GROUP CLOSURES OF ONE-TO-ONE TRANSFORMATIONS

Inessa Levi

For a semigroup S of transformations of an infinite set X let G_{S} be the group of all the permutations of X that preserve S under conjugation. Fix a permutation group H on X and a transformation f of X, and let $\langle f: H\rangle=\left\langle\left\{h f h^{-1}: h \in H\right\}\right\rangle$ be the H-closure of f. We find necessary and sufficient conditions on a one-to-one transformation f and a normal subgroup H of the symmetric group on X to satisfy $G_{(f: H)}=H$. We also show that if S is a semigroup of one-to-one transformations of X and G_{S} contains the alternating group on X then $\operatorname{Aut}(S)=\operatorname{Inn}(S) \cong G_{S}$.

1. Introduction

Given a transformation f of a set X and a group \dot{H} of permutations of X, the H-closure of f in the semigroup \mathcal{T}_{X} of all the total transformations of X is the semigroup

$$
\langle f: H\rangle=\left\langle\left\{h f h^{-1}: h \in H\right\}\right\rangle
$$

The H-closure of f is the smallest subsemigroup of \mathcal{T}_{X} that contains f and whose automorphism group Aut $(\langle f: H\rangle)$ contains all the inner automorphisms $\varphi_{h}: g \mapsto h g h^{-1}$, where $h \in H$ and $g \in\langle f: H\rangle$.

Let \mathcal{G}_{X} denote the symmetric group on X. For an arbitrary subsemigroup S of \mathcal{T}_{X}, the group G_{S} of all the permutations of X that preserve S under conjugation,

$$
G_{S}=\left\{h \in \mathcal{G}_{X}: h S h^{-1} \subseteq S\right\}
$$

was introduced in [10]. Given a subgroup H of \mathcal{G}_{X}, a semigroup S of transformations of X is said to be H-normal if $G_{S}=H$. The centraliser $C_{\mathcal{G}_{X}}(S)$ of S in \mathcal{G}_{X},

$$
C_{\mathcal{G}_{X}}(S)=\left\{h \in \mathcal{G}_{X}: h g=g h, \text { for all } g \in S\right\}
$$

is a normal subgroup of G_{S}, and the group $\operatorname{lnn}(S)$ of all the inner automorphisms of S is a homomorphic image of $G_{\mathcal{S}}$, specifically

$$
\begin{equation*}
\operatorname{Inn}(S) \cong G_{S} / C_{G_{X}}(S) \tag{1}
\end{equation*}
$$

[^0]While $H \leqslant G_{\langle f: H\rangle}$ for a transformation f of X, the group H may be a proper subgroup of $G_{\langle f: H\rangle}$. For example, if X is a finite set, and f is a total transformation of X having $|X|-1$ elements in its image $\operatorname{im}(f)$, then $G_{(f: H)}=\mathcal{G}_{X}$ precisely when H is a 2-block transitive (see [11]). Thus if H is 2-block transitive and f is as stated, then $H=G_{(f: H)}$ only when $H=\mathcal{G}_{X}$. If H is the alternating group \mathcal{A}_{X} on a finite set X, and f is a non-bijective transformation of X, then $G_{\langle f: H\rangle}=H$ if and only if $|X| \equiv 0 \bmod 4$ and f is an x-nilpotent (see $[\mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}]$). Presently we extend the above studies to the case of an infinite set X by addressing the following problem (see also [12]).

Problem 1. Given an infinite set X, characterise the normal subgroups H of \mathcal{G}_{X} and transformations f of X such that the semigroup $\langle f: H\rangle$ is H-normal, that is $G_{\langle f: H\rangle}=H$.

Theorem 4.2 of this paper gives a solution for the above problem when f is a one-to-one transformation. Information on G_{S} is useful in considering the following problem. A semigroup S of transformations is said to have the inner automorphism property [14] if all the automorphisms of S are inner.

Problem 2 Characterise the semigroups of transformations that have the inner automorphism property.

The automorphisms of specific \mathcal{G}_{X}-normal semigroups were described by a number of authors (see, for example, $[\mathbf{1}, \mathbf{2}, \mathbf{1 5}, \mathbf{1 6}, 17]$). It was shown in $[18]$ (for a finite X) and in [3] and [4] (for an infinite X) that if S is a \mathcal{G}_{X}-normal semigroup, then S has the inner automorphism property and $\operatorname{Aut}(S)=\operatorname{Inn}(S) \cong \mathcal{G}_{X}$. If a semigroup of transformations contains certain constant transformations then it has only inner automorphisms [14]. If X is finite and S is an \mathcal{A}_{X}-normal semigroup then $\operatorname{Aut}(S)=\operatorname{Inn}(S) \cong \mathcal{A}_{X}$ [9]. If X is finite, and a subgroup H of \mathcal{G}_{X} is either transitive or equal to its normaliser, then a semigroup S, that is maximal amongst all the H-normal subsemigroups of \mathcal{T}_{X} containing H, has the inner automorphism property and $\operatorname{Aut}(S)=\operatorname{Inn}(S) \cong H$ [10]. Here we continue this line of investigation. We prove that if X is infinite and S is a semigroup of one-to-one transformations such that $\mathcal{A}_{X} \subseteq G_{S}$, then S has the inner automorphism property (Theorem 5.5). We also investigate the form of the group $\operatorname{Aut}(S)$.

2. Notation and properties of one-to-one transformations

Let X be an infinite set, and let \mathcal{W}_{X} be the semigroup of all the total one-to-one transformations of X. There are several parameters associated with a transformation f of X. The rank and the defect of f are

$$
\operatorname{rank}(f)=|\operatorname{im}(f)|, \text { and } \operatorname{def}(f)=|X-\operatorname{im}(f)|
$$

The subset of all the points of X moved by f is

$$
S(f)=\{x \in X: f(x) \neq x\} \text { and } \operatorname{shift}(f)=|S(f)|
$$

Just as any permutation of X may be written as a formal product of disjoint finite and infinite cycles, any one-to-one transformation of X may be written (essentially uniquely) as a formal product of disjoint cycles (finite or infinite) and chains (defined below) [5]. As usual, transformations f and g are disjoint if $S(f) \cap S(g)=\emptyset$. The formal product of a set A of pairwise disjoint transformations of X is denoted by $\Pi\{f: f \in A\}$ and defined by the following:

$$
\Pi\{f: f \in A\}(x)=\left\{\begin{array}{l}
f(x), \text { if } f \in A \text { and } x \in S(f) \\
x, \text { if } x \in X-\cup\{S(f): f \in A\}
\end{array}\right.
$$

where $x \in X$. If $A \subseteq \mathcal{W}_{X}$ then $\Pi\{f: f \in A\}$ is also in \mathcal{W}_{X}. For a countable ordered subset $Y=\left\{y_{1}, y_{2}, y_{3}, \ldots\right\}$ of X let $\left(y_{1}, y_{2}, y_{3}, \ldots\right)$ denote the transformation $f \in \mathcal{W}_{X}$ such that $f\left(y_{i}\right)=y_{i+1}$ for $i=1,2,3, \ldots$, and $f(x)=x$ for all $x \in X-Y$. The transformation $f=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$ is called a y_{1}-chain or just a chain. If f is a y_{1}-chain, then $X-\operatorname{im}(f)=\left\{y_{1}\right\}$ and $\operatorname{def}(f)=1$. The following result has been proved in [5].

Proposition 2.1. Let f be a non-identity transformation in \mathcal{W}_{X}. Then f is a formal product of pairwise disjoint cycles and chains, $f=\Pi\{g: g \in A\}$, with no $g \in A$ being a 1-cycle. The number of chains in A is equal to $\operatorname{def}(f)$. If $f=\Pi\left\{g: g \in A^{\prime}\right\}$ is another such product then $A=A^{\prime}$.

Let $\mathcal{C} h_{X} \subseteq \mathcal{W}_{X}$ be the set of all formal products of disjoint chains. Proposition 2.1 assures that every $f \in \mathcal{W}_{X}$ can be written as a product of two unique disjoint transformations $f_{p} \in \mathcal{G}_{X}$ and $f_{c} \in \mathcal{C} h_{X}$ (the subscripts p and c stand for permutation and chain correspondingly). The following results are easily derived from elementary properties of one-to-one transformations and an observation that a non-permutation in \mathcal{W}_{X} has an infinite shift.

Lemma 2.2. Let $f, g \in \mathcal{W}_{X}$, then

1. $\operatorname{def}(f g)=\operatorname{def}(f)+\operatorname{def}(g)$,
2. $\operatorname{shift}(f g) \leqslant \operatorname{shift}(f)+\operatorname{shift}(g)$,
3. if $\operatorname{shift}(f) \neq \operatorname{shift}(g)$, then $\operatorname{shift}(f g)=\max (\operatorname{shift}(f)$, $\operatorname{shift}(g))$.

For any infinite cardinal α less than or equal to the cardinal successor $|X|^{+}$of $|X|$, let

$$
S(X, \alpha)=\left\{f \in \mathcal{G}_{X}: \operatorname{shift}(f)<\alpha\right\}
$$

Then $S(X, \alpha)$ is a normal subgroup of the symmetric group \mathcal{G}_{X} and these groups together with the alternating group \mathcal{A}_{X} constitute the set of all the non-trivial normal subgroups of $\mathcal{G}_{X} \quad$ [13].

3. Centralisers of one-to-one transformations

Since the centraliser $C_{\mathcal{G}_{X}}(S)$ of a semigroup S is a normal subgroup of the group G_{S}, we start by considering properties of centralisers. For a transformation f of X let
$C_{\mathcal{G}_{X}}(f)=\left\{h \in \mathcal{G}_{X}: h f=f h\right\}$ be the centraliser of f in \mathcal{G}_{X}. It is self-evident that $C_{\mathcal{G}_{X}}(f) \leqslant G_{\langle f\rangle}$, and the result below presents a condition sufficient for equality.

Proposition 3.1. Let f be a one-to-one transformation with a finite defect. Then $G_{(f)}=C_{\mathcal{G}_{X}}(f)$.

Proof: Let $h \in G_{(f\rangle}$. Then $h f h^{-1} \in\langle f\rangle$, so $h f h^{-1}=f^{k}$ for some integer $k \geqslant 1$. Therefore $\operatorname{def}(f)=\operatorname{def}\left(h f h^{-1}\right)=\operatorname{def}\left(f^{k}\right)=k \operatorname{def}(f)$ by Lemma 2.2. Thus $k=1$ and $h \in C_{\mathcal{G}_{X}}(f)$.

Let $N(H)$ denote the normaliser of the group $H \leqslant \mathcal{G}_{X}$ in \mathcal{G}_{X}. The next result aids in determining the relationship between a normal subgroup H of \mathcal{G}_{X} and the group $G_{\langle f: H\rangle}$.

Lemma 3.2. Let $f \in \mathcal{T}_{X}$ and $H \leqslant \mathcal{G}_{X}$. Then $G_{(f)} \cap N(H) \leqslant G_{(f: H)}$.
Proof: Let $h \in G_{(f\rangle} \cap N(H)$ and $t \in\langle f: H\rangle$ so that $t=g_{1} f g_{1}{ }^{-1} \ldots g_{n} f g_{n}{ }^{-1}$ for some $g_{1}, \ldots, g_{n} \in H$. Then

$$
\begin{aligned}
h t h^{-1} & =h\left(g_{1} f g_{1}^{-1} \ldots g_{n} f g_{n}^{-1}\right) h^{-1} \\
& =\left(h g_{1} h^{-1}\right)\left(h f h^{-1}\right)\left(h g_{1}^{-1} h^{-1}\right) \ldots\left(h g_{n} h^{-1}\right)\left(h f h^{-1}\right)\left(h g_{n}^{-1} h^{-1}\right) \\
& \in\langle f: H\rangle,
\end{aligned}
$$

since $h g_{i}{ }^{j} h^{-1} \in H$ for each $i=1, \ldots, n$ and $j=-1$ or 1 , so $h \in G_{\langle f: H\rangle}$.
Remark 3.3. If h and q are permutations of X then $h q h^{-1}$ is a permutation of X that has the same cyclic structure as q. Moreover the permutation $h q h^{-1}$ is obtained by applying h to the symbols in q. Therefore $h \in C_{\mathcal{G}_{x}}(q)$ precisely when for each (finite or infinite) cycle ($\ldots x_{i} x_{i+1} x_{i+2} \ldots$) of q, the cycle ($\ldots h\left(x_{i}\right) h\left(x_{i+1}\right) h\left(x_{i+2}\right) \ldots$) is also a cycle of q.

Just as the conjugation of permutations preserves their cyclic structure, conjugation of transformations in \mathcal{W}_{X} by permutations of X preserves the cyclic-chain structure of the transformations [5].

Lemma 3.4. Let $f, g \in \mathcal{W}_{X}$. Then f, g are conjugate if and only if $\operatorname{def}(f)=$ $\operatorname{def}(g)$ and f and g have the same number of cycles of each length (including 1-cycles and infinite cycles) in their cyclic-chain decomposition.

The next proposition in conjunction with Remark 3.3 describes centralisers of transformations in \mathcal{W}_{X}. For a subset A of X and a permutation h of X, the set $h(A)$ is $\{h(a): a \in A\}$.

Proposition 3.5. Take $f \in \mathcal{W}_{X}$ and write it as a product of disjoint transformations $f=f_{p} f_{c}$, where $f_{p} \in \mathcal{G}_{X}, f_{c} \in \mathcal{C} h_{X}$. A permutation $h \in C_{\mathcal{G}_{X}}(f)$ if and only if

1. $h \in C_{\mathcal{G}_{X}}\left(f_{p}\right)$,
2. $h\left(S\left(f_{c}\right)\right)=S\left(f_{c}\right)$, and
3. for each x_{1}-chain $\left(x_{1} x_{2} x_{3} \ldots\right)$ in $f_{c},\left(h\left(x_{1}\right) h\left(x_{2}\right) h\left(x_{3}\right) \ldots\right)$ is an $h\left(x_{1}\right)$-chain in f_{c}.
Proof: Note that $h \in C_{\mathcal{G}_{X}}(f)$ if and only if $f_{p} f_{c}=h f_{p} h^{-1} h f_{c} h^{-1}$, so that by the uniqueness of the cyclic-chain decomposition of f we have that $f_{p}=h f_{p} h^{-1}$ and $f_{c}=h f_{c} \dot{h}^{-1}$.

Take a permutation h satisfying conditions (1)-(3) above. Then h commutes with f_{p}, and we only need to show that $f_{c}=h f_{c} h^{-1}$. For any $x \in X-S\left(f_{c}\right)$, we have that $h^{-1}(x) \in X-S\left(f_{c}\right)$, so that $h f_{c} h^{-1}(x)=h h^{-1}(x)=f_{c}(x)$. If $x \in S\left(f_{c}\right)$, then $h^{-1}(x) \in S\left(f_{c}\right)$, and there exists a chain $\left(x_{1} x_{2} x_{3} \ldots\right)$ in f_{c} such that $h^{-1}(x)=x_{i}$ for some i. Hence $h f_{c} h^{-1}(x)=h f_{c}\left(x_{i}\right)=h\left(x_{i+1}\right)$, and also $f_{c}(x)=f_{c}\left(h\left(x_{i}\right)\right)=h\left(x_{i+1}\right)$, since ($\left.h\left(x_{1}\right) h\left(x_{2}\right) h\left(x_{3}\right) \ldots\right)$ is a chain in f_{c}.

For the converse suppose that $h \in C_{\mathcal{G}_{X}}(f)$. Then $f_{p}=h f_{p} h^{-1}$ implies that condition (1) holds. We show that h maps a chain onto a chain, that is condition (3) holds. Let $\left(x_{1} x_{2} x_{3} \ldots\right)$ be an x_{1}-chain in f_{c}. Since h^{-1} is also in $C_{G_{X}}(f)$ we have that $h^{-1} f h\left(x_{i}\right)=$ $f\left(x_{i}\right)=x_{i+1}$, so that $f\left(h\left(x_{i}\right)\right)=h\left(x_{i+1}\right)$ for each $i=1,2, \ldots$. Since $x_{1} \in X-\operatorname{im}(f)=$ $X-\operatorname{im}\left(h f h^{-1}\right)$, it follows that $\left(h\left(x_{1}\right) h\left(x_{2}\right) h\left(x_{3}\right) \ldots\right)$ is an $h\left(x_{1}\right)$-chain in f_{c}. Finally condition (2) follows from (3) applied to h (to obtain $h\left(S\left(f_{c}\right)\right) \subseteq S\left(f_{c}\right)$ and h^{-1} (to obtain $h^{-1}\left(S\left(f_{c}\right)\right) \subseteq S\left(f_{c}\right)$, or $h\left(S\left(f_{c}\right)\right) \supseteq S\left(f_{c}\right)$.

The above result has several useful consequences.
Corollary 3.6. Take $f \in \mathcal{W}_{X}$ and write it as a product of disjoint transformations $f=f_{p} f_{c}$, where $f_{p} \in \mathcal{G}_{X}, f_{c} \in \mathcal{C} h_{X}$.

1. If $\left|X-S\left(f_{c}\right)\right| \leqslant 1$ then the identity permutation i_{X} is the only element of $C_{\mathcal{G}_{X}}(f)$ with a finite shift.
2. If $\operatorname{def}(f)=1$ then

$$
C_{\mathcal{G}_{X}}(f)=\left\{h \in C_{\mathcal{G}_{X}}\left(f_{p}\right): h(x)=x \text { for all } x \in S\left(f_{c}\right)\right\}
$$

Proof: To prove (1), assume $h \in C_{\mathcal{G}_{x}}(f)$ is a non-identity permutation. Since $\left|X-S\left(f_{c}\right)\right| \leqslant 1$, there exists $x \in S(h) \cap S\left(f_{c}\right)$, so that $x=x_{i}$ in an x_{1}-chain $\left(x_{1} x_{2} \ldots x_{i} \ldots\right)$ in f_{c}. Then by Proposition 3.5, $\left(h\left(x_{1}\right) h\left(x_{2}\right) \ldots h\left(x_{i}\right) \ldots\right)$ is an $h\left(x_{1}\right)$-chain in f_{c}. Since $x_{i}=x \neq h(x)=h\left(x_{i}\right)$, the chains $\left(x_{1} x_{2} \ldots x_{i} \ldots\right)$ and $\left(h\left(x_{1}\right) h\left(x_{2}\right) \ldots h\left(x_{i}\right) \ldots\right)$ are distinct, so that h maps a countable set $\left\{x_{1}, x_{2}, \ldots, x_{i}, \ldots\right\}$ into its complement in X, therefore shift (h) is infinite.

To verify (2), note that $\operatorname{def}(f)=1$ if and only if f_{c} consists of a single chain. Then by Proposition 3.5, the permutations in $C_{\mathcal{G}_{X}}(f)$ fix every element of $S\left(f_{c}\right)$ pointwise. $]$

The next result provides necessary conditions for a group $H \leqslant \mathcal{G}_{X}$ and a transformation $f \in \mathcal{W}_{X}$ to give rise to an H-normal semigroup $\langle f: H\rangle$.

Proposition 3.7.

1. Take $f \in \mathcal{W}_{X}$ and write it as a product of disjoint transformations $f=f_{p} f_{c}$, where $f_{p} \in \mathcal{G}_{X}, f_{c} \in \mathcal{C} h_{X}$. Suppose that either
(a) $\operatorname{def}(f) \geqslant 2$, or
(b) $\operatorname{def}(f)=1$ and $\left|X-S\left(f_{c}\right)\right|=|X|$.

Then $C_{\mathcal{G}_{X}}(f)$ contains a permutation h with $\operatorname{shift}(h)=|X|$.
2. Take $f \in \mathcal{W}_{X}$ with $\operatorname{def}(f) \geqslant 2$ and a group $H \leqslant S(X,|X|) \unlhd \mathcal{G}_{X}$.
(c) If $C_{\mathcal{G}_{X}}(f) \leqslant N(H)$ then $G_{\langle f: H\rangle} \neq H$.
(d) If $H \unlhd \mathcal{G}_{X}$ then $G_{\langle f: H\rangle} \neq H$.

Proof: We shall concentrate on proving the first result, as the second result is an easy consequence of the first result and Lemma 3.2. Indeed, if h is the permutation as stated in the first result, then, while $h \in C_{\mathcal{G}_{X}}(f) \cap N(H) \leqslant G_{(f)} \cap N(H) \leqslant G_{\langle f: H\rangle}$, we have that h is not an element of H.

Now assume f satisfies the conditions in (1). If shift $\left(f_{p}\right)=|X|$, then since $f_{p} \in$ $C_{\mathcal{G}_{X}}(f)$, we may take $h=f_{p}$. Thus assume that shift $\left(f_{p}\right)<|X|$, and so $|X|=\mid X-$ $S\left(f_{p}\right)\left|=|X-S(f)|+\left|S\left(f_{c}\right)\right|\right.$. Suppose first that $| X-S(f)|=|X|$. Choose a permutation q of $X-S(f)$ that moves every point of $X-S(f)$, and let $h \in \mathcal{G}_{X}$ coincide with q on $X-S(f)$ and be the identity otherwise. Then $h \in C_{\mathcal{G}_{X}}(f)$ with $\operatorname{shift}(h)=|X|$, as required.

We may assume now that $|X-S(f)|<|X|$, so that $\left|X-S\left(f_{c}\right)\right|=|X-S(f)|+$ $\operatorname{shift}\left(f_{p}\right)<|X|$. Hence by (1b) above, we have that $\operatorname{def}(f) \geqslant 2$, and also $\operatorname{shift}\left(f_{c}\right)=|X|$. Let B be the set of all the chains in f_{c}, and recall that $|B|=\operatorname{def}(f)$. Take an index set I with $|I|=|B|$ if B is infinite, and $|I|=1$ if B is finite. Choose $|I|$ disjoint doubleton subsets B_{i} of B, where $i \in I$, and let $B_{i}=\left\{q_{i}, r_{i}\right\}$, where $q_{i}=\left(x_{1} x_{2} \ldots\right), r_{i}=\left(y_{1} y_{2} \ldots\right)$. For each $i \in I$ choose a permutation t_{i} of X with $S\left(t_{i}\right)=S\left(q_{i}\right) \cup S\left(r_{i}\right)$ that interchanges x_{j} 's and y_{j} 's; that is, for $j=1,2,3, \ldots$ we have that $t_{i}\left(x_{j}\right)=y_{j}, t_{i}\left(y_{j}\right)=x_{j}$ and $t_{i}(x)=$ x for all $x \in X-\left(S\left(q_{i}\right) \cup S\left(r_{i}\right)\right)$. Then by Proposition 3.5, each permutation $t_{i} \in C_{\mathcal{G}_{X}}(f)$. Observe that the permutations t_{i} are pairwise disjoint, and take h to be the (formal) product of all t_{i} 's where $i \in I$. By Proposition 3.5 again, the permutation h is in $C_{\mathcal{G}_{X}}(f)$. Since for each $i \in I, \operatorname{shift}\left(t_{i}\right)=\aleph_{0}$, we have that $\operatorname{shift}(h)=\max \left(\aleph_{0},|I|\right)$. If $|X|=\aleph_{0}$, then shift $(h)=|X|$. If $|X|>\aleph_{o}$, then since $|X|=\operatorname{shift}\left(f_{c}\right)=\aleph_{o}|B|$, we have that $|B|=|X|$, so $|I|=|B|=|X|$, and again shift $(h)=|X|$, as required.

Lemma 3.8. Let Y be a subset of X, and let q be a permutation of Y having no infinite cycles in its cyclic decomposition. Then $C_{\mathcal{G}_{Y}}(q) \cap S\left(Y, \aleph_{o}\right) \leqslant \mathcal{A}_{Y}$ if and only if

1. $|Y-S(q)| \leqslant 1$, and
2. q is a product of disjoint cycles of distinct odd lengths.

Proof: Write $q=\Pi\left\{\alpha_{i}: i \in I\right\}$ as a product of disjoint cycles α_{i}.
Suppose that $C_{\mathcal{G}_{Y}}(q) \cap S\left(Y, \aleph_{o}\right) \leqslant \mathcal{A}_{Y}$. Then $|Y-S(q)| \leqslant 1$ (else any 2-cycle ($x y$) with $x, y \in Y-S(q)$ is an odd permutation in $C_{\mathcal{G}_{Y}}(q)$). To prove (2), recall that $q=\Pi\left\{\alpha_{i}: i \in I\right\}$, and so for any finite subset J of I, the permutation $q_{J}=\Pi\left\{\alpha_{i}: i \in J\right\}$ is in $C_{\mathcal{G}_{Y}}(q)$. By our assumption q_{J} is an even permutation, therefore each $\alpha_{i}, i \in I$,
has an odd length. If α_{i} and α_{j} are two distinct cycles in q of the same odd length, $\alpha_{i}=\left(x_{1} x_{2} \ldots x_{k}\right) \neq\left(y_{1} y_{2} \ldots y_{k}\right)=\alpha_{j}$, then $t=\Pi\left\{\left(x_{m}, y_{m}\right): m=1,2, \ldots, k\right\}$ is an odd finite permutation in $C_{\mathcal{G}_{Y}}(q)$, a contradiction. Therefore $\left|\alpha_{i}\right| \neq\left|\alpha_{j}\right|$ if $i \neq j$.

Conversely, if q is a product of disjoint cycles α_{i} of odd distinct length, for $i \in I$, then the group $\left\langle\alpha_{i}: i \in I\right\rangle$, is a subgroup of $C_{\mathcal{G}_{Y}}(q) \cap \mathcal{A}_{Y}$. Assume that $|Y-S(q)| \leqslant 1$. We show that, in fact, $\left\langle\alpha_{i}: i \in I\right\rangle=C_{\mathcal{G}_{Y}}(q) \cap S\left(Y, \aleph_{o}\right)$. Indeed, let $h \in C_{\mathcal{G}_{Y}}(q) \cap S\left(Y, \aleph_{o}\right)$ and let

$$
Z=\left\{q^{k}(x): x \in S(h), k \text { is an integer }\right\} .
$$

Since $\operatorname{shift}(h)$ is finite and q is a product of finite cycles, the set Z is finite. Moreover, if $\alpha=\left(x_{1} x_{2} \ldots x_{m}\right)$ is a cycle in q such that $x_{i} \in S(h)$, for some $i=1,2, \ldots, m$, then by the definition of Z, the set $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ is a subset of Z. If $|X-S(q)|=1$, then $\{y\}=X-S(q)$ is not Z, since h has to map the single one-cycle (y) onto itself (Observation 3.3). Therefore the restriction $\left.q\right|_{Z}$ of q to Z is a permutation of Z that moves every element of Z. Without loss of generality assume that $\left.\alpha_{1}\right|_{Z},\left.\alpha_{2}\right|_{Z}, \ldots,\left.\alpha_{n}\right|_{Z}$ are the restrictions of cycles in q that move the points of Z, and note that $S\left(\alpha_{i}\right)=S\left(\alpha_{i} \mid z\right)$, for $i=1,2, \ldots, m$. Write $\left.q\right|_{z}=\left.\left.\left.\alpha_{1}\right|_{z} \alpha_{2}\right|_{z} \ldots \alpha_{n}\right|_{z}$. Since $S(h) \subseteq Z$, we have that $\left.h\right|_{Z} \in C_{\mathcal{G}_{z}}\left(\left.q\right|_{Z}\right)$.

Set $T=\left\langle\left.\alpha_{1}\right|_{Z},\left.\alpha_{2}\right|_{Z}, \ldots,\left.\alpha_{n}\right|_{Z}\right\rangle$, and let $\left.\alpha_{i}\right|_{Z}$ be an m_{i}-cycle, $m_{i} \geqslant 3$. Then T is a subgroup of $C_{\mathcal{G}_{z}}\left(\left.q\right|_{z}\right)$ of size $|T|=m_{1} m_{2} \ldots m_{n}$. The number of elements in $C_{\mathcal{G}_{z}}\left(\left.q\right|_{z}\right)$ equals $\left|\mathcal{G}_{Z}\right|$ divided by the number of conjugates of $\left.q\right|_{Z}$ in \mathcal{G}_{Z}. Since the number of conjugates of $\left.q\right|_{Z}$ in \mathcal{G}_{Z} equals the number $|Z|!/\left(m_{1}!m_{2}!\ldots m_{n}!\right)$ of partitions of Z into classes of sizes $m_{1}, m_{2}, \ldots, m_{n}$, multiplied by the number $\left(m_{1}-1\right)!\left(m_{2}-1\right)!\ldots\left(m_{n}-1\right)$! of distinct m_{i}-cycles on the elements of the m_{i}-class, we see that in fact $T=C_{\mathcal{G}_{z}}\left(\left.q\right|_{z}\right)$ and $\left.h\right|_{z} \in T$. Therefore $h \in\left\langle\alpha_{i}: i \in I\right\rangle$.

4. H-normal semigroups

In this section we characterise those pairs (H, f) of normal subgroups H of the symmetric group \mathcal{G}_{X} and one-to-one transformations f of X, that produce H-normal semigroups $\langle f: H\rangle$ (having the property that $H=G_{\langle f: H\rangle}$).

Lemma 4.1. Let $f \in \mathcal{W}_{X}$ be a transformation with a finite non-zero defect, and let $H \leqslant \mathcal{G}_{X}$. Then $G_{(f: H)} \leqslant H C_{\mathcal{G}_{X}}(f)$. If additionally $C_{\mathcal{G}_{X}}(f) \leqslant N(H)$ then $G_{\langle f: H\rangle}=H C_{\mathcal{G}_{X}}(f)$.

Proof: Take $g \in G_{(f: H)}$, then $g f g^{-1} \in\langle f: H\rangle$, and so there exist permutations $q_{1}, q_{2}, \ldots, q_{m} \in H$ such that

$$
g f g^{-1}=q_{1} f q_{1}^{-1} q_{2} f q_{2}^{-1} \ldots q_{m} f q_{m}^{-1}
$$

Then by Lemma 2.2, $\operatorname{def}(f)=\operatorname{def}\left(g f g^{-1}\right)=\operatorname{def}\left(q_{1} f q_{1}{ }^{-1}\right)+\operatorname{def}\left(q_{2} f q_{2}^{-1}\right)+\cdots+$ $\operatorname{def}\left(q_{m} f q_{m}^{-1}\right)=m \operatorname{def}(f)$, so that $m=1$. Hence $g f g^{-1}=q_{1} f q_{1}^{-1}$, and so $q_{1}{ }^{-1} g \in$ $C_{\mathcal{G}_{X}}(f)$. Therefore $G_{(f: H)} \leqslant H C_{\mathcal{G}_{X}}(f)$.

Now assume that $C_{\mathcal{G}_{X}}(f) \leqslant N(H)$ and take $h \in H$ and $t \in C_{\mathcal{G}_{X}}(f)$. Then for any element $q_{1} f q_{1}^{-1} q_{2} f q_{2}^{-1} \ldots q_{m} f q_{m}^{-1} \in\langle f: H\rangle$ its conjugate by $h t$ is a product of the conjugates of f of the form $h t q_{i} f q_{i}{ }^{-1} t^{-1} h^{-1}=h t q_{i} t^{-1} f t q_{i}^{-1} t^{-1} h^{-1} \in\langle f: H\rangle$ since $t g_{i} t^{-1} \in H$ for all i. Therefore $h t \in G_{\langle j: H\rangle}$.

Theorem 4.2. Let $f \in \mathcal{W}_{X}-\mathcal{G}_{X}$ and write f as a product of disjoint transformations $f=f_{p} f_{c}$, where $f_{p} \in \mathcal{G}_{X}, f_{c} \in \mathcal{C} h_{X}$. Take $H \unlhd \mathcal{G}_{X}$. Then $G_{\langle f: H\rangle}=H$ if and only if one of the following holds:

1. $H=\mathcal{G}_{X}$,
2. $H=S\left(X, \aleph_{o}\right),|X|=\aleph_{o}, \operatorname{def}(f)=1,\left|X-S\left(f_{c}\right)\right|<\aleph_{o}$,
3. $H=\mathcal{A}_{X},|X|=\aleph_{o}, \operatorname{def}(f)=1,\left|X-S\left(f_{c}\right)\right|<\aleph_{o},|X-S(f)| \leqslant 1$, and f_{p} is a product of disjoint cycles of distinct odd lengths,
4. $H=\left\{i_{X}\right\},|X|=\aleph_{o}, \operatorname{def}(f)=1,\left|X-S\left(f_{c}\right)\right| \leqslant 1$.

Proof: Suppose that H is a proper normal subgroup of \mathcal{G}_{X}, so that $H \leqslant S(X,|X|)$, and assume that $H=G_{(f: H)}$ for a one-to one transformation f. By Proposition 3.7, we have that $\operatorname{def}(f)=1$ and $\left|X-S\left(f_{c}\right)\right|<|X|$ so that $\left|S\left(f_{c}\right)\right|=|X|$. Since the defect of f is $1, f_{c}$ consists of a single chain, and so $\left|S\left(f_{c}\right)\right|=\aleph_{o}$. Therefore X is countable and $X-S\left(f_{c}\right)$ is at most finite. By Lemma 4.1 we have that $H=G_{\langle f: H\rangle}=H C_{\mathcal{G}_{X}}(f)$, so by Corollary 3.6,

$$
\left\{h \in C_{\mathcal{G}_{X}}\left(f_{p}\right): h(x)=x \text { for all } x \in S\left(f_{c}\right)\right\}=C_{\mathcal{G}_{X}}(f) \leqslant H
$$

When X is countable the only non-trivial proper normal subgroups of \mathcal{G}_{X} are $S\left(X, \aleph_{o}\right)$ and \mathcal{A}_{X}. If $H=\mathcal{A}_{X}$, then it follows from Lemma 3.8 that f can fix at most one point of X and f_{p} is a product of disjoint cycles of distinct odd lengths. If $H=\left\{i_{X}\right\}$ then $C_{\mathcal{G}_{X}}(f)=\left\{i_{X}\right\}$ so that $C_{\mathcal{G}_{X}}\left(f_{p}\right)=\left\{i_{X}\right\}$ and hence $\left|X-S\left(f_{c}\right)\right| \leqslant 1$.

For the converse note that $H \leqslant G_{(f: H)} \leqslant \mathcal{G}_{X}$ for any subgroup H of \mathcal{G}_{X}, therefore if $H=\mathcal{G}_{X}$ we have that $G_{\left(f: \mathcal{G}_{X}\right)}=\mathcal{G}_{X}$. Now assume that $H \leqslant S\left(X, \mathcal{N}_{o}\right), X$ is countable, $\operatorname{def}(f)=1$ and $X-S\left(f_{c}\right)$ is finite. Then by Lemma 4.1 and Corollary 3.6, we have that $G_{(f: H\rangle}=H C_{\mathcal{G}_{X}}(f)=H\left\{h \in C_{\mathcal{G}_{X}}\left(f_{p}\right): h(x)=x\right.$ for all $\left.x \in S\left(f_{c}\right)\right\}$. Since $X-S\left(f_{c}\right)$ is finite, $C_{\mathcal{G}_{X}}(f) \leqslant S\left(X, \aleph_{o}\right)$, so $G_{(f: H)}=H$ for $H=S\left(X, \aleph_{o}\right)$.

If we assume additionally that f_{p} is a product of disjoint cycles of distinct odd lengths, and f fixes at most one point, then Corollary 3.6 and Lemma 3.8 imply that $C_{\mathcal{G}_{X}}(f) \leqslant \mathcal{A}_{X}$, and so $G_{\left\langle f: \mathcal{A}_{X}\right\rangle}=\mathcal{A}_{X}$. Similarly, if $\left|X-S\left(f_{c}\right)\right| \leqslant 1$, then $C_{\mathcal{G}_{X}}(f)=\left\{i_{X}\right\}$, and $G_{\left(f:\left\{i_{X}\right\}\right)}=\left\{i_{X}\right\}$.

5. Automorphisms

If S is a semigroup of total transformations of a finite set X, and G_{S} contains the alternating group \mathcal{A}_{X} on X, then $G_{S}=\mathcal{G}_{X}, S$ is a \mathcal{G}_{X}-normal semigroup, all the
automorphisms of S are inner, and the automorphism group $\operatorname{Aut}(S)$ of S is isomorphic to \mathcal{G}_{X} [6]. For an infinite set X the fact that $\mathcal{A}_{X} \leqslant G_{S}$ does not imply that $G_{S}=\mathcal{G}_{X}$. However it will be shown in this section that if $S \nsubseteq \mathcal{G}_{X}$ is a semigroup of one-to-one transformations of an infinite set X such that G_{S} contains \mathcal{A}_{X}, then S has the inner automorphism property. The technique used here is based on that of [3] developed to describe the automorphisms of \mathcal{G}_{X}-normal semigroups.

Everywhere in this section we assume that S is a subsemigroup of \mathcal{W}_{X} that contains transformations with non-zero defects, and that $\mathcal{A}_{X} \leqslant G_{S}$. To describe the automorphism group $\operatorname{Aut}(S)$, in view of Equation 1 (in Section 1), we need to know the structure of the centraliser of the semigroup S in \mathcal{G}_{X}.

Proposition 5.1. The centraliser $C_{\mathcal{G}_{X}}(S)$ of S is equal to $\left\{i_{X}\right\}$.
Proof: Let $f \in S$ and let $T=\left\langle f: \mathcal{A}_{X}\right\rangle$ be a subsemigroup of S. We show that $C_{G_{X}}(T)=\left\{i_{X}\right\}$, and deduce the statement of the Proposition from an observation that since T is a subsemigroup of S, the centraliser $C_{\mathcal{G}_{X}}(S) \subseteq C_{\mathcal{G}_{X}}(T)$. First we demonstrate that

$$
\begin{equation*}
C_{\mathcal{G}_{X}}(T)=\cap\left\{h C_{\mathcal{G}_{X}}(f) h^{-1}: h \in \mathcal{A}_{X}\right\} \tag{2}
\end{equation*}
$$

Indeed for each $q \in C_{\mathcal{G}_{X}}(T)$ and $h \in \mathcal{A}_{X}$ we have that $q h f h^{-1} q^{-1}=h f h^{-1}$, so that $h^{-1} q h \in C_{\mathcal{G}_{X}}(f)$, and $q \in h C_{\mathcal{G}_{X}}(f) h^{-1}$. Conversely, assume that $p \in \cap\left\{h C_{\mathcal{G}_{X}}(f) h^{-1}\right.$: $\left.h \in \mathcal{A}_{X}\right\}$ and take $g=h_{1} f h_{1}^{-1} h_{2} f h_{2}^{-1} \ldots h_{m} f h_{m}^{-1} \in T$. For each $i=1,2, \ldots, m$, there exists $r_{i} \in C_{\mathcal{G}_{X}}(f)$ such that $p=h_{i} r_{i} h_{i}^{-1}$. Therefore $p h_{i} f h_{i}^{-1} p^{-1}=h_{i} r_{i} h_{i}^{-1} h_{i} f h_{i}^{-1} h_{i} r_{i}{ }^{-1} h_{i}^{-1}=$ $h_{i} f h_{i}^{-1}$, so that $p g p^{-1}=g$, and $g \in C_{\mathcal{G}_{X}}(T)$.

Take $g \in C_{\mathcal{G}_{X}}(T) \subseteq C_{\mathcal{G}_{X}}(f)$, and suppose that g maps a chain $\left(x_{1} x_{2} x_{3} \ldots\right)$ of f to a different chain $\left(g\left(x_{1}\right) g\left(x_{2}\right) g\left(x_{3}\right) \ldots\right.$) of f (Proposition 3.5). Take $s=\left(x_{1} x_{2} x_{3}\right) \in \mathcal{A}_{X}$. By Equation (2) above, $g=s q s^{-1}$ for some $q \in C_{\mathcal{G}_{X}}(f)$, and this q has to map every chain of f onto a chain in f in prescribed order (Proposition 3.5). However we have that $q\left(x_{1}\right)=s^{-1} g s\left(x_{1}\right)=s^{-1} g\left(x_{2}\right)=g\left(x_{2}\right)=x_{3}$, hence $q\left(x_{1} q x_{2} x_{3} \ldots\right)$ is not a chain in f. This contradiction proves that g fixes every point of $S\left(f_{c}\right)$.

Suppose now that there is an $x \in X-S\left(f_{c}\right)$ such that $g(x)=y \neq x$, and note that $y \in X-S\left(f_{c}\right)$. Choose $z \in S\left(f_{c}\right)$ and take $s_{1}=(x y z) \in \mathcal{A}_{X}$. By Equation (2) again, $g=s_{1} q_{1} s_{1}^{-1}$ for some $q_{1} \in C_{\mathcal{G}_{X}}(f)$. However, in this case $q_{1}(z)=s_{1}^{-1} g s_{1}(z)=$ $s_{1}^{-1} g(x)=s_{1}^{-1}(y)=x$, so $q_{1}\left(S\left(f_{c}\right)\right) \neq S\left(f_{c}\right)$, a contradiction to the fact that $q_{1} \in C_{G_{X}}(f)$ (Proposition 3.5 again). Therefore g is the identity permutation of X.

We proceed with the description of $\operatorname{Aut}(S)$. For an $x \in X$ define

$$
\mathcal{R}_{\boldsymbol{x}}=\{r \in S: x \in X-\operatorname{im}(r)\} .
$$

In as much as G_{S} contains a transitive group \mathcal{A}_{X}, the set \mathcal{R}_{x} is non-empty for every $x \in X$. In fact \mathcal{R}_{x} is a right ideal of S, termed a point right ideal. Moreover, for
any distinct points $x, y \in X$, the corresponding point right ideals \mathcal{R}_{x} and \mathcal{R}_{y} are also distinct. Indeed if $r \in \mathcal{R}_{x} \cap \mathcal{R}_{y}$, choose distinct points $u, v \in \operatorname{im}(r)$ and take $h=(y u v)$ to be a three-cycle in $\mathcal{A}_{X} \leqslant G_{S}$. Then $\operatorname{im}\left(h r h^{-1}\right)=h(\operatorname{im}(r))$, and so $h r h^{-1} \in \mathcal{R}_{x}-\mathcal{R}_{y}$. Therefore there is a one-to-one correspondence between the points x of X and the point right ideals \mathcal{R}_{x} of S.

We show that any automorphism of S acts faithfully on the set $\left\{\mathcal{R}_{x}: x \in X\right\}$ of all the point right ideals of S. Given distinct transformations s and t in S, define

$$
\mathcal{R}(s, t)=\{r \in S: s r=t r\}
$$

If non-empty, $\mathcal{R}(s, t)$ is a right ideal of S termed a function right ideal. It is not difficult to see that there is a relationship between non-empty function right ideals and point right ideals of S (see [3]) given by

$$
\begin{equation*}
\mathcal{R}(s, t)=\cap\left\{\mathcal{R}_{x}: s(x) \neq t(x)\right\} . \tag{3}
\end{equation*}
$$

Lemma 5.2. For each $x \in X$ there exist transformations $s, t \in S$ such that $\mathcal{R}_{x}=\mathcal{R}(s, t)$.

Proof: Since the defect of a product of two one-to-one transformations is the sum of their defects, and since S contains transformations with non-zero defects, we may choose a transformation g in S with $\operatorname{def}(g) \geqslant 3$. Since G_{S} contains a transitive group \mathcal{A}_{X} we may assume without loss of generality that $x \in X-\operatorname{im}(g)$. Let $g(x)=y$, and choose two other distinct points u and $z \operatorname{in} X-\operatorname{im}(g)$. Take three-cycles $h_{1}=(x z u)$ and $h_{2}=(x z y)$ in $\mathcal{A}_{X} \leqslant G_{S}$, and let $s=h_{1} g h_{1}^{-1} g$ and $t=h_{2} g h_{2}^{-1} g$.

We show that the above defined s and t are the required transformations. Indeed, $s(x)=h_{1} g h_{1}^{-1} g(x)=h_{1} g h_{1}^{-1}(y)=h_{1} g(y)=g(y)$, since $g(y)$ is not an element of $\{x, u, z\} \subseteq X-\operatorname{im}(f)$. Also $t(x)=h_{2} g h_{2}^{-1} g(x)=h_{2} g h_{2}^{-1}(y)=h_{2} g(z)=g(z)$, since $g(z) \neq g(x)=y$, and $g(z) \neq x, z \in X-\operatorname{im}(g)$, therefore $s(x) \neq t(x)$. If $a \neq x$, then $g(a) \notin\{x, y, u, z\}$, so $h_{1}^{-1} g(a)=h_{2}^{-1} g(a) \notin\{x, y, u, z\}$, and it is easy to see that $s(a)=t(a)$.

The set of function right ideals is partially ordered by set inclusion, and its maximal elements are of the form $\mathcal{R}(s, t)$ where s and t differ precisely on one point of X (Equation 3 and Lemma 5.2). Formally:

Lemma 5.3. Given transformations $s, t \in S, \mathcal{R}(s, t)$ is a maximal function right ideal of S if and only if $\mathcal{R}(s, t)=\mathcal{R}_{x}$, for some $x \in X$.

Take an automorphism φ of S and observe that φ acts on the set of function right ideals:

$$
\begin{aligned}
\varphi(\mathcal{R}(s, t)) & =\{\varphi(r): r \in S, \varphi(s r)=\varphi(t r)\} \\
& =\left\{r^{\prime}: r^{\prime} \in S, \varphi(s) r^{\prime}=\varphi(t) r^{\prime}\right\} \\
& =\mathcal{R}(\varphi(s), \varphi(t))
\end{aligned}
$$

Moreover φ maps the set of all maximal function right ideals onto itself, hereby giving rise to a permutation h of X such that for an $x \in X, h(x)=y$ if $\varphi\left(\mathcal{R}_{x}\right)=\mathcal{R}_{y}$ (Lemma 5.3). The next result follows then from the observation that for any $x \in X$ and $f \in S$ we have that $x \in X-\operatorname{im}(f)$ if and only if $f \in \mathcal{R}_{x}$ if and only if $\varphi(f) \in \varphi\left(\mathcal{R}_{x}\right)=\mathcal{R}_{h(x)}$.

Lemma 5.4. Given $f \in S, \operatorname{im}(\varphi(f))=h(\operatorname{im}(f))$.
To see that φ indeed acts on S by conjugation by h, take an arbitrary $x \in X$, $f \in S$, and choose a non-permutation g in S with $x \in \operatorname{im}(g)$. Take $u \in \operatorname{im}(g)$ with $u \neq x$ and $v \in X-\operatorname{im}(g)$, and let $q=(u x v) \in \mathcal{A}_{X} \leqslant G_{S}$. Then $q g q^{-1} \in S$ and $\operatorname{im}\left(q g q^{-1}\right)=q(\operatorname{im}(g))=\operatorname{im}(g)-\{x\} \cup\{v\}$, so that $\operatorname{im}(g)-\operatorname{im}\left(q g q^{-1}\right)=\{x\}$. By Lemma 5.4,

$$
\begin{aligned}
\varphi(f)(h(x)) & =\varphi(f)\left(\operatorname{im}(\varphi(g))-\operatorname{im}\left(\varphi\left(q g q^{-1}\right)\right)\right. \\
& =\operatorname{im}(\varphi(f g))-\operatorname{im}\left(\varphi\left(f q g q^{-1}\right)\right) \\
& =h f(x),
\end{aligned}
$$

and so $\varphi(f)=h f h^{-1}$. The above discussion together with Proposition 5.1 implies the next result.

Theorem 5.5. Let X be an infinite set, and let S be a semigroup of one-to-one transformations of X that contains non-permutations. If the alternating group \mathcal{A}_{X} is a subgroup of G_{S}, then each automorphism φ of S is inner, and $\operatorname{Aut}(S) \cong G_{S}$.

Corollary 5.6. Let $f \in \mathcal{W}_{X}$ be a transformation with a non-zero defect, and let H be a normal subgroup of \mathcal{G}_{X}, then

1. $\operatorname{Aut}(\langle f: H\rangle)=\operatorname{Inn}(\langle f: H\rangle)$,
2. if $H \neq\left\{i_{X}\right\}$ and f has a finite defect, then

$$
\operatorname{Aut}(\langle f: H\rangle)=\operatorname{Inn}(\langle f: H\rangle) \cong H C_{\mathcal{G}_{X}}(f)
$$

Proof: To prove the first part of the Corollary, note that if H is a non-trivial normal subgroup of \mathcal{G}_{X}, then the result follows from Theorem 5.5. If $H=\left\{i_{X}\right\}$, then $\langle f: H\rangle$ is the monogenic semigroup generated by f. Since $f \in \mathcal{W}_{X}-\mathcal{G}_{X}$, for any integer $k \geqslant 2$ we have that $f^{k} \neq f$ and so the identity automorphism is the only automorphism of $\langle f: H\rangle$.

The second part of the Corollary follows directly from Theorem 5.5 and Lemma 4.1.

Observe that if H is a proper normal subgroup of \mathcal{G}_{X} and $f \in \mathcal{W}_{X}$ is a nonpermutation satisfying $\operatorname{Aut}(\langle f: H\rangle) \cong H$, then by Proposition 3.7 and Corollary 5.6, we have that $\operatorname{def}(f)=1$ and $\left|X-S\left(f_{c}\right)\right|<|X|$, so that X is a countable set.

Corollary 5.7. Let X be a countable set. Then there exists a non-permutation $f \in \mathcal{W}_{X}$ such that for any normal subgroup H of \mathcal{G}_{X} we have that Aut $(\langle f: H\rangle) \cong H$.

Proof: Take f to be a single chain shifting all the points of X. Then, by Corollary $3.6, C_{\mathcal{G}_{X}}(f)=\left\{i_{X}\right\}$. The result follows from Corollary 5.6.

References

[1] S.P. Fitzpatrick and J.S.V. Symons, 'Automorphisms of transformation semigroups', Proc. Edinburgh Math. Soc. 19 (1974/75), 327-329.
[2] I. Levi, B.M. Schein, R.P. Sullivan and G.R. Wood, 'Automorphisms of Baer-Levi semigroups', J. London Math. Soc. 28 (1983), 492-495.
[3] I. Levi, 'Automorphisms of normal transformation semigroups', Proc. Edinburgh Math. Soc. 28 (1985), 185-205.
[4] I. Levi, 'Automorphisms of normal partial transformation semigroups', Glasgow Math. J. 29 (1987), 149-157.
[5] I. Levi, 'Normal semigroups of one-to-one transformations', Proc. Edinburgh Math. Soc. 34 (1991), 65-76.
[6] I. Levi, 'On the inner automorphisms of finite transformation semigroups', Proc. Edinburgh Math. Soc. 30 (1996), 27-30.
[7] I. Levi, 'On groups associated with transformation semigroups', Semigroup Forum 59 (1999), 1-12.
[8] I. Levi, D.B. McAlister and R.B. McFadden, ' \mathcal{A}_{n} - normal semigroups', Semigroup Forum 62 (2001), 173-177.
[9] I. Levi, D.B. McAlister and R.B. McFadden, 'Groups associated with finite transformation semigroups', Semigroup Forum 61 (2000), 453-467.
[10] I. Levi and S. Seif, 'Finite normal semigroups', Semigroup Forum 57 (1998), 69-74.
[11] I. Levi and R.B. McFadden, 'Fully invariant transformations and associated groups', Comm. Algebra 28 (2000), 4829-4838.
[12] I. Levi and J. Wood, 'Group closures of partial transformations', (submitted).
[13] W.R. Scott, Group theory (Prentice Hall, N.J., 1964).
[14] R.P. Sullivan, 'Automorphisms of transformation semigroups', J. Austral. Math. Soc. 20 (1975), 77-84.
[15] R.P. Sullivan, 'Automorphisms of injective transformation semigroups', Studia Sci. Math. Hungar. 15 (1980), 1-4.
[16] E.G. Sutov, 'On semigroups of almost identical transformations', Soviet Math. Dokl. 1 (1960), 1080-1083.
[17] E.G. Sutov, 'Homomorphisms of the semigroup of all partial transformations', Izv. Vysšs. Učebn. Zaved. Mat. 22 (1962), 177-184.
[18] J.S.V. Symons, 'Normal transformation semigroups', J. Austral. Math. Soc. Ser. A 22 (1976), 385-390.

Department of Mathematics
University of Louisville
Louisville, KY 40292
United States of America

[^0]: Received 31st May, 2000
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 \$A2.00+0.00.

