GROUP CLOSURES OF ONE-TO-ONE TRANSFORMATIONS

INESSA LEVI

For a semigroup S of transformations of an infinite set X let G_S be the group of all the permutations of X that preserve S under conjugation. Fix a permutation group H on X and a transformation f of X, and let $\langle f : H \rangle = \langle \{hfh^{-1} : h \in H\} \rangle$ be the H-closure of f. We find necessary and sufficient conditions on a one-to-one transformation f and a normal subgroup H of the symmetric group on X to satisfy $G_{(f:H)} = H$. We also show that if S is a semigroup of one-to-one transformations of X and G_S contains the alternating group on X then $\operatorname{Aut}(S) = \operatorname{Inn}(S) \cong G_S$.

1. INTRODUCTION

Given a transformation f of a set X and a group H of permutations of X, the *H*-closure of f in the semigroup \mathcal{T}_X of all the total transformations of X is the semigroup

$$\langle f:H\rangle = \langle \{hfh^{-1}:h\in H\}\rangle.$$

The *H*-closure of f is the smallest subsemigroup of \mathcal{T}_X that contains f and whose automorphism group $\operatorname{Aut}(\langle f:H\rangle)$ contains all the inner automorphisms $\varphi_h: g \mapsto hgh^{-1}$, where $h \in H$ and $g \in \langle f:H \rangle$.

Let \mathcal{G}_X denote the symmetric group on X. For an arbitrary subsemigroup S of \mathcal{T}_X , the group G_S of all the permutations of X that preserve S under conjugation,

$$G_S = \{h \in \mathcal{G}_X : hSh^{-1} \subseteq S\},\$$

was introduced in [10]. Given a subgroup H of \mathcal{G}_X , a semigroup S of transformations of X is said to be *H*-normal if $G_S = H$. The centraliser $C_{\mathcal{G}_X}(S)$ of S in \mathcal{G}_X ,

$$C_{\mathcal{G}_X}(S) = \{ h \in \mathcal{G}_X : hg = gh, \text{ for all } g \in S \},\$$

is a normal subgroup of G_S , and the group Inn(S) of all the inner automorphisms of S is a homomorphic image of G_S , specifically

(1)
$$\operatorname{Inn}(S) \cong G_S/C_{G_X}(S).$$

Received 31st May, 2000

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 \$A2.00+0.00.

I. Levi

While $H \leq G_{(f:H)}$ for a transformation f of X, the group H may be a proper subgroup of $G_{(f:H)}$. For example, if X is a finite set, and f is a total transformation of X having |X| - 1 elements in its image im(f), then $G_{(f:H)} = \mathcal{G}_X$ precisely when H is a 2-block transitive (see [11]). Thus if H is 2-block transitive and f is as stated, then $H = G_{(f:H)}$ only when $H = \mathcal{G}_X$. If H is the alternating group \mathcal{A}_X on a finite set X, and f is a non-bijective transformation of X, then $G_{(f:H)} = H$ if and only if $|X| \equiv 0 \mod 4$ and f is an x-nilpotent (see [6, 7, 8, 9]). Presently we extend the above studies to the case of an infinite set X by addressing the following problem (see also [12]).

PROBLEM 1. Given an infinite set X, characterise the normal subgroups H of \mathcal{G}_X and transformations f of X such that the semigroup $\langle f : H \rangle$ is H-normal, that is $G_{\langle f:H \rangle} = H$.

Theorem 4.2 of this paper gives a solution for the above problem when f is a oneto-one transformation. Information on G_S is useful in considering the following problem. A semigroup S of transformations is said to have the *inner automorphism property* [14] if all the automorphisms of S are inner.

PROBLEM 2 Characterise the semigroups of transformations that have the inner automorphism property.

The automorphisms of specific \mathcal{G}_X -normal semigroups were described by a number of authors (see, for example, [1, 2, 15, 16, 17]). It was shown in [18] (for a finite X) and in [3] and [4] (for an infinite X) that if S is a \mathcal{G}_X -normal semigroup, then S has the inner automorphism property and Aut(S) = Inn(S) $\cong \mathcal{G}_X$. If a semigroup of transformations contains certain constant transformations then it has only inner automorphisms [14]. If X is finite and S is an \mathcal{A}_X -normal semigroup then Aut(S) = Inn(S) $\cong \mathcal{A}_X$ [9]. If X is finite, and a subgroup H of \mathcal{G}_X is either transitive or equal to its normaliser, then a semigroup S, that is maximal amongst all the H-normal subsemigroups of \mathcal{T}_X containing H, has the inner automorphism property and Aut(S) = Inn(S) $\cong H$ [10]. Here we continue this line of investigation. We prove that if X is infinite and S is a semigroup of one-to-one transformations such that $\mathcal{A}_X \subseteq G_S$, then S has the inner automorphism property (Theorem 5.5). We also investigate the form of the group Aut(S).

2. NOTATION AND PROPERTIES OF ONE-TO-ONE TRANSFORMATIONS

Let X be an infinite set, and let \mathcal{W}_X be the semigroup of all the total one-to-one transformations of X. There are several parameters associated with a transformation f of X. The rank and the defect of f are

$$\operatorname{rank}(f) = |\operatorname{im}(f)|$$
, and $\operatorname{def}(f) = |X - \operatorname{im}(f)|$.

The subset of all the points of X moved by f is

$$S(f) = \{x \in X : f(x) \neq x\} \text{ and shift}(f) = |S(f)|.$$

Just as any permutation of X may be written as a formal product of disjoint finite and infinite cycles, any one-to-one transformation of X may be written (essentially uniquely) as a formal product of disjoint cycles (finite or infinite) and *chains* (defined below) [5]. As usual, transformations f and g are disjoint if $S(f) \cap S(g) = \emptyset$. The formal product of a set A of pairwise disjoint transformations of X is denoted by $\Pi\{f : f \in A\}$ and defined by the following:

$$\Pi\{f:f\in A\}(x)=egin{cases} f(x), ext{ if } f\in A ext{ and } x\in S(f)\ x, ext{ if } x\in X-\cupig\{S(f):f\in Aig\}, \end{cases}$$

where $x \in X$. If $A \subseteq \mathcal{W}_X$ then $\Pi\{f : f \in A\}$ is also in \mathcal{W}_X . For a countable ordered subset $Y = \{y_1, y_2, y_3, \ldots\}$ of X let (y_1, y_2, y_3, \ldots) denote the transformation $f \in \mathcal{W}_X$ such that $f(y_i) = y_{i+1}$ for $i = 1, 2, 3, \ldots$, and f(x) = x for all $x \in X - Y$. The transformation $f = (y_1, y_2, y_3, \ldots)$ is called a y_1 -chain or just a chain. If f is a y_1 -chain, then $X - \operatorname{im}(f) = \{y_1\}$ and def(f) = 1. The following result has been proved in [5].

PROPOSITION 2.1. Let f be a non-identity transformation in W_X . Then f is a formal product of pairwise disjoint cycles and chains, $f = \Pi\{g : g \in A\}$, with no $g \in A$ being a 1-cycle. The number of chains in A is equal to def(f). If $f = \Pi\{g : g \in A'\}$ is another such product then A = A'.

Let $Ch_X \subseteq W_X$ be the set of all formal products of disjoint chains. Proposition 2.1 assures that every $f \in W_X$ can be written as a product of two unique disjoint transformations $f_p \in \mathcal{G}_X$ and $f_c \in Ch_X$ (the subscripts p and c stand for permutation and chain correspondingly). The following results are easily derived from elementary properties of one-to-one transformations and an observation that a non-permutation in W_X has an infinite shift.

LEMMA 2.2. Let $f, g \in W_X$, then

- 1. $\operatorname{def}(fg) = \operatorname{def}(f) + \operatorname{def}(g),$
- 2. $\operatorname{shift}(fg) \leq \operatorname{shift}(f) + \operatorname{shift}(g),$
- 3. if $shift(f) \neq shift(g)$, then shift(fg) = max(shift(f), shift(g)).

For any infinite cardinal α less than or equal to the cardinal successor $|X|^+$ of |X|, let

$$S(X, \alpha) = \{f \in \mathcal{G}_X : \operatorname{shift}(f) < \alpha\}.$$

Then $S(X, \alpha)$ is a normal subgroup of the symmetric group \mathcal{G}_X and these groups together with the alternating group \mathcal{A}_X constitute the set of all the non-trivial normal subgroups of \mathcal{G}_X [13].

3. Centralisers of one-to-one transformations

Since the centraliser $C_{\mathcal{G}_X}(S)$ of a semigroup S is a normal subgroup of the group G_S , we start by considering properties of centralisers. For a transformation f of X let

[4]

Π

 $C_{\mathcal{G}_X}(f) = \{h \in \mathcal{G}_X : hf = fh\}$ be the centraliser of f in \mathcal{G}_X . It is self-evident that $C_{\mathcal{G}_X}(f) \leq G_{(f)}$, and the result below presents a condition sufficient for equality.

PROPOSITION 3.1. Let f be a one-to-one transformation with a finite defect. Then $G_{(f)} = C_{\mathcal{G}_X}(f)$.

PROOF: Let $h \in G_{\langle f \rangle}$. Then $hfh^{-1} \in \langle f \rangle$, so $hfh^{-1} = f^k$ for some integer $k \ge 1$. Therefore def $(f) = def(hfh^{-1}) = def(f^k) = k def(f)$ by Lemma 2.2. Thus k = 1 and $h \in C_{\mathcal{G}_X}(f)$.

Let N(H) denote the normaliser of the group $H \leq \mathcal{G}_X$ in \mathcal{G}_X . The next result aids in determining the relationship between a normal subgroup H of \mathcal{G}_X and the group $G_{(f:H)}$.

LEMMA 3.2. Let $f \in \mathcal{T}_X$ and $H \leq \mathcal{G}_X$. Then $G_{(f)} \cap N(H) \leq G_{(f:H)}$.

PROOF: Let $h \in G_{\langle f \rangle} \cap N(H)$ and $t \in \langle f : H \rangle$ so that $t = g_1 f g_1^{-1} \dots g_n f g_n^{-1}$ for some $g_1, \dots, g_n \in H$. Then

$$hth^{-1} = h(g_1 f g_1^{-1} \dots g_n f g_n^{-1})h^{-1}$$

= $(hg_1 h^{-1})(hfh^{-1})(hg_1^{-1}h^{-1})\dots(hg_n h^{-1})(hfh^{-1})(hg_n^{-1}h^{-1})$
 $\in \langle f:H \rangle,$

since $hg_i^{j}h^{-1} \in H$ for each i = 1, ..., n and j = -1 or 1, so $h \in G_{(j:H)}$.

REMARK 3.3. If h and q are permutations of X then hqh^{-1} is a permutation of X that has the same cyclic structure as q. Moreover the permutation hqh^{-1} is obtained by applying h to the symbols in q. Therefore $h \in C_{\mathcal{G}_X}(q)$ precisely when for each (finite or infinite) cycle $(\ldots x_i x_{i+1} x_{i+2} \ldots)$ of q, the cycle $(\ldots h(x_i) h(x_{i+1}) h(x_{i+2}) \ldots)$ is also a cycle of q.

Just as the conjugation of permutations preserves their cyclic structure, conjugation of transformations in \mathcal{W}_X by permutations of X preserves the cyclic-chain structure of the transformations [5].

LEMMA 3.4. Let $f, g \in W_X$. Then f, g are conjugate if and only if def(f) = def(g) and f and g have the same number of cycles of each length (including 1-cycles and infinite cycles) in their cyclic-chain decomposition.

The next proposition in conjunction with Remark 3.3 describes centralisers of transformations in \mathcal{W}_X . For a subset A of X and a permutation h of X, the set h(A) is $\{h(a): a \in A\}$.

PROPOSITION 3.5. Take $f \in W_X$ and write it as a product of disjoint transformations $f = f_p f_c$, where $f_p \in \mathcal{G}_X$, $f_c \in Ch_X$. A permutation $h \in C_{\mathcal{G}_X}(f)$ if and only if

1.
$$h \in C_{\mathcal{G}_X}(f_p),$$

2. $h(S(f_c)) = S(f_c)$, and

3. for each x_1 -chain $(x_1x_2x_3...)$ in f_c , $(h(x_1)h(x_2)h(x_3)...)$ is an $h(x_1)$ -chain in f_c .

PROOF: Note that $h \in C_{\mathcal{G}_X}(f)$ if and only if $f_p f_c = h f_p h^{-1} h f_c h^{-1}$, so that by the uniqueness of the cyclic-chain decomposition of f we have that $f_p = h f_p h^{-1}$ and $f_c = h f_c h^{-1}$.

Take a permutation h satisfying conditions (1)-(3) above. Then h commutes with f_p , and we only need to show that $f_c = hf_ch^{-1}$. For any $x \in X - S(f_c)$, we have that $h^{-1}(x) \in X - S(f_c)$, so that $hf_ch^{-1}(x) = hh^{-1}(x) = f_c(x)$. If $x \in S(f_c)$, then $h^{-1}(x) \in S(f_c)$, and there exists a chain $(x_1x_2x_3...)$ in f_c such that $h^{-1}(x) = x_i$ for some *i*. Hence $hf_ch^{-1}(x) = hf_c(x_i) = h(x_{i+1})$, and also $f_c(x) = f_c(h(x_i)) = h(x_{i+1})$, since $(h(x_1)h(x_2)h(x_3)...)$ is a chain in f_c .

For the converse suppose that $h \in C_{\mathcal{G}_X}(f)$. Then $f_p = hf_p h^{-1}$ implies that condition (1) holds. We show that h maps a chain onto a chain, that is condition (3) holds. Let $(x_1x_2x_3...)$ be an x_1 -chain in f_c . Since h^{-1} is also in $C_{\mathcal{G}_X}(f)$ we have that $h^{-1}fh(x_i) =$ $f(x_i) = x_{i+1}$, so that $f(h(x_i)) = h(x_{i+1})$ for each $i = 1, 2, \ldots$. Since $x_1 \in X - \operatorname{im}(f) =$ $X - \operatorname{im}(hfh^{-1})$, it follows that $(h(x_1)h(x_2)h(x_3)\ldots)$ is an $h(x_1)$ -chain in f_c . Finally condition (2) follows from (3) applied to h (to obtain $h(S(f_c)) \subseteq S(f_c)$ and h^{-1} (to obtain $h^{-1}(S(f_c)) \subseteq S(f_c)$, or $h(S(f_c)) \supseteq S(f_c)$.

The above result has several useful consequences.

COROLLARY 3.6. Take $f \in W_X$ and write it as a product of disjoint transformations $f = f_p f_c$, where $f_p \in \mathcal{G}_X$, $f_c \in Ch_X$.

- 1. If $|X S(f_c)| \leq 1$ then the identity permutation i_X is the only element of $C_{\mathcal{G}_X}(f)$ with a finite shift.
- 2. If def(f) = 1 then

 $C_{\mathcal{G}_X}(f) = \left\{ h \in C_{\mathcal{G}_X}(f_p) : h(x) = x \text{ for all } x \in S(f_c) \right\}.$

PROOF: To prove (1), assume $h \in C_{\mathcal{G}_X}(f)$ is a non-identity permutation. Since $|X-S(f_c)| \leq 1$, there exists $x \in S(h) \cap S(f_c)$, so that $x = x_i$ in an x_1 -chain $(x_1x_2 \ldots x_i \ldots)$ in f_c . Then by Proposition 3.5, $(h(x_1)h(x_2) \ldots h(x_i) \ldots)$ is an $h(x_1)$ -chain in f_c . Since $x_i = x \neq h(x) = h(x_i)$, the chains $(x_1x_2 \ldots x_i \ldots)$ and $(h(x_1)h(x_2) \ldots h(x_i) \ldots)$ are distinct, so that h maps a countable set $\{x_1, x_2, \ldots, x_i, \ldots\}$ into its complement in X, therefore shift(h) is infinite.

To verify (2), note that def(f) = 1 if and only if f_c consists of a single chain. Then by Proposition 3.5, the permutations in $C_{\mathcal{G}_X}(f)$ fix every element of $S(f_c)$ pointwise.

The next result provides necessary conditions for a group $H \leq \mathcal{G}_X$ and a transformation $f \in \mathcal{W}_X$ to give rise to an *H*-normal semigroup $\langle f : H \rangle$.

PROPOSITION 3.7.

1. Take $f \in W_X$ and write it as a product of disjoint transformations $f = f_p f_c$, where $f_p \in \mathcal{G}_X$, $f_c \in Ch_X$. Suppose that either

- (a) $def(f) \ge 2$, or
- (b) def(f) = 1 and $|X S(f_c)| = |X|$.

Then $C_{\mathcal{G}_X}(f)$ contains a permutation h with shift(h) = |X|.

- 2. Take $f \in W_X$ with def $(f) \ge 2$ and a group $H \le S(X, |X|) \trianglelefteq \mathcal{G}_X$.
 - (c) If $C_{\mathcal{G}_{\mathbf{X}}}(f) \leq N(H)$ then $G_{(f:H)} \neq H$.
 - (d) If $H \leq \mathcal{G}_X$ then $G_{(f:H)} \neq H$.

PROOF: We shall concentrate on proving the first result, as the second result is an easy consequence of the first result and Lemma 3.2. Indeed, if h is the permutation as stated in the first result, then, while $h \in C_{\mathcal{G}_X}(f) \cap N(H) \leq G_{\langle f \rangle} \cap N(H) \leq G_{\langle f : H \rangle}$, we have that h is not an element of H.

Now assume f satisfies the conditions in (1). If $\operatorname{shift}(f_p) = |X|$, then since $f_p \in C_{\mathcal{G}_X}(f)$, we may take $h = f_p$. Thus assume that $\operatorname{shift}(f_p) < |X|$, and so $|X| = |X - S(f_p)| = |X - S(f)| + |S(f_c)|$. Suppose first that |X - S(f)| = |X|. Choose a permutation q of X - S(f) that moves every point of X - S(f), and let $h \in \mathcal{G}_X$ coincide with q on X - S(f) and be the identity otherwise. Then $h \in C_{\mathcal{G}_X}(f)$ with $\operatorname{shift}(h) = |X|$, as required.

We may assume now that |X - S(f)| < |X|, so that $|X - S(f_c)| = |X - S(f)| +$ shift $(f_p) < |X|$. Hence by (1b) above, we have that def $(f) \ge 2$, and also shift $(f_c) = |X|$. Let *B* be the set of all the chains in f_c , and recall that |B| = def(f). Take an index set *I* with |I| = |B| if *B* is infinite, and |I| = 1 if *B* is finite. Choose |I| disjoint doubleton subsets B_i of *B*, where $i \in I$, and let $B_i = \{q_i, r_i\}$, where $q_i = (x_1x_2...), r_i = (y_1y_2...)$. For each $i \in I$ choose a permutation t_i of *X* with $S(t_i) = S(q_i) \cup S(r_i)$ that interchanges x_j 's and y_j 's; that is, for j = 1, 2, 3, ... we have that $t_i(x_j) = y_j, t_i(y_j) = x_j$ and $t_i(x) =$ *x* for all $x \in X - (S(q_i) \cup S(r_i))$. Then by Proposition 3.5, each permutation $t_i \in C_{\mathcal{G}_X}(f)$. Observe that the permutations t_i are pairwise disjoint, and take *h* to be the (formal) product of all t_i 's where $i \in I$. By Proposition 3.5 again, the permutation *h* is in $C_{\mathcal{G}_X}(f)$. Since for each $i \in I$, shift $(t_i) = \aleph_o$, we have that shift $(h) = \max(\aleph_o, |I|)$. If $|X| = \aleph_o$, then shift(h) = |X|. If $|X| > \aleph_o$, then since $|X| = \text{shift}(f_c) = \aleph_o|B|$, we have that |B| = |X|, so |I| = |B| = |X|, and again shift(h) = |X|, as required.

LEMMA 3.8. Let Y be a subset of X, and let q be a permutation of Y having no infinite cycles in its cyclic decomposition. Then $C_{\mathcal{G}_Y}(q) \cap S(Y, \aleph_o) \leq \mathcal{A}_Y$ if and only if

- 1. $|Y S(q)| \leq 1$, and
- 2. q is a product of disjoint cycles of distinct odd lengths.

PROOF: Write $q = \prod \{ \alpha_i : i \in I \}$ as a product of disjoint cycles α_i .

Suppose that $C_{\mathcal{G}_Y}(q) \cap S(Y,\aleph_o) \leq \mathcal{A}_Y$. Then $|Y - S(q)| \leq 1$ (else any 2-cycle (xy) with $x, y \in Y - S(q)$ is an odd permutation in $C_{\mathcal{G}_Y}(q)$). To prove (2), recall that $q = \prod\{\alpha_i : i \in I\}$, and so for any finite subset J of I, the permutation $q_J = \prod\{\alpha_i : i \in J\}$ is in $C_{\mathcal{G}_Y}(q)$. By our assumption q_J is an even permutation, therefore each $\alpha_i, i \in I$,

has an odd length. If α_i and α_j are two distinct cycles in q of the same odd length, $\alpha_i = (x_1 x_2 \dots x_k) \neq (y_1 y_2 \dots y_k) = \alpha_j$, then $t = \prod \{ (x_m, y_m) : m = 1, 2, \dots, k \}$ is an odd finite permutation in $C_{\mathcal{G}_Y}(q)$, a contradiction. Therefore $|\alpha_i| \neq |\alpha_j|$ if $i \neq j$.

Conversely, if q is a product of disjoint cycles α_i of odd distinct length, for $i \in I$, then the group $\langle \alpha_i : i \in I \rangle$, is a subgroup of $C_{\mathcal{G}_Y}(q) \cap \mathcal{A}_Y$. Assume that $|Y - S(q)| \leq 1$. We show that, in fact, $\langle \alpha_i : i \in I \rangle = C_{\mathcal{G}_Y}(q) \cap S(Y, \aleph_o)$. Indeed, let $h \in C_{\mathcal{G}_Y}(q) \cap S(Y, \aleph_o)$ and let

$$Z = \{q^k(x) : x \in S(h), k \text{ is an integer}\}.$$

Since shift(h) is finite and q is a product of finite cycles, the set Z is finite. Moreover, if $\alpha = (x_1x_2...x_m)$ is a cycle in q such that $x_i \in S(h)$, for some i = 1, 2, ..., m, then by the definition of Z, the set $\{x_1, x_2, ..., x_m\}$ is a subset of Z. If |X - S(q)| = 1, then $\{y\} = X - S(q)$ is not Z, since h has to map the single one-cycle (y) onto itself (Observation 3.3). Therefore the restriction $q|_Z$ of q to Z is a permutation of Z that moves every element of Z. Without loss of generality assume that $\alpha_1|_Z, \alpha_2|_Z, ..., \alpha_n|_Z$ are the restrictions of cycles in q that move the points of Z, and note that $S(\alpha_i) = S(\alpha_i|_Z)$, for i = 1, 2, ..., m. Write $q|_Z = \alpha_1|_Z\alpha_2|_Z...\alpha_n|_Z$. Since $S(h) \subseteq Z$, we have that $h|_Z \in C_{\mathcal{G}_Z}(q|_Z)$.

Set $T = \langle \alpha_1 |_Z, \alpha_2 |_Z, \ldots, \alpha_n |_Z \rangle$, and let $\alpha_i |_Z$ be an m_i -cycle, $m_i \ge 3$. Then T is a subgroup of $C_{\mathcal{G}_Z}(q|_Z)$ of size $|T| = m_1 m_2 \ldots m_n$. The number of elements in $C_{\mathcal{G}_Z}(q|_Z)$ equals $|\mathcal{G}_Z|$ divided by the number of conjugates of $q|_Z$ in \mathcal{G}_Z . Since the number of conjugates of $q|_Z$ in \mathcal{G}_Z equals the number $|Z|!/(m_1!m_2!\ldots m_n!)$ of partitions of Z into classes of sizes m_1, m_2, \ldots, m_n , multiplied by the number $(m_1 - 1)!(m_2 - 1)!\ldots (m_n - 1)!$ of distinct m_i -cycles on the elements of the m_i -class, we see that in fact $T = C_{\mathcal{G}_Z}(q|_Z)$ and $h|_Z \in T$. Therefore $h \in \langle \alpha_i : i \in I \rangle$.

4. H-NORMAL SEMIGROUPS

In this section we characterise those pairs (H, f) of normal subgroups H of the symmetric group \mathcal{G}_X and one-to-one transformations f of X, that produce H-normal semigroups $\langle f:H \rangle$ (having the property that $H = G_{\langle f:H \rangle}$).

LEMMA 4.1. Let $f \in W_X$ be a transformation with a finite non-zero defect, and let $H \leq \mathcal{G}_X$. Then $G_{(f:H)} \leq HC_{\mathcal{G}_X}(f)$. If additionally $C_{\mathcal{G}_X}(f) \leq N(H)$ then $G_{(f:H)} = HC_{\mathcal{G}_X}(f)$.

PROOF: Take $g \in G_{(f:H)}$, then $gfg^{-1} \in \langle f : H \rangle$, and so there exist permutations $q_1, q_2, \ldots, q_m \in H$ such that

$$gfg^{-1} = q_1fq_1^{-1}q_2fq_2^{-1}\dots q_mfq_m^{-1}.$$

Then by Lemma 2.2, $def(f) = def(gfg^{-1}) = def(q_1fq_1^{-1}) + def(q_2fq_2^{-1}) + \cdots + def(q_mfq_m^{-1}) = m def(f)$, so that m = 1. Hence $gfg^{-1} = q_1fq_1^{-1}$, and so $q_1^{-1}g \in C_{\mathcal{G}_X}(f)$. Therefore $G_{(f:H)} \leq HC_{\mathcal{G}_X}(f)$.

Now assume that $C_{\mathcal{G}_X}(f) \leq N(H)$ and take $h \in H$ and $t \in C_{\mathcal{G}_X}(f)$. Then for any element $q_1 f q_1^{-1} q_2 f q_2^{-1} \dots q_m f q_m^{-1} \in \langle f : H \rangle$ its conjugate by ht is a product of the conjugates of f of the form $htq_i f q_i^{-1} t^{-1} h^{-1} = htq_i t^{-1} f t q_i^{-1} t^{-1} h^{-1} \in \langle f : H \rangle$ since $tq_i t^{-1} \in H$ for all i. Therefore $ht \in G_{\langle f:H \rangle}$.

THEOREM 4.2. Let $f \in W_X - \mathcal{G}_X$ and write f as a product of disjoint transformations $f = f_p f_c$, where $f_p \in \mathcal{G}_X$, $f_c \in Ch_X$. Take $H \leq \mathcal{G}_X$. Then $G_{\langle f:H \rangle} = H$ if and only if one of the following holds:

- 1. $H = \mathcal{G}_X$,
- 2. $H = S(X, \aleph_o), |X| = \aleph_o, \operatorname{def}(f) = 1, |X S(f_c)| < \aleph_o,$
- 3. $H = \mathcal{A}_X$, $|X| = \aleph_o$, def(f) = 1, $|X S(f_c)| < \aleph_o$, $|X S(f)| \leq 1$, and f_p is a product of disjoint cycles of distinct odd lengths,
- 4. $H = \{i_X\}, |X| = \aleph_o, \operatorname{def}(f) = 1, |X S(f_c)| \leq 1.$

PROOF: Suppose that H is a proper normal subgroup of \mathcal{G}_X , so that $H \leq S(X, |X|)$, and assume that $H = G_{\langle f:H \rangle}$ for a one-to one transformation f. By Proposition 3.7, we have that def(f) = 1 and $|X - S(f_c)| < |X|$ so that $|S(f_c)| = |X|$. Since the defect of f is 1, f_c consists of a single chain, and so $|S(f_c)| = \aleph_o$. Therefore X is countable and $X - S(f_c)$ is at most finite. By Lemma 4.1 we have that $H = G_{\langle f:H \rangle} = HC_{\mathcal{G}_X}(f)$, so by Corollary 3.6,

$$\left\{h \in C_{\mathcal{G}_X}(f_p) : h(x) = x \text{ for all } x \in S(f_c)\right\} = C_{\mathcal{G}_X}(f) \leqslant H.$$

When X is countable the only non-trivial proper normal subgroups of \mathcal{G}_X are $S(X,\aleph_o)$ and \mathcal{A}_X . If $H = \mathcal{A}_X$, then it follows from Lemma 3.8 that f can fix at most one point of X and f_p is a product of disjoint cycles of distinct odd lengths. If $H = \{i_X\}$ then $C_{\mathcal{G}_X}(f) = \{i_X\}$ so that $C_{\mathcal{G}_X}(f_p) = \{i_X\}$ and hence $|X - S(f_c)| \leq 1$.

For the converse note that $H \leq G_{(f:H)} \leq \mathcal{G}_X$ for any subgroup H of \mathcal{G}_X , therefore if $H = \mathcal{G}_X$ we have that $G_{(f:\mathcal{G}_X)} = \mathcal{G}_X$. Now assume that $H \leq S(X, \aleph_o)$, X is countable, def(f) = 1 and $X - S(f_c)$ is finite. Then by Lemma 4.1 and Corollary 3.6, we have that $G_{(f:H)} = HC_{\mathcal{G}_X}(f) = H\{h \in C_{\mathcal{G}_X}(f_p) : h(x) = x \text{ for all } x \in S(f_c)\}$. Since $X - S(f_c)$ is finite, $C_{\mathcal{G}_X}(f) \leq S(X, \aleph_o)$, so $G_{(f:H)} = H$ for $H = S(X, \aleph_o)$.

If we assume additionally that f_p is a product of disjoint cycles of distinct odd lengths, and f fixes at most one point, then Corollary 3.6 and Lemma 3.8 imply that $C_{\mathcal{G}_X}(f) \leq \mathcal{A}_X$, and so $G_{\langle f:\mathcal{A}_X \rangle} = \mathcal{A}_X$. Similarly, if $|X - S(f_c)| \leq 1$, then $C_{\mathcal{G}_X}(f) = \{i_X\}$, and $G_{\langle f:\{i_X\}\rangle} = \{i_X\}$.

5. Automorphisms

If S is a semigroup of total transformations of a finite set X, and G_S contains the alternating group \mathcal{A}_X on X, then $G_S = \mathcal{G}_X$, S is a \mathcal{G}_X -normal semigroup, all the

automorphisms of S are inner, and the automorphism group $\operatorname{Aut}(S)$ of S is isomorphic to \mathcal{G}_X [6]. For an infinite set X the fact that $\mathcal{A}_X \leq G_S$ does not imply that $G_S = \mathcal{G}_X$. However it will be shown in this section that if $S \not\subseteq \mathcal{G}_X$ is a semigroup of one-to-one transformations of an infinite set X such that G_S contains \mathcal{A}_X , then S has the inner automorphism property. The technique used here is based on that of [3] developed to describe the automorphisms of \mathcal{G}_X -normal semigroups.

Everywhere in this section we assume that S is a subsemigroup of \mathcal{W}_X that contains transformations with non-zero defects, and that $\mathcal{A}_X \leq G_S$. To describe the automorphism group $\operatorname{Aut}(S)$, in view of Equation 1 (in Section 1), we need to know the structure of the centraliser of the semigroup S in \mathcal{G}_X .

PROPOSITION 5.1. The centraliser $C_{\mathcal{G}_X}(S)$ of S is equal to $\{i_X\}$.

PROOF: Let $f \in S$ and let $T = \langle f : \mathcal{A}_X \rangle$ be a subsemigroup of S. We show that $C_{\mathcal{G}_X}(T) = \{i_X\}$, and deduce the statement of the Proposition from an observation that since T is a subsemigroup of S, the centraliser $C_{\mathcal{G}_X}(S) \subseteq C_{\mathcal{G}_X}(T)$. First we demonstrate that

(2)
$$C_{\mathcal{G}_X}(T) = \cap \left\{ h C_{\mathcal{G}_X}(f) h^{-1} : h \in \mathcal{A}_X \right\}.$$

Indeed for each $q \in C_{\mathcal{G}_X}(T)$ and $h \in \mathcal{A}_X$ we have that $qhfh^{-1}q^{-1} = hfh^{-1}$, so that $h^{-1}qh \in C_{\mathcal{G}_X}(f)$, and $q \in hC_{\mathcal{G}_X}(f)h^{-1}$. Conversely, assume that $p \in \bigcap\{hC_{\mathcal{G}_X}(f)h^{-1}: h \in \mathcal{A}_X\}$ and take $g = h_1fh_1^{-1}h_2fh_2^{-1}\dots h_mfh_m^{-1} \in T$. For each $i = 1, 2, \dots, m$, there exists $r_i \in C_{\mathcal{G}_X}(f)$ such that $p = h_ir_ih_i^{-1}$. Therefore $ph_ifh_i^{-1}p^{-1} = h_ir_ih_i^{-1}h_ifh_i^{-1}h_ir_i^{-1}h_i^{-1} = h_ifh_i^{-1}$, so that $pgp^{-1} = g$, and $g \in C_{\mathcal{G}_X}(T)$.

Take $g \in C_{\mathcal{G}_X}(T) \subseteq C_{\mathcal{G}_X}(f)$, and suppose that g maps a chain $(x_1x_2x_3...)$ of f to a different chain $(g(x_1)g(x_2)g(x_3)...)$ of f (Proposition 3.5). Take $s = (x_1x_2x_3) \in \mathcal{A}_X$. By Equation (2) above, $g = sqs^{-1}$ for some $q \in C_{\mathcal{G}_X}(f)$, and this q has to map every chain of f onto a chain in f in prescribed order (Proposition 3.5). However we have that $q(x_1) = s^{-1}gs(x_1) = s^{-1}g(x_2) = g(x_2) = x_3$, hence $q(x_1qx_2x_3...)$ is not a chain in f. This contradiction proves that g fixes every point of $S(f_c)$.

Suppose now that there is an $x \in X - S(f_c)$ such that $g(x) = y \neq x$, and note that $y \in X - S(f_c)$. Choose $z \in S(f_c)$ and take $s_1 = (xyz) \in A_X$. By Equation (2) again, $g = s_1 q_1 s_1^{-1}$ for some $q_1 \in C_{\mathcal{G}_X}(f)$. However, in this case $q_1(z) = s_1^{-1} gs_1(z) = s_1^{-1} g(x) = s_1^{-1}(y) = x$, so $q_1(S(f_c)) \neq S(f_c)$, a contradiction to the fact that $q_1 \in C_{\mathcal{G}_X}(f)$ (Proposition 3.5 again). Therefore g is the identity permutation of X.

We proceed with the description of Aut(S). For an $x \in X$ define

$$\mathcal{R}_x = \left\{ r \in S : x \in X - \operatorname{im}(r) \right\}.$$

In as much as G_S contains a transitive group \mathcal{A}_X , the set \mathcal{R}_x is non-empty for every $x \in X$. In fact \mathcal{R}_x is a right ideal of S, termed a *point right ideal*. Moreover, for

[10]

any distinct points $x, y \in X$, the corresponding point right ideals \mathcal{R}_x and \mathcal{R}_y are also distinct. Indeed if $r \in \mathcal{R}_x \cap \mathcal{R}_y$, choose distinct points $u, v \in im(r)$ and take h = (yuv)to be a three-cycle in $\mathcal{A}_X \leq G_S$. Then $im(hrh^{-1}) = h(im(r))$, and so $hrh^{-1} \in \mathcal{R}_x - \mathcal{R}_y$. Therefore there is a one-to-one correspondence between the points x of X and the point right ideals \mathcal{R}_x of S.

We show that any automorphism of S acts faithfully on the set $\{\mathcal{R}_x : x \in X\}$ of all the point right ideals of S. Given distinct transformations s and t in S, define

$$\mathcal{R}(s,t) = \{r \in S : sr = tr\}.$$

If non-empty, $\mathcal{R}(s,t)$ is a right ideal of S termed a function right ideal. It is not difficult to see that there is a relationship between non-empty function right ideals and point right ideals of S (see [3]) given by

(3)
$$\mathcal{R}(s,t) = \cap \{\mathcal{R}_x : s(x) \neq t(x)\}.$$

LEMMA 5.2. For each $x \in X$ there exist transformations $s, t \in S$ such that $\mathcal{R}_x = \mathcal{R}(s, t)$.

PROOF: Since the defect of a product of two one-to-one transformations is the sum of their defects, and since S contains transformations with non-zero defects, we may choose a transformation g in S with def(g) ≥ 3 . Since G_S contains a transitive group \mathcal{A}_X we may assume without loss of generality that $x \in X - \operatorname{im}(g)$. Let g(x) = y, and choose two other distinct points u and z in $X - \operatorname{im}(g)$. Take three-cycles $h_1 = (xzu)$ and $h_2 = (xzy)$ in $\mathcal{A}_X \le G_S$, and let $s = h_1 g h_1^{-1} g$ and $t = h_2 g h_2^{-1} g$.

We show that the above defined s and t are the required transformations. Indeed, $s(x) = h_1gh_1^{-1}g(x) = h_1gh_1^{-1}(y) = h_1g(y) = g(y)$, since g(y) is not an element of $\{x, u, z\} \subseteq X - \operatorname{im}(f)$. Also $t(x) = h_2gh_2^{-1}g(x) = h_2gh_2^{-1}(y) = h_2g(z) = g(z)$, since $g(z) \neq g(x) = y$, and $g(z) \neq x, z \in X - \operatorname{im}(g)$, therefore $s(x) \neq t(x)$. If $a \neq x$, then $g(a) \notin \{x, y, u, z\}$, so $h_1^{-1}g(a) = h_2^{-1}g(a) \notin \{x, y, u, z\}$, and it is easy to see that s(a) = t(a).

The set of function right ideals is partially ordered by set inclusion, and its maximal elements are of the form $\mathcal{R}(s,t)$ where s and t differ precisely on one point of X (Equation 3 and Lemma 5.2). Formally:

LEMMA 5.3. Given transformations $s, t \in S$, $\mathcal{R}(s, t)$ is a maximal function right ideal of S if and only if $\mathcal{R}(s,t) = \mathcal{R}_x$, for some $x \in X$.

Take an automorphism φ of S and observe that φ acts on the set of function right ideals:

$$\varphi(\mathcal{R}(s,t)) = \{\varphi(r) : r \in S, \ \varphi(sr) = \varphi(tr)\} \\ = \{r' : r' \in S, \ \varphi(s)r' = \varphi(t)r'\} \\ = \mathcal{R}(\varphi(s), \ \varphi(t)).$$

Moreover φ maps the set of all maximal function right ideals onto itself, hereby giving rise to a permutation h of X such that for an $x \in X$, h(x) = y if $\varphi(\mathcal{R}_x) = \mathcal{R}_y$ (Lemma 5.3). The next result follows then from the observation that for any $x \in X$ and $f \in S$ we have that $x \in X - \operatorname{im}(f)$ if and only if $f \in \mathcal{R}_x$ if and only if $\varphi(f) \in \varphi(\mathcal{R}_x) = \mathcal{R}_{h(x)}$.

LEMMA 5.4. Given $f \in S$, $\operatorname{im}(\varphi(f)) = h(\operatorname{im}(f))$.

To see that φ indeed acts on S by conjugation by h, take an arbitrary $x \in X$, $f \in S$, and choose a non-permutation g in S with $x \in im(g)$. Take $u \in im(g)$ with $u \neq x$ and $v \in X - im(g)$, and let $q = (uxv) \in \mathcal{A}_X \leq G_S$. Then $qgq^{-1} \in S$ and $im(qgq^{-1}) = q(im(g)) = im(g) - \{x\} \cup \{v\}$, so that $im(g) - im(qgq^{-1}) = \{x\}$. By Lemma 5.4,

$$\begin{split} \varphi(f)\big(h(x)\big) &= \varphi(f)(\operatorname{im}\big(\varphi(g)\big) - \operatorname{im}\big(\varphi(qgq^{-1})\big) \\ &= \operatorname{im}\big(\varphi(fg)\big) - \operatorname{im}\big(\varphi(fqgq^{-1})\big) \\ &= hf(x), \end{split}$$

and so $\varphi(f) = hfh^{-1}$. The above discussion together with Proposition 5.1 implies the next result.

THEOREM 5.5. Let X be an infinite set, and let S be a semigroup of one-to-one transformations of X that contains non-permutations. If the alternating group A_X is a subgroup of G_S , then each automorphism φ of S is inner, and $\operatorname{Aut}(S) \cong G_S$.

COROLLARY 5.6. Let $f \in W_X$ be a transformation with a non-zero defect, and let H be a normal subgroup of \mathcal{G}_X , then

- 1. $\operatorname{Aut}(\langle f:H\rangle) = \operatorname{Inn}(\langle f:H\rangle),$
- 2. if $H \neq \{i_X\}$ and f has a finite defect, then

 $\operatorname{Aut}(\langle f:H\rangle) = \operatorname{Inn}(\langle f:H\rangle) \cong HC_{\mathcal{G}_{X}}(f).$

PROOF: To prove the first part of the Corollary, note that if H is a non-trivial normal subgroup of \mathcal{G}_X , then the result follows from Theorem 5.5. If $H = \{i_X\}$, then $\langle f:H \rangle$ is the monogenic semigroup generated by f. Since $f \in \mathcal{W}_X - \mathcal{G}_X$, for any integer $k \ge 2$ we have that $f^k \ne f$ and so the identity automorphism is the only automorphism of $\langle f:H \rangle$.

The second part of the Corollary follows directly from Theorem 5.5 and Lemma 4.1.

Observe that if H is a proper normal subgroup of \mathcal{G}_X and $f \in \mathcal{W}_X$ is a nonpermutation satisfying $\operatorname{Aut}(\langle f:H\rangle) \cong H$, then by Proposition 3.7 and Corollary 5.6, we have that $\operatorname{def}(f) = 1$ and $|X - S(f_c)| < |X|$, so that X is a countable set.

COROLLARY 5.7. Let X be a countable set. Then there exists a non-permutation $f \in W_X$ such that for any normal subgroup H of \mathcal{G}_X we have that $\operatorname{Aut}(\langle f : H \rangle) \cong H$.

I. Levi

[12]

PROOF: Take f to be a single chain shifting all the points of X. Then, by Corollary 3.6, $C_{\mathcal{G}_X}(f) = \{i_X\}$. The result follows from Corollary 5.6.

References

- S.P. Fitzpatrick and J.S.V. Symons, 'Automorphisms of transformation semigroups', Proc. Edinburgh Math. Soc. 19 (1974/75), 327-329.
- [2] I. Levi, B.M. Schein, R.P. Sullivan and G.R. Wood, 'Automorphisms of Baer-Levi semigroups', J. London Math. Soc. 28 (1983), 492-495.
- [3] I. Levi, 'Automorphisms of normal transformation semigroups', Proc. Edinburgh Math. Soc. 28 (1985), 185-205.
- [4] I. Levi, 'Automorphisms of normal partial transformation semigroups', Glasgow Math. J. 29 (1987), 149-157.
- [5] I. Levi, 'Normal semigroups of one-to-one transformations', Proc. Edinburgh Math. Soc. 34 (1991), 65-76.
- [6] I. Levi, 'On the inner automorphisms of finite transformation semigroups', Proc. Edinburgh Math. Soc. 30 (1996), 27-30.
- [7] I. Levi, 'On groups associated with transformation semigroups', Semigroup Forum 59 (1999), 1-12.
- [8] I. Levi, D.B. McAlister and R.B. McFadden, ' A_n normal semigroups', Semigroup Forum 62 (2001), 173–177.
- [9] I. Levi, D.B. McAlister and R.B. McFadden, 'Groups associated with finite transformation semigroups', Semigroup Forum 61 (2000), 453-467.
- [10] I. Levi and S. Seif, 'Finite normal semigroups', Semigroup Forum 57 (1998), 69-74.
- [11] I. Levi and R.B. McFadden, 'Fully invariant transformations and associated groups', Comm. Algebra 28 (2000), 4829-4838.
- [12] I. Levi and J. Wood, 'Group closures of partial transformations', (submitted).
- [13] W.R. Scott, Group theory (Prentice Hall, N.J., 1964).
- [14] R.P. Sullivan, 'Automorphisms of transformation semigroups', J. Austral. Math. Soc. 20 (1975), 77-84.
- [15] R.P. Sullivan, 'Automorphisms of injective transformation semigroups', Studia Sci. Math. Hungar. 15 (1980), 1-4.
- [16] E.G. Sutov, 'On semigroups of almost identical transformations', Soviet Math. Dokl. 1 (1960), 1080-1083.
- [17] E.G. Sutov, 'Homomorphisms of the semigroup of all partial transformations', Izv. Vysšs. Učebn. Zaved. Mat. 22 (1962), 177-184.
- [18] J.S.V. Symons, 'Normal transformation semigroups', J. Austral. Math. Soc. Ser. A 22 (1976), 385-390.

Department of Mathematics University of Louisville Louisville, KY 40292 United States of America