The Mediterranean diet is rich in vegetables, cereals, fruit, fish, milk, wine and olive oil and has salutary biological functions. Epidemiological studies have shown a lower incidence of atherosclerosis, cardiovascular diseases and certain kinds of cancer in the Mediterranean area. Olive oil is the main source of fat, and the Mediterranean diet’s healthy effects can in particular be attributed not only to the high relationship between unsaturated and saturated fatty acids in olive oil but also to the antioxidant property of its phenolic compounds. The main phenolic compounds, hydroxytyrosol and oleuropein, which give extra-virgin olive oil its bitter, pungent taste, have powerful antioxidant activity both in vivo and in vitro. The present review focuses on recent works analysing the relationship between the structure of olive oil polyphenolic compounds and their antioxidant activity. These compounds’ possible beneficial effects are due to their antioxidant activity, which is related to the development of atherosclerosis and cancer, and to anti-inflammatory and antimicrobial activity.

Olive oil: Antioxidants: Cardiovascular diseases: Phenolic compounds: Oleuropein

Introduction

Olive oil, a product of the mechanical extraction from the fruit of Olea europeae L. (Oleaceae family), is composed of a glycerol fraction, constituting approximately 90–99%, and of a non-glycerol or unsaponifiable fraction (0.4–5%). Oleic acid, a MUFA (18 : 1n-9), represents 70–80% of the fatty acids present in olive oil. Epidemiological studies have shown a lower incidence of atherosclerosis, cardiovascular diseases and certain kinds of cancer in the Mediterranean area than in other areas. The results of these studies have been in part attributed to the characteristic kind of diet of the local population. The traditional Mediterranean diet contains, unlike the Northern European and American diet, a considerable proportion of vegetables, cereals, fruit, fish, milk, wine and olive oil. The substantial difference between the two kinds of diet – despite the similarity between the classic risk factors for cardiovascular pathologies, such as high plasma cholesterol levels – has been associated with a lower risk of their development (Keys, 1995; Trichopoulou, 1995; Willet et al., 1995; Lipworth et al., 1997; Visioli & Galli, 1998a; Trichopoulou et al., 1999; Visioli et al., 2000b).

It is known that an increased consumption of MUFA instead of PUFA reduces the risk of atherosclerosis because it makes the circulating lipoprotein less sensitive to peroxidation (Reaven et al. 1991; Bonanome et al. 1992; Moreno & Mitjavila, 2003). Also, the inclusion in the diet (approximately 15% of total energy) of oleic acid reduces plasma levels of the complex LDL-cholesterol and increases HDL-cholesterol. However, the protective role of the Mediterranean diet is much higher than that of the single foods that characterise it, and the protective role played by many of these foods has still to be defined. Recent studies have demonstrated that other constituents of certain characteristic Mediterranean diet foods have beneficial biological effects on health. It has been established that olive oil has beneficial effects as regards breast and colon cancer (Owen et al., 2000b), diabetes accompanied by hypertriacylglycerolaemia, inflammatory, and autoimmune diseases such as rheumatoid arthritis (Alarcon de la Lastra et al., 2001).

We will therefore consider the unsaponifiable fraction of extra-virgin olive oil, which is rich in tocopherols, aromatic hydrocarbon compounds and sterols. In particular, we will study the biological functions of its polyphenolic compounds.

The phenolic compounds

The beneficial effects of the Mediterranean diet can be attributed not only to the high relationship between...
unsaturated and saturated fatty acids of olive oil, but also to
the antioxidant property of its phenolic compounds. The
pulp of olives contains these compounds, which are
hydrophilic, but they are also found in the oil. The class
of phenols includes numerous substances, such as simple
phenolic compounds like vanillic, gallic, coumaric and
caffeic acids, tyrosol and hydroxytyrosol and more complex
compounds like the secoiridoids (oleuropein and
ligstroseide), and the lignans (1-acetoxyipinoresinol and
pinoresinol).

Chemical structure

The main antioxidants of virgin olive oil are carotenoids and
phenolic compounds, which are both lipophilic and
hydrophilic. The lipophilics include tocopherols, while the
hydrophilics include flavonoids, phenolic alcohols and
acids, secoiridoids and their metabolites. The polyphenols
include phenolic alcohols and acids, secoiridoids and their
metabolites and the lignans; however, since some of these
tyrosol) do not possess two hydroxyl groups, it would be
incorrect to put them in this class (Visioli et al. 2002).

The flavonoids include the glycosides of flavonol
(luteolin–7–glucoside and rutin), anthocianins, cyanidin and
the glucosides of delphinidin.

The polyphenols can be distinguished as simple or
complex. In the first class, 3,4-dihydroxyphenyl-ethanol, or
hydroxytyrosol, and p-hydroxyphenyl-ethanol, or tyrosol,
are the most abundant phenolic alcohols in olives (Fig. 1 (B)).

Other phenolic acids, with the chemical structure C6–C1
(benzoic acids) and C6–C3 (cinnamic acid), are also present
in olives (Garrido Fernández et al. 1997).

Historically, these compounds (caffeic, vanillic, syringic,
protocatechuic, p-coumaric and o-coumaric, 4-hydroxybenzoic acids) represent the first group of simple phenols
observed in virgin olive oil (Montedoro, 1972; Vasquez
Roncero, 1978).

The presence of simple phenolic acids as secondary
components in olive oil has been widely reported (Solinas &
Cichelli, 1981; Tsimidou et al. 1996). The presence of gallic
acid has also been documented (a substance also present in
tea) (Mannino et al. 1993).

The secoiridoids oleuropein, demethyloleuropein, ligstro-
side and nüzhenide, the main complex phenols in virgin
olive oil, are secondary glycosidic compounds similar to
coumarins; secoiridoids are characterised by the presence of
elenolic acid in its glucosidic or aglyconic form, in their
molecular structure (Bianco & Uccella, 2000) (Fig. 1).

The secoiridoids, which are glycosidated compounds, are
produced from the secondary metabolism of terpenes as
precursors of several indole alkaloids (Soler-Rivas et al.
2000).

Oleuropein is the ester between 2-(3’;4’-dihydroxyphenyl)
ethanol (hydroxytyrosol) and the oleosidic skeleton
common to the glycosidic secoiridoids of the Oleaceae
(Fig. 1 (A)).

Hydroxytyrosol can be present as a simple or esterified
phenol with elenolic acid, forming oleuropein and its
aglycone, or as part of the molecule of verbascoside (Amiot
et al. 1986; Servili et al. 1999a); it can also be present in
several glycosidic forms, depending on the hydroxyl group
to which the glucoside is bound (Bianco et al. 1998a,b; Ryan
et al. 2001).

While tocopherols, phenolic acids, phenolic alcohols and
flavonoids are present in many fruits and vegetables
belonging to several botanical families, secoiridoids are
present exclusively in plants of the family of Oleaceae.

Oleuropein, demethylolueuropein and verbascoside are
present in all the constituent parts of the fruit, but more
abundantly in the pulp (Soler-Rivas et al. 2000) (Fig. 2 (A)
and (B)). Nüzhenide has been only found in the seed (Servili
et al. 1999a) (Fig. 2 (C)).

Hydroxytyrosol is one of the main phenolic compounds
in olives, virgin oil and waste water obtained during the
production of olive oil. In fresh virgin oil, hydroxytyrosol
mostly occurs esterified, while in time the non-esterified
form prevails owing to hydrolytic reactions (Angerosa et al.
1995; Cinquanta et al. 1997) (Fig. 1 (A)).

Another group of substances present in the phenolic
fraction has been isolated by MS and NMR from

Fig. 1. (A) Chemical structures of oleuropein, ligstroseide, 10-
hydroxyligstroseide and 10-hydroxyoleuropein. Hydroxytyrosol and
tyrosol derive from the hydrolysis of oleuropein. (B) Chemical
structures of hydroxytyrosol and tyrosol. (C) Chemical structures of
elenolic acid and elenolic acid glucoside.
Fig. 2. Chemical structures of damethyleneolueuropein (A), (B) verbascoside and (C) ñüzenide. OGlul, O-glucose.

extra-virgin olive oil, i.e. lignans, (+)-1-acetoxypiosiresinol and (+)-piosiresinol (Owen et al. 2000c).

The substance (+)-piosiresinol is a common compound of the lignan fraction of several plants, such as the seeds of the species Forsythia (Oleaceae family) (Davin et al. 1992) and Sesamum indicum (sesame) (Kato et al. 1998), while (+)-1-acetoxypiosiresinol, (+)-1-hydroxypiosiresinol and their glycosides have been found in the bark of the Olea europeae L. (olive) (Tsukamoto et al. 1984, 1985). How lignans are transformed into the main component of the phenolic fraction of olive oil is not known.

They are not present in the pericarp of the olive drupe or in the leaves and sprigs that can be present in the residual vegetable after pressing the olives. It has been recently shown that (+)-piosiresinol is an important component of the phenolic fraction of the olive kernel (Owen et al. 2000c) (Fig. 3).

Content of phenolic compounds in olive oil

It is necessary to point out that refined oils do not have a significant content of polyphenols. The data on the concentrations of the phenolic compounds, which are responsible for the sensory and antioxidant properties of high-quality olive oils, are not always in agreement. The lack of a suitable analytic methodology is the main cause of inaccuracies in the quantitative evaluation of the phenolic compounds of olive oil. Currently, the commonest methods for evaluating olive oil polyphenol content are the Folin–Ciocalteau colorimetric test and liquid chromatography (Montedoro et al. 1992). The former method gives imprecise results because of the reagent’s low specificity towards phenolic compounds; also, such methods do not yield quantitative information about single phenolic compounds. On the contrary, HPLC is very sensitive and specific but requires time to perform the analysis (approximately 1 h). It does not supply information regarding phenolic molecules. Standards are therefore not available (Visioli et al. 2002).

Mosca et al. (2000) described an enzymic test for the quantitative determination of the phenolic compounds of olive oil. This method is rapid and easy to perform; it is more sensitive and specific for phenolic compounds than the Folin–Ciocalteau method, but it supplies only quantitative information and does not detect the important ‘minor constituents’, i.e. cinnamic and vanillic acids.

Finally, a fast and sensitive method for estimating olive oil phenolic compounds is the combination of MS with atmospheric pressure chemical ionisation. This methodology (Caruso et al. 2000) analyses a crude methanolic extract of olive oil, avoiding a complex analytical workup, and also allows quantification of the oleuropein aglycone (Table 1).

In spite of these limits, it is possible to establish some fundamental principles. The quality of the olives and the oil is affected by the amount of oleuropein and its hydrolytic products (Limirolì et al. 1995). In turn, the phenolic compound content of the oil depends on the place of cultivation, the climate, the variety, and the olives’ level of maturation at the time of harvesting (Cinquanta et al. 1997; Visioli & Galli, 1998b; Brenes et al. 1999). Their level usually diminishes with over-ripening of olives (Montedoro et al. 1998; Gutierrez et al. 1999), even if there are some exceptions to this rule. For example, olives cultivated in warmer climates, in spite of their faster maturation, produce oils richer in phenols (Visioli et al. 1998); also, as we will show later, the phenolic content of olive oil is influenced by the production process.

Oleuropein is the main polyphenol found in olive oil, both in this form and as the aglycone. In nature, it accumulates in the fruit of the olive tree during the growth phase up to 14 % of net weight (Amiot et al. 1986); on the contrary, as the olive turns greener, the amount reduces. Finally, when the olive turns dark brown owing to the presence of anthocyanins, the reduction in oleuropein concentration becomes more evident. It has been shown that the oleuropein content is higher in the first stages of fruit maturation and in green cultivars than in black olives.

During the reduction in the levels of oleuropein and other oleosides, such as the quantitatively less important ligstroside, it is possible to observe an increase of other compounds – some more complex, like flavonoids and verbascosides, and others simpler, like single phenols. The reduction in the oleuropein level is also accompanied by an increase in the levels of its glycosylated secondary products, which reach maximum levels in black olives (Amiot et al. 1986, 1989; Bianco et al. 1993; Soler-Rivas et al. 2000). In nature, the concentration of hydroxytyrosol and tyrosol increases as the fruits ripen, in parallel with the hydrolysis of compounds of higher molecular weight, while the total amount of phenolic compounds and α-tocopherol decreases...
as the fruits ripen (Climato et al. 1990; Angerosa et al. 1995; Limiroli et al. 1996; Esti et al. 1998; Brenes et al. 1999; Gutierrez et al. 1999).

Lignans, (+)-1-acetoxypinoresinol and (+)-pinoresinol are not present in seed oils and are virtually absent from refined virgin oils but are present in extra-virgin olive oil up to a concentration of 100 mg/kg. As occurs in simple phenols and secoiridoids, a considerable variation in lignans concentrations between olive oils of various origins also occurs in this case, the reasons probably being related to

![Chemical structures of the lignans. (A) (+)-1-Acetoxypinoresinol; (B) (+)-1-pinoresinol; (C) (+)-1-hydroxypinoresinol.](https://doi.org/10.1079/NRR200495)

Table 1. Methods for the evaluation of the olive oil polyphenols content

<table>
<thead>
<tr>
<th>Polyphenolic compound</th>
<th>Method employed</th>
<th>Phenol content</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total phenols</td>
<td>Enzymic assay</td>
<td>566·0–0·8 ppm (mg caffeic acid/kg oil)</td>
<td>Mosca et al. (2000)</td>
</tr>
<tr>
<td>Oleuropein and its isomers, ligstroside and oleuropein aglycones, deacetoxyligstroside and deacetoxyoleuropein aglycones, 10-hydroxy-oleuropein</td>
<td>APCI–MS</td>
<td></td>
<td>Caruso et al. (2000)</td>
</tr>
<tr>
<td>Hydroxytyrosol, tyrosol, vanillic, caffeic, syringic, p-coumaric, ferulic, cinnamic and elenolic acids</td>
<td>HPLC</td>
<td>Low concentration (total phenols 50–200 mg/kg); medium concentration (total phenols 200–500 mg/kg); high concentration (total phenols 500–1000 mg/kg)</td>
<td>Montedoro et al. (1992)</td>
</tr>
</tbody>
</table>

ppm, Parts per million; APCI, atmospheric pressure chemical ionisation.
differences between the production zones, in the climate, in
the varieties of olives and in the oil production techniques.

Any alteration in the concentration of the various
chemicals changes olive oil’s particular taste. Phenolic
compounds, and in particular oleuropein, give the oil a bitter
taste (Visioli & Galli, 2001).

Effect of oil extraction processes on the content of phenolic
compounds

As has been shown, the concentration of phenolic
compounds in olive oil is the result of a complex interaction
of various factors; for example, the cultivar, the level of
maturation and the climate (Cinquanta et al. 1997; Esti et al.
1998; Monteleone et al. 1998; Visioli & Galli, 1998b; Visioli et al. 1998; Brenes et al. 1999; Gutierrez et al. 1999).
It is also affected by the extraction process. Nowadays,
various methods are used to extract olive oil: the traditional
discontinuous cycle of pressure; continuous centrifugation;
systems of percolation—centrifugation. The crushing of the
olives, the pressure applied to the paste, the extraction, the
separation of vegetation water and the purification process
are all steps common to the three systems of manufacture.
Through these three processes, oil, sansa (the solid refuse)
and vegetable water are obtained. In the traditional cycle, a
grindstone (or stone hammer) is used to mill and press the
olives. In continuous cycles, metallic crushers that use
hammer, disc and roller are used to mill the olives, and a
decanter with a centrifuge, horizontally placed, is used for
centrifugation of the paste. A vertical centrifuge is used to
separate the oily paste into oil and water (Ranalli et al.
1998). Extra-virgin olive oil is obtained from the first
physical cold pressure of the olive paste and is rich in
phenolic compounds (Visioli et al. 1998). Virgin olive oil,
obtained through percolation (first extraction), has a higher
content in phenols, o-diphenols, hydroxytyrosol and tyrosol
aglycones, and tocopherols than oils obtained through
centrifugation (second extraction) (Ranalli et al. 1997,
1998, 1999). The type of rolling-mill used for the pressure
and the centrifugation has an important effect. The hammer
is more effective in the extraction of phenolic compounds of
the olives and should be used for the extraction of oil from
olives that have a low content of phenolic compounds, in
order to avoid the production of oils with a bitter forecasts.
The stone rolling-mill produces oils with a stability towards
oxidation similar to that obtained with the hammering-mill,
and can be used in order to prepare oil from olives that
generally yield oil characterised by a bitter taste (Alloggio
& Caponio, 1997).

Oils obtained through centrifugation have a lower
phenolic content, probably because this process involves
the use of large amounts of hot water that remove a
considerable proportion of the phenols that is then
eliminated in the watery phase (Lo Scalzo et al. 1993;
Visioli & Galli, 1998a). This vegetable water is regarded as
a toxic residue and a pollutant for plants, because the
phenolic compounds, hydroxytyrosol, tyrosol and other
polyphenols (Capasso et al. 1992), have phytotoxic activity
(Capasso et al. 1995). However, this vegetable water could
be used as a good source of phenolic antioxidants (Limiroli
et al. 1996) or as a bactericidal solution to protect other
crops from parasites and from diseases caused by parasites
(Capasso et al. 1995).

Absorption and pharmacokinetics of polyphenols

It is essential to establish whether olive oil phenolic
compounds are absorbed in the intestine and how they are
distributed in the organism, to verify if they have the same
effects both in vivo and in vitro. To this purpose, many
studies in vitro have been carried out, but the results are not
satisfactory. An intestinal perfusion technique in situ has
been developed to estimate oleuropein absorption, both in
iso-osmotic and in hypotonic luminal conditions (Edge-
combe et al. 2000). This technique makes it possible to
exclude the influence of the hepatic and renal metabolism
and other factors that usually complicate the quantitative
evaluation of absorption (Stretch et al. 1999). In iso-osmotic
conditions, oleuropein is absorbed, with an apparent
permeability coefficient (Papp) of 1.47 (SE 0.13) × 10⁻⁶ cm/s.
The mechanism of absorption is not clear; transcellular transport (carrier Na-dependent glucose transporter 1) or paracellular movement may be involved. In hypotonic conditions, the permeability of oleuropein is significantly higher (5.92 (SE 0.49) × 10⁻⁶ cm/s; P < 0.001). This is probably due to an increase in paracellular movement facilitated by the opening of the paracellular junctions in response to hypotonicity. In an iso-
osmotic solution, oleuropein is absorbed at a constant rate of
−0.023 per min (r² 0.962). Its stability is dependent on pH,
since absorption occurs at pH 7. Absorption of oleuropein in
such circumstances occurs mainly by way of a transcellular
pathway. Since oleuropein is to some extent polar, it is
unlikely that it diffuses rapidly through the lipid bilayer of
the epithelial cell membrane; a carrier therefore has to be
used (Edgecombe et al. 2000). As it is a glycoside,
oleuropein can probably use a glucose carrier. Three carriers
in the epithelial cells of the small intestine have been
identified. Two of these (Glut2 and Glut5) carry glucose by
facilitated diffusion, while the third is Na-dependent
glucose transporter 1, which actively carries the glucose
across a concentration gradient (Takata, 1995). Both Glut5
and Na-dependent glucose transporter 1 are on the apical
side of intestinal epithelial cells; however, Glut5 is specific
for the transport of the fructose, and it is therefore unlikely
that it is involved in the absorption of oleuropein (Burant
et al. 1992; Kane et al. 1997).

Glut2 has been localised on the basolateral side of
epithelial cells and it probably mediates the passage of
glucose and similar substrates from epithelial cells into
the circulation (Kayano et al. 1990; Nomoto et al. 1998). In
a study on the absorption and pharmacokinetics of
hydroxytyrosol performed in the rat, it was found that the
absorption of a single dose of hydroxytyrosol was very rapid:
the maximum plasma concentration was obtained in 5–
10 min, while after 60 min the concentration was much
reduced. However, the concentration of hydroxytyrosol in rat
plasma was smaller than the amount administered. This
discordance is presumably due to the fact that the experiment
did not take into account the presence of hydroxytyrosol
metabolites (Bai et al. 1998). Studies on the transport kinetics
of radiolabelled hydroxytyrosol (¹⁴C) performed using

Downloaded from https://www.cambridge.org/core, IP address: 54.70.40.11, on 14 Apr 2019 at 21:35:47, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1079/NRR200495
differentiated cells Caco-2 have demonstrated that the transport occurs by passive diffusion (Manna et al. 2000).

The metabolic fate of hydroxytyrosol and tyrosol in vivo has also been evaluated by administration to rats, both by mouth and intravenously, of the radiolabelled polyphenols. Also in this case, hydroxytyrosol appeared in the plasma, at maximum levels, as soon as 10 min after oral administration. Hydroxytyrosol is quickly eliminated from the plasma and excreted in the urine, as a free compound, and bound to glucuronic acid; to a smaller extent (5 %) it is also eliminated in the faeces (D’Angelo et al. 2001). Conjugation with glucuronic acid is generally regarded as the common final metabolic step of the intact phenolic compounds (Bourne & Rice-Evans, 1998). Other studies carried out in vivo in human subjects evaluated the intestinal absorption and urinary excretion of tyrosol and hydroxytyrosol. It was observed that the amount of absorption of these phenols was dose-dependent and that their urinary excretion mostly occurred by conjugation with glucuronic acid (Visioli et al. 2000c). Urinary excretion of both free phenolic compounds was much higher in the first 4 h and was correlated with the intake: high doses of phenolic compounds increased their rate of conjugation with glucuronide (Visioli et al. 2000c; Miro´ Casas et al. 2001). In the particular case of hydroxytyrosol, excretion from the human organism occurred in a short time. The estimated hydroxytyrosol elimination half-life was 2·43 h. Free forms of these phenolic compounds were not detected in plasma samples (Miro´ Casas et al. 2003).

The entire quantity of tyrosol or hydroxytyrosol administered was obviously not found in the urine. It remains to be established the quantity not absorbed and that accumulated in organs or erythrocytes, as well as the quantity eliminated after 24 h. Other antioxidants in olive oil could also compete with its intestinal absorption (Tuck et al. 2001). The future development of suitable techniques will have to clarify this point.

In the rat, hydroxytyrosol is converted enzymically into four oxidised and/or methylated derivatives. These metabolites have been identified as homovanillic acid and alcohol, 3,4-dihydroxynonylacetic acid, 3,4-dihydroxyphenylacetaldehyde and its sulfate conjugate. Also, a significant fraction of total radioactivity is associated with the sulfate-conjugated derivatives that represent the main urinary products of excretion (D’Angelo et al. 2001).

On the basis of the results reported, the pathway of hydroxytyrosol metabolism has been proposed with the participation of catechol-O-methyltransferase (an enzyme involved in the catabolism of the catecholamines), alcohol dehydrogenase, aldehyde dehydrogenase and phenolsulfo-transferase (Tuck & Hayball, 2002) (Fig. 4).

After administration of virgin olive oil to healthy volunteers, a significant increase was observed in homovanillic acid and alcohol urinary excretion over 24 h. This suggests that also in man these compounds undergo the action of catechol-O-methyltransferase. Also, the increase in homovanillic acid excretion indicates that in man the ethanolic derived compound of hydroxytyrosol and/or homovanillic acid is oxidised (Caruso et al. 2001) (Fig. 4).

One should be cautious before extrapolating these results and associating them with the typical Mediterranean diet. The daily intake of olive oil is on average less than 50 ml, an amount that Visioli et al. (2000c) gave to the subjects in their study in a single dose, and the phenolic content of the oils they used was higher than that of typical virgin olive oil. However, it cannot be excluded that continuous exposure to the phenols in olive oil can in the long run cause phenomena of accumulation, since the absorption of simple phenols (at least at the doses used) appears to be dose-dependent and not saturable (Tuck et al. 2001).

The antioxidant activity of the polyphenolic compounds

The ‘reactive oxygen species’ (ROS), which are continuously formed as a result of normal metabolic processes, can oxidise and damage cellular macromolecules, possibly leading to the development of degenerative diseases (for example, atherosclerosis, cancer, diabetes, rheumatoid arthritis and inflammatory diseases). Exogenous antioxidants are important because they have a twofold function, preventing food oxidation – and in particular lipid oxidation – and at the same time increasing the amount of antioxidant agents present in the organism, protecting against degenerative diseases. The most important dietary antioxidants are certain vitamins (ascorbic acid, tocopherols, carotenes and phenolic compounds, which are present in various foods of vegetable origin characteristic of the Mediterranean diet, such as olive oil (Berra et al. 1995).

Phenolic compounds can act as antioxidants in various ways. In oxidative systems using transition metals such as Cu and Fe, they can chelate metallic ions, which can prevent their involvement in Fenton reactions that can generate high concentrations of hydroxyl radicals (Halliwell & Gutteridge, 1990; Halliwell et al. 1995). However, the most important antioxidant activity is related to the free radical-scavenging ability, by breaking the chain of reactions triggered by free radicals. The antioxidant properties of the o-diphenols are associated with their ability to form intramolecular hydrogen bonds between the hydroxyl group and the phenolicxy radicals (Visioli & Galli, 1998b) (Fig. 5). As similar studies on the flavonoids have already shown, the degree of antioxidant activity is correlated with the number of hydroxyl groups (Rice-Evans et al. 1996; Cao et al. 1997). The number of –OH groups and their positions on the ring are important for both flavonoids and phenols. From the study of the resonance structures formed during the oxidation processes, it can be observed that the ortho- and para-substitutes of the radicals are more stable than the meta-substitue (Finotti & Di Majo, 2003). In particular, ortho-diphenolic substitution gives high antioxidant ability, while a single hydroxyl substitution, as in tyrosol, does not confer any activity, since tyrosol does not protect LDL from chemically induced oxidation.

Although olive oil contains a relatively low concentration of α-tocopherol, it is known to be highly resistant to oxidative degradation. This is due, in part, to the relatively low content of PUFA and also to the high concentration of polyphenolic antioxidants, particularly in extra-virgin olive oil. The antioxidant activity of olive oil phenolic compounds, and in particular of oleuropein and its by-product hydroxytyrosol, has been studied in many experimental models: with the use of transition metals; the
chemically induced oxidation of LDL; ROS formation, for example the radicals superoxide and trichlormethylperoxylic, and hypochlorous acid (Aeschbach et al. 1994; Salami et al. 1995; Visioli et al. 1995a, 1998; Aruoma et al. 1998). By estimating the antioxidant activity of these polyphenolic compounds on the basis of their ability to inhibit the formation of peroxides, it has been shown that hydroxytyrosol and caffeic and protocatechuic acids have a higher protective activity (Papadopoulos & Boskou, 1991). The antioxidant activity of oleuropein and hydroxytyrosol has also been demonstrated in cellular models and animals (Manna et al. 1997; Speroni et al. 1998).

Some polyphenols can contribute to the regeneration of vitamin E, as has been demonstrated by treating human lipoproteins in vitro with peroxides.

In a recent study, the antioxidant activity of α-tocopherol and phenolic extracts from olives and olive oil was compared over time. It was demonstrated that in the first 15 min the scavenger activity of α-tocopherol was higher but soon terminated. The extract from stoned olives and oil contained compounds that continued to reduce the concentration of these radicals more slowly; when on the other hand the reaction time was delayed to 60 min, all the extracts of the olives were much more active than α-tocopherol. On day 6 the extracts of the olives and the oil continued to be more effective than α-tocopherol (Keceli & Gordon, 2001).

The biological activity of phenolic compounds of olive oil is not limited to their antioxidant ability but extends to their interaction with important enzymic systems. In particular, it has been found out that olive oil phenols: inhibit platelet aggregation; reduce pro-inflammatory molecule formation such as thromboxane B₂ and leukotriene B₄; inhibit the use of oxygen in human neutrophils; increase NO production by the macrophages of rats.

Fig. 4. Postulated enzymic pathways for the metabolites of hydroxytyrosol in vivo.

![Diagram of enzymic pathways for hydroxytyrosol metabolites](https://doi.org/10.1079/NRR200495)
exposed to endotoxin – they therefore act by up-regulating the immune system.

Other biological actions of phenolic compounds have been discovered that can be important for their effects on human health. For example, caffeic acid could have cytoprotective effects on endothelial cells, correlated not only with its action as an antioxidant agent but also with its ability to block the increase of the concentration of intracellular Ca^{2+} in response to lipoprotein oxidation (Vieira et al. 1998). The ability of polyphenolic compounds to react with metal ions could make them pro-oxidant. It has in fact been widely observed that caffeic acid, a simple polyphenol with an ortho-diphenolic structure, can have pro-oxidant activity on LDL oxidation induced by Cu^{2+} (Yamanaka et al. 1997). However, this pro-oxidant activity has been found only in the propagation phase of oxidation, and not in the initiation phase, in which caffeic acid inhibits lipoprotein oxidation, as has been found in previous studies (Laranjinha et al. 1994; Nardini et al. 1995).

The effects of the antioxidant activity of olive oil polyphenols on the integrity and function of the cells have been studied in erythrocytes and intestinal cells (Caco-2). The capacity of polyphenols to prevent damage in these cells was verified when they were exposed to oxidative stress, as in treatment with H_{2}O_{2}. Human erythrocytes were chosen because they are the cells most exposed to oxidative risk, since their specific role is to carry oxygen. The main target of H_{2}O_{2} is Hb, which is oxidised to methaemoglobin. Exposure of erythrocytes to H_{2}O_{2} also causes lipid peroxidation, and alterations in proteins, for example the formation of carbonyl dimers. As a consequence of this oxidative damage, the shape of the erythrocytes changes, causing haemolysis. The spontaneous oxidation of Hb produces superoxide anion radicals that cause the dismutation of H_{2}O_{2}. In the presence of reduced metal ions, especially Fe, these compounds form the highly reactive hydroxyl radical that can damage the cellular membrane, with consequent haemolysis (Sadzadeh et al. 1984; van Dyke & Saltman, 1996). Some studies on isolated erythrocyte membranes have demonstrated that the ATP-dependent ion transport (such as amino acid transport) is considerably compromised by oxidative damage (Rohn et al. 1993). Under physiological conditions, ROS are quickly removed by both enzymic and non-enzymic systems; however, if ROS production is excessive, or if antioxidant defence is impaired, serious oxidative damage can occur, to both the plasma membrane and the cytosol, which finally leads to haemolysis. Erythrocytes pre-treated with phenols extracted from extra-virgin olive oil show significantly less lipid oxidation and haemolysis after treatment with H_{2}O_{2}.

In erythrocytes pre-treated with H_{2}O_{2} and incubated in the presence of [^1]H)methionine or [^3]H)leucine, there is a marked reduction in the absorption of both the amino acids compared with control erythrocytes.

3,4-Dihydroxyphenyl-ethanol, or hydroxytyrosol, prevents the alteration of amino acid transport by H_{2}O_{2} in intact erythrocytes (Manna et al. 1999). Similarly in intestinal tumour cells (Caco-2) treated with H_{2}O_{2}, pre-treatment with olive oil polyphenols exerts a strong antioxidant effect. H_{2}O_{2} induces a clear increase in the intracellular concentration of malonyldialdehyde and the paracellular transport of inulin, respectively indicating the occurrence of lipid peroxidation and changes in cellular permeability. Pre-incubation of the Caco-2 cells with hydroxytyrosol totally prevents the alterations induced by H_{2}O_{2} (Manna et al. 1999).

Polyphenolic compounds in the prevention of atherosclerosis

Plasma LDL is atherogenic only after oxidative modification (Brown & Goldstein, 1983; Parthasarathy, 1991); some studies have shown that oxidative stress provokes the onset of atherosclerosis by inducing lipid peroxidation (Halliwell, 1997). From this point of view, antioxidants that can prevent lipid peroxidation can have an important role in preventing oxidative modification of LDL. Human LDL contain a variety of antioxidants capable of inhibiting peroxidation, such as \alpha-tocopherol, ubiquinol-10, \beta-carotene, lycopene and other hydroxy-carotenoids. \alpha-Tocopherol is the most abundant antioxidant in LDL (Princen et al. 1992; Abbey et al. 1993; Reaven et al. 1993; Jialal et al. 1995); however, it has been demonstrated that other antioxidants are also able to protect LDL from oxidation (Cominacini et al. 1991; Esterbauer et al. 1992). On the basis of previous epidemiological studies pointing out the direct correlation between the Mediterranean diet and a lower incidence of cardiovascular diseases (Hertog et al. 1993), various studies performed in vitro and in vivo (Table 2) have shown that the polyphenolic compounds of extra-virgin olive oil play an important role in the prevention of atherosclerotic damage through their inhibition of LDL oxidation (Vistoli et al. 1995; Rice-Evans et al. 1996; Cao et al. 1997; Masella et al. 1998).
Table 2. Biological properties of olive oil phenolics

<table>
<thead>
<tr>
<th>Polyphenolic compound</th>
<th>Mechanism of action</th>
<th>Salutary effect on human health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oleuropein, hydroxytyrosol, caffeic acid, protocatechuic acid and 3,4-dihydroxyphenylethanol-eugenol acid</td>
<td>Inhibition of LDL oxidation, both in vitro and in vivo; inhibition of HMG-CoA reductase; inhibition of thromboxane B2 and consequently platelet aggregation</td>
<td>Prevention of cardiovascular diseases</td>
</tr>
<tr>
<td>Secoiridoids (hydroxytyrosol and tyrosol) and lignans</td>
<td>Inhibitory action on activity of xanthine oxidase and reduction of superoxide formation; lignans act as anti-oestrogens and increase sex hormone-binding globulin</td>
<td>Prevention of tumoral diseases</td>
</tr>
<tr>
<td>Hydroxytyrosol and other polyphenolics</td>
<td>Inhibitory action on cyclo-oxygenase and lipo-oxygenase; reduce pro-inflammatory molecule formation such as thromboxane B2 and leucotriene B4</td>
<td>Anti-inflammatory activity</td>
</tr>
<tr>
<td>Oleuropein; verbascoside (hydroxytyrosol and tyrosol)</td>
<td>Inhibition of viral and bacterial growth and activity</td>
<td>Antimicrobial and antiviral activity</td>
</tr>
</tbody>
</table>

HMG, 3-hydroxy-3-methylglutaryl.

In 1999). In a sample of LDL, the vitamin E oxidation induced by CuSO4 was prevented by the addition of hydroxytyrosol or the secondary compounds of oleuropein; this effect was linearly correlated with the hydroxytyrosol concentration. In LDL, the addition of polyphenolic compounds caused significant reduction in lipid peroxide formation. In LDL not treated with polyphenolic compounds, these lipid peroxides are formed at the same time as the reduction of vitamin E levels. This vitamin E depletion by LDL occurs before massive lipid peroxidation. Phenolic compounds thus delay the beginning of the oxidative process, preserving the endogenous antioxidant pool (Visioli et al. 1995a, 2000a).

The antioxidant effect of the various polyphenolic compounds of olive oil has recently been compared. The results show that protocatechuic and 3,4-dihydroxyphenylethanol-eugenol acids have an antioxidant activity comparable with that of caffeic acid, oleuropein and 3,4-dihydroxyphenyl-ethanol in hydroxytyrosol (Masella et al. 1999). Some studies of the antioxidant effect of polyphenolic compounds on plasma LDL have been performed, in an attempt to simulate as well as possible the situation in vivo. Plasma was incubated with various olive oil phenols; LDL was subsequently isolated and subjected to the action of free radicals, in order to test the relative resistance to oxidation. The results indicate that hydroxytyrosol and oleuropein are more effective than monohydroxyphenols (tyrosol and ligstroside aglycone), confirming previous results (Rice-Evans et al. 1996; Cao et al. 1997). However, the concentration of antioxidants added to whole plasma to inhibit LDL oxidation was substantially higher than in previous studies, where the antioxidants were directly added to isolated LDL (Leenen et al. 2002). These data confirm other studies performed in vivo on animals fed with phenolic-rich olive oils; in these animals, the lipoproteins were much more resistant to oxidation than in other control animals fed with equal amounts of oleic acid (Scaccini et al. 1992), care being taken to maintain constant levels of vitamin E (Wiseman et al. 1996).

Another important risk factor for the onset of atherosclerosis is a high blood concentration of cholesterol. The regulation of plasma cholesterol is related to the activity of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, the first enzyme involved in the synthesis of cholesterol. The use of substances inhibiting HMG-CoA reductase (statins) is very effective in blood cholesterol reduction. Some studies have focused attention on the effect of the polyphenolic compounds contained in virgin olive oil on cholesterol metabolism, and recently it has been demonstrated that the activity of HMG-CoA reductase (Table 2) is significantly diminished in the liver microsomes of rats fed with the polyphenolic compounds. The inhibition of HMG-CoA reductase by polyphenolic compounds may thus represent a beneficial effect through olive oil ingestion and play an important role in the prevention of cardiovascular diseases. However, further studies are necessary in order to test the concentration of polyphenolic compounds capable of eliciting a therapeutic response (Benkhalti et al. 2002).

Polyphenolic compounds in the prevention of cancer

Many vegetable foods contain substances possessing anticancer properties (Huang et al. 1994; Johnson et al. 1994; Pezzuto, 1997), most of them active as antioxidants (Aruoma, 1994). Since ROS have been implicated in the genesis of tumours, the study of the antitumoral activity of olive oil phenolic compounds is very interesting.

Peroxynitrites (ONOO−) are highly reactive compounds capable of inducing peroxidation in lipids, oxidising methionine and damaging the DNA by deamination and nitration (Yermilov et al. 1995). Peroxynitrites are formed by reaction between NO and O2− (superoxide radical). The deamination of guanine and adenine causes breaks in the DNA chain, with consequent mutations (de Rojas-Walker et al. 1995); DNA oxidation is also potentially mutagenic (Newcomb & Loeb, 1998). In vitro, the presence of hydroxytyrosol reduces the biochemical effects of peroxynitrites, such as the deamination of adenine and guanine in some cell lines (Deiana et al. 1999).

The antioxidant activity of virgin olive oil extracts, shown in vitro by their ability to inhibit the effect of oxygen radicals on salicylic acid, is apparent at concentrations much lower than those of the single antioxidant compounds tested individually; this is probably due to the presence of other polyphenolic compounds, some of which are still unknown (Owen et al. 2000a). In addition to this action, extracts of
Phenolic compounds of olive oil

virgin olive oil show an inhibitory action on the activity of xanthine oxidase (Table 2), with a consequent reduction in superoxide formation. This action cannot be demonstrated for simple polyphenolic compounds (tyrosol and hydroxytyrosol) but it is due to secoiridoids and lignans (Owen et al. 2000b). An adequate intake of olive oil therefore has a double action: it gives protection from the effects of oxygen radicals and reduces the activity of xanthine oxidase, an enzyme potentially involved in carcinogenesis (Tanaka et al. 1997).

Among the substances possessing anticancer activity, the lignans are of special interest. It has been demonstrated that they inhibit the development of various kind of tumours: cutaneous, mammary, colonic, and pulmonary (Hirano et al. 1990; Kardono et al. 1990). In animals, the administration of flax seeds (a notable source of lignans) prevents the onset of mammary carcinoma (Serraino & Thompson, 1991, 1992; Thompson et al. 1996). The antitumoral effect of the lignans is based both on their antioxidant activity (Prasad, 1992; Owen et al. 2000b) and on their antiviral activity (Schroder et al. 1990). Also, the structural similarity to oestradiol and the synthetic anti-oestrone tamoxifen suggests that the lignans can act, in part, as anti-oestrogens (Table 2). This is because they are able to inhibit the synthesis of oestradiol in the placenta (Adlercreutz et al. 1993) and adipose tissue (Wang et al. 1994), as well as the proliferation of breast cancer cells induced by oestrogens (Mousavi & Adlercreutz, 1992), and to increase sex hormone-binding globulin (a plasma protein carrier of sexual steroids) levels, with a consequent reduction in the biologically active levels of free oestrogens (Adlercreutz et al. 1992).

Some of these effects are particularly important in the pathogenesis of mammary carcinoma in obese women. In obesity, the plasma levels of sex-hormone-binding globulin are reduced, with consequent higher plasma levels of free oestrogens. The mammary cells, which are typically hormone-sensitive, are constantly exposed to the action of high amounts of oestrogens (Schapira et al. 1991; Colditz, 1993; Maggino et al. 1993; Kissebah & Krakower, 1994; Hankinson et al. 1995). Also, inhibition by lignans of oestrogen synthesis in adipose tissue is fundamental in the prevention of breast cancer in obese woman, since adipose tissue is not only an energy-store tissue but also carries out an important endocrine function. It picks up and metabolises steroid hormones, converting androstenedione into oestrone (E1) and testosterone into 17-β-oestradiol (E2) (De Pergola et al. 1996).

The anticancer effect of the lignans is therefore probably due to their action on the metabolism of oestrogens.

Phenolic components as compounds with anti-inflammatory activity

Lipid radicals are also produced during reactions involved in the metabolism of arachidonic acid, during the synthesis of the eicosanoids by the action of the lipo-oxygenase and cyclo-oxygenase (Table 2). During these reactions, the radicals that are generated are partially inactivated by glutathione peroxidase (Eling et al. 1986; Mirochnitchenko et al. 2000). Some studies hypothesis an inhibitory activity on cyclo-oxygenase (Petroni et al. 1995; de La Puerta et al. 2000) and lipo-oxygenase by olive oil phenolic compounds (Kohyama et al. 1997; De La Puerta et al. 1999; Martinez-Domínguez et al. 2001). Considering the functions of the prostaglandins and leucotrienes, the results of these studies have important implications for the genesis of the inflammatory response and for atherosclerosis. In one of these studies, the effects of hydroxytyrosol and of the polyphenols extracted from waste waters were examined in vitro in parameters of platelet activity. It was found that the hydroxytyrosol and polyphenols extracted from waste waters inhibited in vitro platelet aggregation induced by collagen and thromboxane B2 production. The effectiveness of hydroxytyrosol in inhibition of the aggregation induced by collagen is similar to that of aspirin, a drug that is well known for its powerful activity in platelet anti-aggregation and cyclo-oxygenase inhibition (Petroni et al. 1995).

Polyphenols as compounds with antimicrobial activity

The bacteriostatic and bactericidal activities (Table 2) of oleuropein and the hydrolysis products, hydroxytyrosol and tyrosol, have been studied in vitro in comparison with many pathogenic micro-organisms: bacteria, fungi, viruses and protozoa (Hirschman, 1972; Federici & Bongi, 1983; Bisignano et al. 1999). Oleuropein and the hydrolysis products are able to inhibit the development and production of enterotoxin B by *Staphylococcus aureus*, the development of *Salmonella enteritidis* and the germination and consequent development of spores of *Bacillus cereus* (Walter et al. 1973; Tassou et al. 1991; Tranter et al. 1993; Tassou & Nychas, 1994, 1995). Oleuropein and other polyphenols (p-hydroxybenzoic, vanillic and p-coumaric acids) completely inhibit the development of *Klebsiella pneumoniae*, *Escherichia coli* and *B. cereus* (Aziz et al. 1998). Verbascoside shows antibacterial activity against *Staphylococcus aureus*, *E. coli* and other bacteria of clinical interest; it also shows antiviral activity against the syncytial virus, which affects the human respiratory system (Calis et al. 1988; Pardo et al. 1993; Chen et al. 1998; Kernan et al. 1998). Hydroxytyrosol is highly toxic to *Pseudomonas syringae pv savastanoi* and *Corynebacterium michiganense*, which are both phytopathogenic, and tyrosol may act as a mycotoxin (Venkatasubbaiah & Chilton, 1990; Capasso et al. 1995). Both phenols therefore protect the drupe from attack by pathogenic agents.

It is not clear why the polyphenolic compounds of olive oil have such a wide antimicrobial activity. They may cause surface activity that damages the membranes of bacterial cells (Juven et al. 1972). However, oleuropein, in spite of tyrosol, is ineffective against some bacterial chains (*Moraxella catarrhalis* and *Haemophilus influenzae*): in fact the presence in its chemical structure of the glycosidic group is responsible for the steric hindrance, which blocks the passage through the cell membrane. This simply does not make sense. Whatever the case, the antibacterial activity of olive oil’s phenolic compounds is due to the presence of the ortho-diphenolic system (catechol) (Bisignano et al. 1990).

These data indicate that the active compounds of olive oil, in addition to their use as food additives, could also be used...
as a potential antimicrobial agent in the treatment of some infections. Oleuropein can also interfere with the synthesis of amino acids necessary for viral activity, and in this way it prevents the diffusion, development and attack on the cell membrane, it inhibits reproduction and, in the case of retroviruses, it inhibits the production of reverse transcriptase and protease. Finally, oleuropein stimulates phagocytosis as a response of the immune system against pathogenic micro-organisms (Hirschman, 1972).

While a bactericidal effect has been observed on a wide range of bacteria, no effect has been observed on yeasts (Beuchat & Golden, 1989). However, oleuropein has some influence, though only slight, on the delay of the development and sporulation of Aspergillus parasiticus; also, the production of aflatoxin is notably reduced (Gourama & Bullerman, 1987).

Conclusion

The positive correlation between the Mediterranean diet and the low incidence of cardiovascular diseases and certain kinds of cancer (breast, prostate, intestine and skin cancer) leads us to conclude that a diet rich in grain, legumes, fresh fruit, vegetables, wine in moderate amounts and olive oil has beneficial effects on human health.

On the one hand, these effects are due to the high MUFA:saturated fatty acid ratio; on the other hand, some components of the Mediterranean diet, such as fibre, vitamins, flavonoids and polyphenolic compounds, play an important role in the prevention of these diseases (Visioli, 2000).

The normal consumption of extra-virgin olive oil, which is rich in polyphenolic compounds, antioxidant substances that combat the free radicals, could contribute, in appropriate amounts (three to five spoonfuls per d, in a balanced diet), together with other biologically active compounds, to reduce the risk of development of these pathologies.

Finally, nowadays the interest of the pharmaceutical industries in natural antioxidants is constantly growing; the waste waters produced by the processing of olive oil could represent a cheap source of polyphenolic compounds, as yet unused (Visioli et al. 1995b; Capasso et al. 1999; Mulinacci et al. 2001).

References

Phenolic compounds of olive oil

Mousavi Y & Adlercreutz H (1992) Enterolactone and estradiol inhibit each other's proliferative effect on MCF-7 breast cancer...

