, which are avoided by contour deformation in many cases, or otherwise need
special discussion.

For high-order graphs there are many possible PSSs which intersect in many ways.
An important feature of the following discussion will be to reduce the general case to a
collection of a very few generic situations.

5.10.1 Locations of failures of power-counting

Consider a region R, with its radial variable λ. We use (5.29), (5.49) for the scaling
of collinear and soft momenta, which gives the canonical sizes (5.73) for propagator
denominators. Because of the normalization condition on the angular variables, the size of
each momentum component is limited by its canonical scaling value, apart from a constant
factor. Numerators are all bounded by their canonical values. Thus the only possibility of a
failure of the power-counting is for one (or more) denominators to be much less than their
canonical values.

To determine where this happens, we use a variation on the Libby-Sterman scaling
argument. It involves the ratios of the propagator denominators to their canonical values:

rl =
∣∣∣∣denominator l

canonical l

∣∣∣∣ , (5.89)

where l labels the line. Our concern is the minimum value of these ratios. First, suppose
there is a non-zero lower bound to all the ratios: rl ≥ rmin �= 0, that applies uniformly over
all propagators, over all the angular variables, over λ from zero to order Q, and for all large
enough Q. Then the canonical value of the denominator is unambiguously correct for our
power-counting.

Next we locate failures of such a bound by integrating around a surface of constant λ

(Fig. 5.36) with the intrinsic coordinate(s) fixed. We call this surface �(λ,R). Often the
minimum value of the ratio is set by mass effects, so that the ratio is very small when
λ is increased, thereby wrecking the power-counting. We therefore set masses to zero to
give an appropriate diagnostic. If the minimum value of one or more ratios is zero in the
massless theory, then the power-counting has failed, and we must examine a neighborhood
of the subsurface where the minimum is zero. In this situation we have a singularity in the
integrand in the massless theory.

Naturally, as in all our arguments, if it is possible to deform the contour of integration
away from a singularity, we do so. Thus we only need treat cases where one or more of
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R

Surface
surrounding

R
λ

Fig. 5.36. The dashed line represents a surface �(λ, R) of constant λ surrounding the PSS
for R. The dot in the center represents the PSS R, and the three solid lines represent other
PSSs. Although the surface �(λ,R) is diagrammed as having radius λ, some momentum
components may scale differently, e.g., as λ2/Q.

the ratios rl is pinched at zero. This is exactly the condition for a PSS, and in fact that the
surface of constant λ intersects another PSS R′. There are now two cases, depending on
whether or not the second PSS intersects the first.

If R′ is like the upper solid line in Fig. 5.36, it does not intersect the original PSS R. In
this case we reduce the maximum value of λ under consideration to avoid R′. The maximum
value of λ is still of order Q, leaving our methodology unaltered. The region around R′ can
be treated by power-counting methods adapted to R′ without the need to consider R. Any
leftover gaps involve purely hard momenta.

The other case is that R′ intersects the original PSS R, as for the lower two solid lines
in Fig. 5.36. Then we must examine a neighborhood of R′, and use its power-counting
to modify our original estimate – which we will do in Sec. 5.10.2. We can treat each
such R′ separately. In angular sectors not near these PSSs, the original estimate applies
unchanged.

So one possible failure of the simple power-counting occurs at the intersection of �(λ,R)
with a PSS R′ bigger than R.

But there are other possibilities for the intersection of the new surface R′ with R. One
is that the intersection R′ ∩ R is a lower-dimension surface. In that case, we reorient the
discussion. The intersection is itself a PSS, which we will call R1. Our power-counting
applies for a fixed value of the intrinsic coordinates of R, in which case we treat R′ and R

as non-intersecting. We will separately treat the situation the intrinsic coordinates approach
the position of a sub-PSS, of which R1 will be a typical example.

A final possibility is that the intersection of R′ with R has the same dimension as R,
but is not the whole of R. There are possibly several such intersections. In that case we
consider each of the intersections as a separate PSS. That is, we replace R by a set of PSSs
which combine to form R. The edges of these small PSSs, particularly where they abut, are
themselves lower-dimension PSSs.

It is also possible that the minimum value of one or more of the rl ratios is non-zero on
�(λ,R) when λ is fixed, but that the minimum decreases to zero as λ→ 0. In other words
the non-zero lower bound is not uniform in λ.8 This is behavior that we term Glauber-like,
whose general criteria we will determine in Sec. 5.11.

8 We take for granted that if it is possible to deform the contour of integration to avoid such a situation, then we do so.
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To see that the name is appropriate, we examine the quark and gluon propagators in
Fig. 5.31(b). For a normal soft region, a soft denominator is of order λ4/Q2, while a
collinear denominator is of order λ2, for a large ratio

collinear denom.

soft denom.
∼ Q2

λ2
. (5.90)

In our discussion of the Glauber pinch for Fig. 5.31(b), we used a soft transverse momentum
of order m, which we now translate to λ ∼ √mQ. In the Glauber region k± ∼ m2/Q, so
collinear denominators are of order m2, i.e., λ4/Q2 instead of λ2. Thus for a given gluon
virtuality the collinear denominators are much smaller in the Glauber region than in the
normal soft region.

The above discussion covers the case of fixed intrinsic coordinate(s) for the PSS R. A
further issue occurs when we integrate over the intrinsic coordinate(s) of R, and approach a
smaller PSS R1. This case is handled by observing that it involves the treatment of power-
counting for the smaller region R1. If we change to the viewpoint of integrating around R1,
we have treated that case already.

In summary, there are just two situations we need to cover: (a) the intersection of R with
a bigger PSS R′ at a generic point on R, which by a change of point-of-view also includes
the approach on R to a smaller PSS; and (b) a Glauber-type situation.

5.10.2 Intersection of �(λ,R) with PSS bigger than R

Relations between regions and subgraphs

Let R′ be a PSS bigger than R, like one of the lower solid lines in Fig. 5.36, or the shaded
surface in Fig. 5.32. We consider the integral over the constant λ surface �(λ,R) near its
intersection with R′, and we let λ′ be the radial variable for R′.

Some of the propagators are not trapped at R′. Their denominators retain their powers
from the first region, i.e., Q2 for a hard line, λ2 for a collinear line, and λ4/Q2 for a soft line.
As we have already seen, the time scale for these lines is Q/λ2 for the soft and collinear
lines, or 1/Q for the hard lines; in all cases this is at most Q/λ2.

Since these lines are not pinched at R′, they constitute the hard subgraph H ′ for R′.
When λ→ 0, the intersection of �(λ,R) and R′ approaches the original PSS R, which
we can think of as an endpoint of R′. Thus in the situation we consider, i.e., λ� Q, the
virtualities of some lines of H ′ are much smaller than the standard value Q2 for a hard
subgraph, the smallness being controlled by λ.

In contrast, the denominators of those lines that are pinched at R′ have arbitrarily much
smaller denominators, governed by λ′ rather than λ. The time scale for these lines is Q/λ′2,
much longer than that for the non-pinched lines. In the case of a graph for the Sudakov
form factor, this is illustrated in Fig. 5.37. There, the placement of the collinear and soft
subgraphs is meant to be like the space-time diagram Fig. 5.2(b).

With respect to each PSS, each line of the graph can be assigned a category: soft,
collinear with respect to an external line, or hard. There are corresponding subgraphs: e.g.,
for the vertex graph we have subgraphs S, A, B, H with respect to R, and subgraphs S ′,
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Q/ 2

Q/
2

A

B

S

Fig. 5.37. Reduced graph for region R′ near a smaller region R. The time scales for the
different subgraphs are indicated.

A

B

SH

A

B

SH

(a) (b)

Fig. 5.38. Decomposition of graph into subgraphs for momentum classes, according to PSS
(a) R and (b) R′ > R. The subgraphs for R are delimited by the dotted lines and those for
R′ by solid lines.

A′, B ′, H ′ with respect to R′. Now lines with energy of order Q on R retain approximately
this energy near R′, while lines that are far off-shell at R are also far off-shell near R′. Thus
we have the following possible transitions relating the categories of a line with respect to
the different regions:

S → S ′, A′, B ′, H ′;

A→ A′, H ′;

B → B ′, H ′;

H → H ′;

(5.91)

as illustrated in Fig. 5.38.
As we integrate around �(λ,R), λ′ varies from zero to a maximum. We need to know

the order of magnitude of the maximum value of λ′, which is in fact λ. To see this, we
assign to the momentum components in S ′, A′ and B ′ their canonical power-counting with
respect to R′ and match with the powers with respect to region R. The powers agree when
λ′ ∼ λ. The only exception concerns the minus components for momenta in S ∩ B ′ and
similarly for S ∩ A′. These components would be of order Q for a fully collinear region,

https://doi.org/10.1017/9781009401845.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.005


5.10 Power-counting with multiple regions 153

l

kq

pApA

pBpB

Fig. 5.39. Two-loop vertex graph.

but are now of order λ: the smallness of λ causes these momenta to be close to an endpoint
of a collinear region by the standards of R′.

Example

A convenient illustration uses the two-loop graph in Fig. 5.39, with its two gluons of
momenta k and l. Let region R be where k is soft and l is collinear to A. Thus the canonical
sizes of (+,−, T) components are

R : k ∼
(

λ2

Q
,

λ2

Q
,

λ2

Q

)
, l ∼

(
Q,

λ2

Q
, λ

)
. (5.92)

To avoid issues with IR problems, we assume the gluon is massive. Then the effective cutoff
on λ is

√
mQ. We let the region R′ be where k is collinear to B and l is hard:

R′ : k ∼
(

λ′2

Q
, Q, λ′

)
, l ∼ (Q, Q, Q) . (5.93)

Now consider the particular orders of magnitude:

k ∼
(

m3/2

Q1/2
, Q1/2m1/2, m

)
, l ∼ (

Q, Q1/2m1/2, Q3/4m1/4
)
. (5.94)

We could consider this as near to PSS R with λ ∼ Q3/4m1/4: the components of l have
exactly the standard sizes (Q,λ2/Q, λ) for a collinear-to-A momentum. All components
of k are much less than Q, with a maximum size λ2/Q, so k is soft. But notice that the
plus and transverse components of k are much smaller than the standard λ2/Q for a soft
momentum.

But we can also consider the configuration as near to R′ with λ′ ∼ m3/4Q1/4: we can
treat k as collinear-to-B, since it has large negative rapidity: yk ∼ − 1

2 ln(Q/m), although
l− is much less than Q. We can consider l hard since its virtuality is much bigger than λ′2.

It can be checked that the time scales of the lines are

pB − k − l :
1

Q
,

l, pA + k + l, pA + l :
Q

λ2
∼ 1

Q1/2m1/2
,

k, pB − k :
Q

λ′2
∼ Q1/2

m3/2
.

(5.95)
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Thus we have a clear separation of scales, and the configuration has characteristics of both
the regions R and R′. It can be verified that (5.94) gives a leading-power contribution. We
must ensure that our treatment of factorization correctly handles it and the obvious myriad
of similar possibilities in this and higher-order graphs.

In the above case, we assumed the gluon was massive, so the lower cutoff on transverse
momentum was of order m, a typical mass. To keep k of low energy with respect to Q we
were forced to keep its rapidity well short of that of pB , and to put the lower quark lines
far off-shell.

But if the gluon is massless, a rather more extreme situation arises. For example,
try

k ∼
(

m4

Q3
,

m2

Q
,

m3

Q2

)
, l ∼

(
Q,

m2

Q
, m

)
. (5.96)

In the sense of rapidities, k is fully collinear to B: yk ∼ −ln(Q/m), and l is fully collinear
to A: yl ∼ ln(Q/m). But k is also very soft by having its maximum component much less
than Q. This configuration has λ′ ∼ m2/Q, λ ∼ m.

Obviously, we should not treat all such configurations separately, if at all possible,
otherwise we could easily have much too complicated a problem to solve systematically.
In fact we will be able to treat all such situations by a combination of methods that directly
deal with the canonical scalings only.

But when we derive factorization, we will need to apply approximators suitable for
neighborhoods of the different regions. Awareness of situations such as we have examined
will inform our choice of approximators.

The physical property that will keep the situation under control is that the time scales
associated with different lines are widely different, unlike the canonical case for the soft
and collinear lines: we can treat one scale at a time and examine directly only the relations
to neighboring time scales. Thus we only need to treat the relation between pairs of regions,
each treated quite generically.

Effect on power-counting

To get the correct power-counting near the intersection of the constant λ surface �(λ,R)
and the PSS R′, we integrate over a range of λ of some particular order of magnitude, and
then we decompose the result by the variable λ′, which measures the approach to R′. There
will be powers of Q, λ and λ′:

Qαλβλ′γ (5.97)

appropriate to the strongly ordered situation λ� λ′ � Q. To obtain the exponents we
match to the canonical power-counting for the regions R and R′. The canonical power for
region R′ applies to the case that λ ∼ Q with λ′ � Q. Thus we have

power for R′ = Qα+βλ′γ . (5.98)
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The canonical power for R applies when λ′ has it maximum value, i.e., of order λ, so

power for R = Qαλβ+γ . (5.99)

This determines the powers in (5.97) from the canonical ones for R and R′.9

As in (5.75), the powers are those for the situation that we integrate over a range of a
radial variable comparable to its size. Thus they are the sizes of integrands to be used in
integrals with respect to ln λ and ln λ′:∫ ln Q

d ln λ

∫ ln λ

d ln λ′ Qαλβλ′γ . (5.100)

The lower limits of the integrals are either ln m or ln
√

mQ, depending on whether the
cutoff is governed by masses on collinear lines or masses on soft lines.

We now read off the results for the Q dependence of the integration over �(λ,R).
The most common case we use is for the leading regions in QCD, for which β = γ = 0.

Then the leading power of Q is Qα , and the integrals over λ and λ′ give logarithmic
enhancements. Naturally we can have multiply nested regions. Iterating our argument gives
the general rule that there is one logarithm of Q for each nesting. Thus for the one-loop
Sudakov form factor, we have the nestings of leading regions: H > A > S, H > B > S. In
(5.21), which depicts the hierarchy of regions, these nestings give ordered paths of length
two and hence two logarithms. When we make the decomposition around the soft region,
the two collinear regions A and B occur at distinct places in the angular integral. Thus the
logarithms associated with the two different ordered paths add, rather than giving a more
complicated situation.

In the other cases, one end or the other wins, which greatly simplifies the extraction of
the leading power. There are several cases:

• If β > 0, then the top end λ ∼ Q of the λ integral wins. Then for the highest power of Q,
the situation is the same as for region R′.

• If γ > 0, then the top end λ′ ∼ λ of the λ′ integral wins. Then for the highest power
of Q, the situation is the same as for region R.

Note that if both β > 0 and γ > 0, the integral is dominated by λ ∼ λ′ ∼ Q, i.e., by
the hard region; both R and R′ are non-leading by a power of Q.

• If both β < 0 and γ < 0, then the integral is dominated by the lower ends of both
integrals. If they both have the same lower cutoff, then at the cutoff we have λ′ ∼ λ,
which is just reproduces the generic situation for region R.

It is possible that the lower cutoffs are different: m for λ′ and
√

mQ for λ. This needs
special discussion.

• If β < 0 and γ = 0, then the lower end of the λ integral wins and there is at most a
logarithm from the λ′ integral. The power for R remains correct.

9 Situations where there is an apparent mismatch of power laws between regions were found in Bacchetta et al. (2008).
These situations concern certain spin-dependent cross sections, and they can be handled by a generalization of our
argument by allowing for powers of quark mass as well as of Q, λ, and λ′.
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• If β = 0 and γ < 0, then the lower end of the λ′ integral wins and there is a logarithm
from the λ integral. The power for R′ remains correct.

Aside from the case β < 0 and γ < 0, the general rule is that the overall power of Q is
the highest power of Q as determined from the pure canonical powers for the individual
regions.

5.11 Determination of Glauber-like regions

For each PSS, we found a canonical scaling law, and we saw that modifications to the
canonical values of propagators were generally associated with canonical scaling for other
intersecting PSSs. The only exception was what we called Glauber-like. This is where at
some locations on the surface �(λ,R) surrounding a PSS R, some denominators get much
smaller than their canonical sizes, but that the ratio rl on these lines only goes to zero at
λ = 0.

We now show how to determine where the Glauber-like situation arises. We use another
variation on the Libby-Sterman scaling argument, after first showing in an example how
the Glauber region can be obtained from the standard scaling for a region by taking some
of the angular coordinates to be very small.

5.11.1 Example

Consider Fig. 5.31(b) for the Drell-Yan process in the region where the quarks are collinear
and the gluon is soft. With the canonical scalings, we parameterize the momenta of the
gluon and the collinear momenta by

k = (S+λ2/Q, S−λ2/Q, STλ2/Q), (5.101a)

kA = (zAp+A, A−λ2/Q, ATλ), (5.101b)

kB = (B+λ2/Q, zBp−B , BTλ). (5.101c)

Here Sμ, Aμ, and Bμ give the angular coordinates for the soft and collinear momenta. Our
usual normalization conditions show that the angular coordinates are at most about unity,
and that the biggest is of order unity.

The canonical power-counting for this region applies when all the angular coordinates
are of order unity. Note that in the interesting case that the transverse momentum of the
Drell-Yan pair is of order m, a leading power is obtained only for λ ∼ m, not for higher λ.
When the gluon has a non-zero mass, the lowest effective value of λ is O(

√
mQ), and we

get a power-suppression.
But we can also have a different scaling, the Glauber scaling, for which

k ∼ (λ′2/Q, λ′2/Q, λ′), (5.102a)

kA ∼ (Q, λ′2/Q, λ′), (5.102b)

kB ∼ (λ′2/Q, Q, λ′), (5.102c)
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PB

PA

Fig. 5.40. Reduced diagram for Fig. 5.31(b) in Glauber region. The dots are the reduced
vertices, and the lines are collinear to either pA (in the bottom half of the diagram) or pB

(in the top half).

where we take all the coefficients of order unity. This can be obtained from the stan-
dard soft parameterization by making all the angular coefficients sufficiently small except
for ST:

S±, A−, B+ ∼ λ2/Q2, AT, BT ∼ λ/Q, ST ∼ 1. (5.103)

We follow this by the change of variable λ′ = λ2/Q.
From the point of view of the canonical soft scaling, this is a region where the soft

denominator retains it canonical size, λ4/Q2 = λ′2, but the collinear denominators are also
of this size instead of their canonical value λ2 = λ′Q. This is actually the minimum possible
for the ratio of the collinear denominators to their canonical values, and approaches zero
as λ→ 0.

We have seen that the integration contour is trapped in this region, unlike the case of
DIS and e+e− annihilation

5.11.2 Application of Libby-Sterman argument

In the general case, with many loop momenta, there appears to be an explosion of the
number of possible cases for different scalings of the momentum components, with a
corresponding difficulty in determining the cases that are relevant. We overcome this
problem by the Libby-Sterman method.

For some alternative scaling, we define a reduced diagram in which the vertices are
obtained from those denominators with the canonical scaling. The lines of the reduced
diagram are those with denominators that are much smaller than canonical. For the Glauber
region of Fig. 5.31(b), the reduced diagram is obtained by shrinking the gluon to a point,
to give Fig. 5.40.

We now apply the Landau criterion for a pinch in the massless version of the reduced
diagram. This works just as in the standard Libby-Sterman argument. The only difference
is in the interpretation of the vertices of the reduced graph: in the original argument, the
vertices corresponded to subgraphs whose internal momenta are hard, with virtuality Q2.
It is now possible to have vertices with much smaller internal virtualities. The common
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feature is that the time and distance scales of the vertices of the reduced graph are much
smaller than those for the lines.

The result is of the form of a possible PSS for the original graph. But the power-counting
may have changed.

For a general starting region, some of the new PSSs are the same as leading PSSs of the
original massless graph, so we can cover them by the original argument.

In Fig. 5.40 we have acquired a second hard scattering. The generic case would be to
have multiple extra hard scatterings. These would be non-leading if all the hard scatterings
had large virtuality. They are all covered by the original space-time diagram, Fig. 5.17(b),
where the diagonal lines correspond to the on-shell lines in the reduced graph. What has
changed with respect to the standard regions is that at the origin we have multiple colliding
lines. Since each extra hard collision needs a minimum of two incoming and two outgoing
on-shell lines, such a situation cannot arise in e+e− annihilation and DIS; in the hadronic
part of these processes there is zero or one incoming hadron (respectively).

Viewing the space-time structure of the collision, Fig. 5.18, gives further intuition. Each
incoming hadron contains multiple constituents which are located at a longitudinal distance
1/Q of each other, but with a transverse separation 1/M . The single genuine hard collision
has a quark out of one hadron getting within a transverse distance 1/Q of each other. The
remaining constituents undergo soft collisions over a transverse range 1/M; since these are
soft collisions, the momentum transfer is restricted to small values, and the partons remain
approximately collinear to their parent beams.

These situations are exactly of the kind that corresponds to spectator-spectator inter-
actions with exchanged Glauber momentum. Therefore the Glauber region represents the
general alternative scaling that we need to consider. The power-counting used for the Drell-
Yan example readily generalizes to show that these situations contribute at leading power.
Part of the factorization proof for the Drell-Yan process, in Ch. 14, will be to show a
cancellation of the Glauber region.

Naturally, interesting variations on this theme can arise, e.g., if the transverse radius for
the scattering differs substantially from the size of the hadron. This happens for nuclei.
Similar adjustments to the picture are needed if the hard collision is at very large or small
x, so that the size 1/Q of the hard collisions substantially differs from the longitudinal size
of the fast-moving beam hadrons.

Exercises

5.1 (***) From the coordinate-space representation of Feynman graphs (or otherwise),
determine the regions in coordinate space that correspond to the regions RH , RA,
RB , RS , RA′ , and RB ′ for the vertex graph. As far as possible determine the locations
quantitatively.

There are some non-trivial complications in this problem because the final answer
involves integrals over oscillating functions, with a lot of cancellation. A good answer
probably involves significant original research.
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If possible, verify the validity of estimates such as those given in Secs. 5.5.3 and
5.5.9, and that were used in the caption of Fig. 5.24.

5.2 (***) The standard Landau-type analysis of singularities of Feynman graphs and of
associated asymptotic problems is in momentum space. Reformulate it in coordinate
space. The Coleman-Norton (Coleman and Norton, 1965) paper shows how the internal
momentum configurations correspond to classical scattering processes. Show that this
is literally true in a coordinate-space analysis.

Extend this result to treat asymptotics governed by nearby pinch singularities to
show what regions of coordinate space dominate. Be as quantitative as possible. You
should, for example, be able to recover the intuitive picture of the parton model, with
its hard scattering on a short time scale on a constituent of a Lorentz-contracted,
time-dilated hadron.

Are any corrections to this picture needed?

5.3 (***) Find in the published literature, or construct for yourself, a proof that the Landau
equations are actually necessary and sufficient for a PSS of a Feynman graph. To see
that this is a non-trivial exercise, critically examine the accounts given in a standard
textbook, e.g., Bogoliubov and Shirkov (1959); Eden et al. (1966); Itzykson and Zuber
(1980); Peskin and Schroeder (1995); Sterman (1993). Are full proofs actually given?
Do they actually work, and cover both necessity and sufficiency? Do they apply to
the massless case, or do they make implicit assumptions only valid in the massive
case?

You should also find or devise a proof that extends to certain modified integrals that
occur in perturbative QCD. Such cases include graphs with eikonal propagators for
Wilson lines: Ch. 10. These do not mesh particularly well with the Feynman-parameter
representations often used in the treatments of the Landau equations.

For applications to pQCD, as we will see, it is important not merely to know
that there is a PSS, but also to know exactly which lines participate in a particular
pinch and which not, and to know exactly which loop-momentum variables actu-
ally participate in the pinch. Extend results in the literature to cover these issues
explicitly.

Preferably any proof should be comprehensible by ordinary students of QFT.

5.4 Catalog the most general leading regions for graphs for the following processes.
Describe the corresponding space-time structure.
(a) q(PA)+ γ ∗(q)→ q(pB), i.e., the space-like version of the process treated in Sec.

5.3.1, with the state of momentum PA in the initial state instead of the final state.
(b) H (PA)+H (PB)→ H (pC)+X, i.e., inclusive production of hadrons of large

transverse momentum in hadron-hadron collisions.

5.5 For elastic hadron-hadron scattering, derive the power law given in Sec. 5.9.3 when
there are multiple hard scatterings. Pay careful attention to the effects of momentum
conservation at the hard scattering on the collinear loop integrals.
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5.6 Extend the power-counting analysis given in Sec. 5.5 to the following cases:
(a) other vertices replace the external electromagnetic current, e.g., a ψ̄ψH vertex

that might be for the interaction of a fermionic quark with a Higgs field;
(b) scalar quark in gauge theory.
These represent possible variations on the basic ideas that might occur in applications of
the Standard Model, or in extensions of it (e.g., scalar quarks appear in supersymmetric
extensions).

5.7 Verify that the general rules given for power-counting apply in these specific cases. If
not, improve the rules.

5.8 (**) Prove that the PSSs for a massless Feynman graph are flat surfaces.
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