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Abstract. It is proved that an arbitrary one dimensional dynamical system with
negative Schwarzian derivative and non-degenerate critical points has no wandering
intervals. This result implies a rather complete view of the dynamics of such a
system. In particular, every minimal topological attractor is either a limit cycle, or
a one dimensional manifold with boundary, or a solenoid. The orbit of a generic
point tends to some minimal attractor.

1.1. Statement of results
Let M be a one dimensional compact manifold with boundary, i.e. a finite union
of disjoint intervals and circles (to consider non-connected M is necessary for the
proof, not for generality). Let us consider a class Cd of C2-smooth maps f:M^>M
having d critical points ck e int M ('d-modal') and satisfying the following condi-
tions.

(Ul) In punctured neighbourhoods of the critical points the following estimates hold

Al\x-ckf^\f(x)\^A2\x-ck\
p"

where Ax, A2, fik>0.
(U2) Critical points ck are extrema.
(U3) The map / i s C3-smooth and has negative Schwarzian derivative:

outside critical points.

Remark. If xe M belongs to a circle then/<n)(x) means the derivative with respect
to the angular coordinate.

Let us also define the larger class sid by only requiring that condition (U3) is
satisfied locally, in some neighbourhood of the critical points. Set

0={jGd, M=\Js4d.
d=0 d=O
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738 M. Yu. Lyubich

Note that a C°°-smooth map / belongs to si if all its critical points are non-flat
extrema (i.e.

/ ' ( c k )= / ' (cJ = - - -=/ ( 2 / ' - u (c , ) = 0, fl2V(ck)*0 for some/,).

Denote by/" the nth iterate of/ A connected component Moc M will be called
a rotation component if it is invariant under some iterate f andf | Mo is topologically
conjugate to the irrational rotation of the circle. An interval J is called wandering
if/"/ nfmj = 0 for n > m > 0 and the orbit {f"J}*=0 does not tend to a cycle. An
interval 7 is called a homterval if/"|/ is monotone for all n eM = {0,1,2,...}. It is
easy to see that every homterval is either wandering, or lies on a rotation component,
or its orbit tends to a cycle. On the other hand, if J is a wandering interval then
f"J is a homterval for some n e N. The aim of the Part 1 of the present paper is to
prove the following result.

MAIN THEOREM. (The case of negative Schwarzian derivative.) A mapfe € has no
wandering intervals. In other words, any homterval which does not lie on a rotation
component is attracted by a cycle.

The Main Theorem will be extended onto the smooth case in Part 2 which is due
to A. M. Blokh and the author.

The Main Theorem solves an old problem. This topic goes back to the Poincare's
paper dealing with homeomorphisms of the circle (see [18]). Since then efforts of
a number of authors have been directed towards proving the non-existence of
wandering intervals because their appearance complicates our understanding of the
dynamics. Non-existence of wandering intervals was previously established in the
following cases:
(1) for C2-diffeomorphisms of the circle (Denjoy, see [18]);
(2) for unimodal fe €t (Guckenheimer [10]);
(3) for unimodal fe s£x (de Melo and van Strien [15]);
(4) for C^-smooth maps of the circle with non-flat critical points (Yoccoz [24]);

this result is not a particular case of the Main Theorem since fesd should
satisfy (U2).

Remark that if we only require C'-smoothness or allow flat critical points then
wandering intervals may appear (see [18,6,12]). Some results on the behaviour of
their orbits are obtained in [3,4] (see Remark after Proposition 2 in the next section).

Similar problems arose in Faton-Julia's memoirs (1918-1920) on the conformal
dynamics on the Riemann sphere. Non-existence of wandering domains in this case
was proved in Sullivan's famous paper [21]. The method of quasi-conformal defor-
mations used by Sullivan does not work in the one dimensional case. On the other
hand, one of Fatou's results on the behaviour of orbits of hypothetic wandering
domains ([7], pp. 60-61, see also [14]) became a starting point of our investigation.

Let co{x) denote the limit set of the orbit \f"x}*=0- An invariant set X c M will
be called transitive if the map f\X is topologically transitive, i.e. it has a dense
orbit. Following Milnor [16], a closed invariant set A c M will be called a topological
attractor if
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(1) the realm of attraction rl(A) = {x: o>(x)<= A} is a set of 2nd category (i.e. not
1st) in the sense of Baire;

(2) for any A'^A the set rl(A)\rl(A') is also of the 2nd category.
A number of papers have been devoted to the investigation of attractors of one

dimensional systems (Sharkovskii [19], Feigenbaum [8], Misiurewicz [17], Blokh
[1,2] etc,). The Main Theorem completes the description of the topological attrac-
tor's possible structure for the class of multi-modal maps under consideration.
Namely there exist minimal attractors of only three kinds:
(1) A is a limit cycle, i.e. the orbit of a periodic point such that int rl(A) # 0 ;
(2) /4 = LJ£=o/''J is an invariant transitive closed submanifold of M, i.e. / is an

interval or the circle,

and f\l is topologically transitive;
(3) A = P|^=i UE=o' fkh is a solenoid. Here /„ is a periodic interval of period pn -» oo,

/] => / 2
3 • • • and int A^0. In such a case f:A-* A is topologically conjugate

to the shift on a group.
Denote by Per (/) the set of periodic points of / A point x is called preperiodic

if/"x€ Per (/) for some n. By repeller we mean an invariant closed set X <= M such
that int X = 0 and r/(A") = U ^ o / " " * .

Spectral decompositon of one dimensional dynamical systems (see [26] for the
unimodal case and [19,1, 2] for the general continuous case) and the Main Theorem
imply

COROLLARY 1.1. Letf&€. Then

P e r ( / ) = U A u R i , (1.0)

where At are all attractors of kinds (1), (2), (3) and Rj are some transitive repellers.

For every xe M either w(x)<= At orf"xe Rj for some neN.

COROLLARY 1.2. For generic x e M (i.e. outside of a set of 1st category) the limit set
w(x) is either a limit cycle, a transitive invariant submanifold or a solenoid.

Remark 1. By a rotation attractor we mean a cycle of rotation components of M.
Let / be the number of connected components of M which are circles. Then a map
fe €d may have at most d +1+ \dM\ minimal attractors. Indeed, an attrractor of kind
(2) or (3) different from a rotation attractor must contain some critical point, while
an attractor of kind (1) must attract some critical point or a boundary point (by
Singer's theorem [20]).

Remark 2. The number of repellers Rj in the decomposition (1) is in general infinite
(at most countable). It is finite iff there are no solenoids. If Rj does not contain a
critical point then f\ Rj is topologically conjugate to the subshift of finite type.

Remark 3. Let fi(/) denote the set of nonwandering points of/ (see [18]). Then
it follows from [1,2,6,25] that Cl(f) = U A,v RjU Ok where At and R} are the
components of the decomposition (1) and Ok are the orbits of some preperiodic
critical values.
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Remark 4. The intersection of any two components of the decomposition (1) is at
most finite.

2. Preliminaries
Let A be the Lebesgue measure on M.

If a, b lie in the same component V of M then [a, b] denotes the (closed) interval
ending at a and b. Note that when V is an interval, we do not assume a < b. If V
is a circle then it will always be clear which of two possible intervals ending at a,
b is considered. If A, B are intervals then [A, B] denotes the minimal closed interval
containing A and B (with the same agreements as above). [A, B) = [A, B]\B (note
that [A, B) is closed).

Denote by C the set of critical points (extrema) of/ lying in int M. The points
of 5 = C u dM will be called singular.

In a small neighbourhood of any extremum c define the involution T:X>-*X' as
follows: f(x')=f(x). By property (Ul) of class €d the involution T is Lipschitz
continuous. Denote by L its Lipschitz constant.

In Part I we will assume that the following assumption holds.

ASSUMPTION A. There are no wandering intervals ending at singular points.

This technical assumption makes the main ideas of the proof much more trans-
parent. Some remarks about the proof without Assumption A will be done in § 1.11.

An interval / will be called contractive if it is either wandering or all orbits
originating in int / tend to a limit cycle.

PROPOSITION 1. If I is a non-contractive interval then

inf A(/"7)>0.
BEN

This proposition may be deduced from the view of the topological structure of
one dimensional maps [1,2] or proved directly by an easy argument.

The following statement is well-known.

PROPOSITION 2. (See [23,13]). Let f be a smooth one dimensional map having
wandering interval J. Then a>(J) contains some critical point off.

Remark. It is proved in [3,4] that provided / has negative Schwarzian derivative,
there exists ceC such that w(J) = w(c)3c.

From now on we fix some maximal wandering homterval J and some critical
point c e a)(J). Let Jn =f"J. We say that Jm is the n-nearest homterval to c if m < n
and Jm lies nearer to c than all homtervals Jk (k = 0 , 1 , . . . , n, k^ m). By 'nearer'
we mean that Jk n[Jm, r(Jm)] = 0 . If n = m, we say simply 'the nearest homterval
/„'. The idea of consideration the nearest homtervals in the unimodal case is due
to Guckenheimer [10].

A homterval / will be called solenoidal if for every p there exists n e N such that
Jn is contained in a periodic interval of minimal period more than p. We will prove
the Main Theorem at first for non-solenoidal homtervals (§ 1.8) and then for
solenoidal ones (§ 1.10).
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Now we define and establish to the end of the paper the large interger K eN and
two small numbers 77 > f > 0.

Let Sp be the set of periodic singular points, SA be the set of singular points
attracting with some their neighbourhoods by limit cycles. Clearly Sp n C c SA and
dSA.

Let K e N be so large that
(PI) fma * b for any a eS, be S\SP, m > K.

Let 77 > 0 be so small that
(P2) \fKa -b\>7) for any a eS, be S\SP.
(P3) \f"a -c\> r) for any a e S^u Sp (it is possible since c£ SA).

Besides, we assume that 77-neighbourhoods of singular points do not intersect
and the involution T is well-defined in 77-neighbourhoods of critical points.

Finally, by Proposition 1 and Assumption A there exists £e (0,77) satisfying the
following property.
(P4) Let a e S\SA, V be an interval containing a. Then

A(V)>T7=>A(/mV)>f (mel\l).
1.3. Unimodal decomposition
Let us consider a (SA(/))-neighbourhood Us of the homterval J. Let U% be the
components of US\J. Since J is the maximal homterval, we conclude by Proposition
1 that

\(fmUt)>p(S)>0 (meN). (1.1.)

Now consider the sequence Jm. -»c of the nearest to c homtervals. Set e =
\ min (p, £) where p = p(8) and f is defined in § 1.2. Choose from this sequence two
homtervals / , and Jn with large indices s = m,, n = mi+l lying in the ^neighbourhood
of c and so that

A(Jn)<A(JJ. (1.2)

Let a £ i n t / s lie farther from c than the centre of Js and a£{J^=lf"C. Set
G = [a, r(a)] . Then the inequalities \(G)<p and (1.1) imply f"Us <£ G. Let us
consider the minimal neighbourhood Goc Va of J such that fa & int G for a e dG0.
Evidently

/"(int G0)<=intG, f"(dG0)cdG, (1.3)

A(Qo)/A(J)<5, (1.4)

where Qo are the components of G0\J.
Further, consider those intervals of the orbit {fmG0}"m=0 which contain critical

points: f"'G03Ci ( 0<n ,< - • •<n J < n).
Let us show that

A (/"-Go) < 77. (1.5)

If nt = n, then we have / " G o c G and A(G)<77. Let « ,<M. Notice that f'G0 is
mapped by/""" into G and A(G)<£ By (P3) c^SA. Hence (P4) implies (1.5).

It follows from (1.5) that we may consider the symmetrization G,=/" 'Gou
T(f'Go). If itj = n then set k =j and note that Gk = G. If n, < n then set /c =y+ 1,
n* = n and Gfc = G by definition.
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In both cases we have constructed the sequence of closed intervals Go,
Gi,..., Gk = G and the sequence of integers 0 = w0 < n, < • ' ' <nk = n such that
(Dl) Gi lie in 77-neighbourhood of ct for i = 1,2,..., k and T(GJ) = G,;
(D2) Jn. <= int G,, Gk does not contain homtervals /, for /< n;
(D3) / 'G, «= Gi+1, /'(dG,) c aG,+1 for /, = »i+1 - n,;
(D4) / ' ° | Go is monotone and /'• | G, are unimodal for f > 1.

In such a case we will say that the unimodal decomposition of/" |G0 determined
by the sequence {G,, /!,•}*=<) is given. We call k the order of the decomposition and
f"i+'~"' the factors. The maximal order of decompositions {Gh M.I^O for which nk = n
will be denoted by ord (/„) = ord (n).

Remark. Instead of (Dl) one may require
(D°l) G ( 3 C , , T ( G , ) = G, and A(Gfc)<f

In fact, the implication (D°1)=>(D1) was proved above (seetheproof of inequality
(1.5)).

Finally, let us complete the constructed decomposition of/" | Go to the maximal
one. For a new decomposition we retain the notations {G,, «,-}?=<)•

1.4. Expanding property
In the last section we constructed the maximal unimodal decomposition {G,, n,}f=0-
Set T0=G0, G, = [z,, T(Z,)] for i > l . For />1 satisfying «,+,-«,>« put f, =
M1+1 -nt-K. Consider the maximal Tt = [/Kz,, ^,] ending at/"^ and containing /KG,
on which /"' is monotone. Let /?, = (̂ n,+K, £/] (see figure 1).

The following lemma may be considered as the multi-modal version of Lemma
3 of [5] which is due to A. M. Blokh.

LEMMA 1.1. Let {G,, nj}f=0 be the maximal unimodal decomposition and A(Gt)<f.
If ni+x — /I,i> K then

ft-oo/ For i' = 0 the map/""| T"0=/"'~""|G0 is monotone and f"(dT0)<^dGu Hence
/•"T0=G1.

Further let /' > 1. Assume that the statement of the Lemma fails. Then/"'7^ c G(+,.
The endpoint £, of Tt is either a preimage of some critical point or a boundary point.

In fact, the latter case is excluded. Indeed, otherwise it follows from (P3) (see
§ 1.2) that Ci £SAv SP. Therefore by (P4):

A(i?,)>T,^A(/"-"' KR,)>f. (1.6)
The inequality in the left-hand side is true by (P2) since A(Kj)>|/Kc,-f,! The
inequality in the right-hand side fails since/" "•""/?,c Gk. So we obtain a contra-
diction.

Thus, Ct is a preimage of some critical point a. So a is an endpoint of an interval
V=f'Ti for some re(0, v,). Then / " " 7 c Gk where r = n, + K +/. Applying (P3)
and (P4) to/"~r we obtain A( V)< rj. Hence, we may consider the symmetric interval
H= V U T ( V ) containing Jr (see figure 1). It is easy to see that the sequences
{Go, . . . , G,, H, Gi+l,..., Gk} and {n0,... ,n,,r, «,-+,,...,«} give a new unimodal
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FIGURE 1

decomposition of/" | Go. This contradicts the maximality of the initial decomposi-
tion. •

1.5. Distortion lemmas
First let us state the elementary.

THE FIRST DISTORTION LEMMA. Let f be a C1 -smooth map satisfying the Property
(Ul). Let U, W be the intervals having the common endpoint which do not contain
critical points, int U n int W = 0 . If A (U) < A (W) then

A 7 7 ^ : A T ^ H ( / ) - {1-7)

Proof Fix a small e>0. If X(W)>e then X(fW)/\(W)>D>0. Besides
A(/t/)/A(t/)< H/'ll, and we obtain (1.7).

Let A( W) < E, X be an e -neighbourhood of C. We have

\(fU) X(fW) \f'(x)\
xeU,yeW. (1.8)

If Wn X = 0 then (1.8) implies (1.7).
Let Wn X # 0 . Then l / u W lies in the 3e -neighbourhood of some critical point

c. Divide W into two half-intervals Wx and W2 where W, has a common point with
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U. We have

X(fU) k(fW) k(fU) A(/W,)_
k(U)'k{W)~ A(l/)"A(W,)

where xe U, ye Wx. But by (Ul) | / ' (z) |x |z-c| ' 3 holds in the 3e-neighbourhood
of c. This immediately implies (1.7) in the case when W lies farther from c than U.
Let W lie nearer to c than U. Then setting p = dist (c, W) we obtain

The Lemma is proved. D
This Lemma is the only place in Part 1 of the paper where we use the full power

of the estimates (Ul) rather than just the Lipschitz of T.

Further in this section <p :[0, l ]^[0,1] will be the C3-smooth surjective map
satisfying
(1) (f> has no critical points in [0,1];
(2) <p has negative Schwarzian derivative.

The following result is similar to the Koebe Distortion Theorem for univalent
functions (see [9]).

THE KOEBE PROPERTY [22,11]. Let 8>0. If cp(x), <p(y)e [S, 1 - 5 ] then
\<p'{x)\/\<p'(y)\— B(S) where B(8) does not depend on <p.

Divide [0, 1] into the union of three intervals H~ u K u H+ (where K lies between
H~ and H+). The Koebe Property immediately implies

THE SECOND DISTORTION LEMMA. There exists a function y:U+-*U+ such that

A(£/r) A(yH)
if—; — >a and — a a thenJ \(<pK) A(pX)k(<pK) \(<pK) A(K) ''

This Distortion Lemma is the main analytical tool in Part 1 of the present paper.

1.6. Distortion estimates for unimodal factors
Let {G,, /!,•}*=„ be the unimodal decomposition of/". Denote by Qf the connected
components of Gj\Jn.. Moreover, for I > 1 let QJ be that component which does
not contain c,.

LEMMA 1.2. LetfeO. There exists a function a(a)>0 such that

Remark 1. Lemma 1.2 is the unique step of the proof for which the condition of
negative Schwarzian derivative is essential. The main problem of Part 2 will be to
obtain its smooth analogue.
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Remark 2. The function o-(a) depends on / but is independent of decomposition
{G,, M,}?=0- One may think also that <r(a)=£ a and o-(a) is monotone decreasing.

Proof. Assume first that I > 1 and nj+1-«,>K. Since Qt^rUn,) for i ^ l ,
A(QD/A(/„.)&/,"'. So, only the estimate for A(QJ)/A(/„.) is non-trivial. To prove
it let us consider the map /"' | T] (see § 4 and figure 1).

By Lemma 1.1 f'T,,=> G,+, and we may apply the Second Distortion Lemma to
the partition Tf =f"QT u Jni+K u /?,. It gives

Applying now the First Distortion Lemma to fK, we obtain

for A =
So, (1.9) is proved under the assumptions i">l and ni+x-nt> K. Without these

assumptions the proof is still more simple. Namely, in the case i = 0 (1.9) follows
directly from the Second Distortion Lemma. In the case n,+, - n, < K it follows from
the First Distortion Lemma. •

1.7. Decompositions of low order
In this section we assume that J is non-solenoidal homterval (see § 1.2). Equivalently,
if aew(J) then a has no small periodic neighbourhoods. Then one may a priori
choose 17 so small that the following property holds (in addition to (P2), (P3)):

(P5) If Jm is contained in an ^-neighbourhood Un(a) of an extremum a for some
meM, then Un(a) is a non-periodic interval.

The following Lemma shows that in the non-solenoidal case the length of any
unimodal decomposition does not exceed d.

LEMMA 1.3. Let J be a non-solenoidal wandering homterval. Consider the unimodal
decomposition {G,, n.-J^o. c< e Gjfor i > 1. Then
(a) Jn. are the n-nearest homtervals to c, (J"> 1);
(b) critical points c, are pairwise distinct;
(c) k^d.

Proof. The implications (a)=^(b)=>(c) are trivial. Let us prove (a). Assume that 7,
lies nearer to c, than Jn. for some i e [1, k], I e [0, n]. Then i < k, l<n by property
(D2) (§ 1.3). Now consider two cases,

(i) /<«,. Then

Gk3/"-".G,=/"-V, = yn_(n,_;)

which contradicts (D2).
(ii) l>nt. Put/> = / -n , e (0 , n-nt) and consider f \ G,. By (P5) f"G, £ G,. Then

fGi contains 3n. or r{Jn.) and hence/P+1G, =>yn.+1. Applying/""'"' to the last
inclusion we obtain

h-P =/"~'-'yn,+ 1 C=/—-1(/"+1G1.) =f"-"-G;.

Hence Jn-P<^ Gk which contradicts property (D2) of the decomposition. •
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1.8. Absence of non-solenoidal homtervals for f e 0
Recall that Qf denotes the connected components of G,Vn, (see § 1.6). By the
definition of Gk= G (see § 1.3), inequality (1.2) and Lipschitz continuity of T, we
obtain

) A(JJ 2'

Applying Lemma 6.1 k times moving along the chain {G,}f=0, we conclude

\(Qo)/\{J)>o-ok(l/2L) (1.10)

But by Lemma 1.3 /c<d. Now return to the inequality (1.4) in § 1.3. One may a
priori choose S so that S <a°d(l/2L). Then the inequalities (1.4) and (1.10) are
contradictory.

1.9. Decompositions of high order
The absence of solenoidal homtervals we prove by induction. The trivial case d = 0
gives the base of induction. Assume that d > 0 and maps / G (?fc have no wandering
homtervals for k s d - 1 . Then the structure of unimodal decompositions {G,, n,}f=0

of high order must be very special. We describe it in the following two Lemmas.

L E M M A 1.4. (a) The sequence of critical points c, G G, is periodic of minimal period d;

(b) ./„ is the (ni+d — 1) nearest to c{ homterval for i<k — d.

Let Hn be the maximal interval containing J on which/" is monotone, Mn =f"Hn.
Denote by MB, the component of Mn\JKi lying farther from c, than Jn and by MB.
the other component. Set F, = [JB|, T(JB.)] .

LEMMA 1.5. There exists y (independent of the decomposition) such that provided
n,a y and d < i < ) ( - d we have
(a) MB. contains Jn _d or r(Jn. ();
(b) yn, u M^ 3 Fy n / n '~ n - 'F j_ , 3 c(.

Proof of Lemma 1.4. Let {G,, n;}?=o be the unimodal decomposition. First observe
that G, does not contain homtervals J, for /<«, . Indeed, otherwise G k 3 j n i . , n r n

which contradicts the property (D2) (cf case (i) of the proof of Lemma 1.3). Hence
Jn: is the nearest to c, homterval.

Further, let c,, c , + 1 , . . . , C;-, be pairwise distinct critical points, while c, = c,. Then
Jni lies nearer to c, than Jn.. We state that

/"'-"•G,<=intF,. (1.11)

Indeed, otherwise one may check that Gk =>Jni_,„,_„,, which contradicts (D2) again
(cf case (ii) of the proof of Lemma 1.3).

It follows from (1.11) that F, is a periodic interval of period M(-M,. Hence, the
union of intervals

n,-n.-l
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is /-invariant. By induction, f\ Oit should have at least d critical points. Hence
l-i = d and {c,,... , c,_,} = C. Now Lemma 1.4(a) follows.

To prove Lemma 1.4(b) assume that 7; lies nearer to c, for some l<ni+d. This
leads to a contradiction by the same argument as used just now. We omit the details.

•
Proof of Lemma 1.5. The proof of statements (a) and (b) are based upon similar
ideas and we restrict ourselves to the proof of (b).

Let us show that
int(.T•+'-"> F,) B ci+, ( l < i < J k - d , l < / < d ) . (1.12)

Indeed, if (1.12) fails for some l<d then/|O,,+ d has less than d critical points. If
(1.12) fails for / = d then f""<''"> F"<= F- for some component F- of /\\{c,}. Hence
f\Oli+d has less than d critical points where

In both cases we arrive at a contradiction which proves (1.12).
Let y be denned by the property that dHy <£ dM. Then the endpoints of Hn. are

preimages of critical points for n, a y. So there exists t e (0, «,) such that / '//„, = V
ends at some critical point c, for i-d<j< i. Now consider two cases:

(i) f > rij. Since t < n, < nJ+d, by Lemma 1.4 Vu T( V) = [J,, r(J,)] o/„.. Applying
f"r' we conclude M+

n. =>7n._(,_n.). But Ft does not contain any interval Ji for /< n,.
Hence M+

n, => F,.
(ii) /<«, . Since/"'" | V is monotone,/"'""'\Fj is unimodal. It follows from (1.12)

that j = i - l and / = n,_,. Hence M*t =/"'""'-'fi-i and we are done.

1.10. Absence of solenoidal homtervals for f e €
We may a priori choose t] as follows:
(P6) If Jm is 77-close to a critical point ae C for some meN then aew(J).

The proof of the Main Theorem in the non-solenoidal case shows that there exist
unimodal decompositions {G,, «,}f=0 of arbitrarily large order k. It follows from
Lemma 1.4 and (P6) that in such a case all critical points c,e C belong to w(J).
Let NjCzN be the sequence of numbers m for which Jm are the nearest to c,
homtervals. We have Jm -» Cj(m -*<x>, m e N,). Now let us consider two cases:

(i) For some j the sequence {A(7m)}meN. is not asymptotically monotone. Let N, =
{m,}"!,. Then there exists arbitrarily large 5 satisfying

A(/mv)>A(/m(il). (1.13)

Let a, e int Jm% lie farther from c, then the centre of /m>, and as £ U"=i fC. Consider
the interval G = [as,T(ax)] and construct a maximal unimodal decomposition
{G,, n,}f=0 for which Gk = G, nk = m,+, (see § 1.3). Lemma 1.2 implies

As A(Qo)/A(./)-»0(s-»oo), we obtain k = ord (mv+,)-»oo(s->oo) (we mean now and
further that 5 satisfies (1.13)).
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By Lemma 1.4 nk-jd = ms+,_,(7 = 1,2,...). Applying Lemma 1.2 to the chain
{G,, n,}!U-;>d, we obtain

This inequality and Lemma 1.5(a) imply

A(M-,_,)/A(Jm,_1)ap. (1.14)

On the other hand, Lemma 1.5(b) implies

a IT'A(Jm,)/A(/„,,_,) &L"1. (1.15)

The estimates (1.14) amd (1.15) are uniform with respect to s. This contradicts the
Second Distortion Lemma applied to/"*'-'|Hm,_T, since A (//*,_,)/A (7)->0(s->oo).

(ii) The sequences {A(7m)}meN. are monotone for sufficiently large m. By the same
argument as in (i) we obtain ord (/n)-»oo(m-»oo). Then using Lemmas 1.4 and 1.5
we see

(a) there exists the unified numeration of the sequence {/m}m6^N, = {Jn,}7=i such
that {nj+id}T=o= fy and the sequence {«,}?! i is monotonically increasing;

(b) Af.( ^[Jn,._„, cj] for i = j (mod rf).
Now consider two sub-cases
(iii) f/iere exisf arbitrarily large ntfor which Jn. u M^. => F;. Then

Besides, by property (b)

For large i the last two inequalities contradict the Second Distortion Lemma applied
to/n'|HMj.

(ii2) /„, u Af^.c: Fjfor all sufficiently large i. Then by Lemma 1.5

Hence
/«,+.r",Fi.cF.+d. ( 1 . 1 6 )

In particular, /"'+' r"/ni+J <= Fi+d. Since /n|+i/ is the (ni+2{t - l)-nearest homterval, we
conclude ni+2d ^ ni+d + (ni+d — «,). Thus, the sequence {ni+d - n,-}; is non-increasing.
Hence by (1.16) the critical point c} is periodic (wherej = i(mod d)). This contradic-
tion completes the proof of Main Theorem for /e 6.

1.11. Concluding remark
If assumption A does not hold then one must modify the argument as follows. Let
F be the set of all homtervals ending at critical points. If J e Y and Jn lies nearer
to c than all homtervals 7m5^7n, m^n, then we call Jn the strongly nearest to c
homterval. To prove Main Theorem without assumption A we consider such homter-
vals instead of the nearest homtervals defined above. The similar argument was
used in [3,4].

A simpler approach in the smooth case was proposed by the referee. This will
be described in Part 2.
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I am grateful to A. M. Blokh for useful discussions of the results of Part 1.
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