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GROUP CLOSURES OF ONE-TO-ONE TRANSFORMATIONS

INESSA LEVI

For a semigroup 5 of transformations of an infinite set X let Gs be the group of
all the permutations of X that preserve 5 under conjugation. Fix a permutation
group H on X and a transformation / of X, and let (/ : H) = ({hfh~l : h 6 H})
be the //-closure of / . We find necessary and sufficient conditions on a one-to-one
transformation / and a normal subgroup H of the symmetric group on X to satisfy
G(f-.H) = H. We also show that if S is a semigroup of one-to-one transformations of
X and Gs contains the alternating group on X then Aut(S) - Inn(S) = GS-

1. INTRODUCTION

Given a transformation / of a set X and a group H of permutations of X, the
H-closure of / in the semigroup Tx of all the total transformations of X is the semigroup

(f:H) = ({hfh~l : h e / /}) .

The //-closure of / is the smallest subsemigroup of Tx that contains / and whose au-
tomorphism group Aut((/ : / /)) contains all the inner automorphisms <ph : g •-• hgh~x,
where h 6 H and g e (f : H).

Let Qx denote the symmetric group on X. For an arbitrary subsemigroup S of Tx,
the group Gs of all the permutations of X that preserve 5 under conjugation,

Gs = {h£Gx: hSh~l C 5},

was introduced in [10]. Given a subgroup H of Gx, a semigroup S of transformations of
X is said to be H-normal if Gs = H. The centraliser Cgx{S) of 5 in Qx,

CSx(S) = {h€Qx-hg = gh, for all g 6 5},

is a normal subgroup of Gs, and the group Inn(S) of all the inner automorphisms of S
is a homomorphic image of Gs, specifically

(1) Inn(5) a Gs/Cgx(S).
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178 I. Levi [2]

While H $ G(f-.H) for a transformation / of X, the group H may be a proper
subgroup of G(j-.n). For example, if X is a finite set, and / is a total transformation of
X having \X\ - 1 elements in its image im(/), then G</://> = Gx precisely when H is
a 2-block transitive (see [11]). Thus if H is 2-block transitive and / is as stated, then
H — G(j:H) only when H = Gx- If H is the alternating group Ax on a finite set X, and
/ is a non-bijective transformation of X, then G(/://> = H if and only if \X\ = 0 mod 4
and / is an x-nilpotent (see [6, 7, 8, 9]). Presently we extend the above studies to the
case of an infinite set X by addressing the following problem (see also [12]).

PROBLEM 1 . Given an infinite set X, characterise the normal subgroups H of
Gx and transformations f of X such that the semigroup (f : H) is H-normal, that is

G(f.H) = H.

Theorem 4.2 of this paper gives a solution for the above problem when / is a one-
to-one transformation. Information on Gs is useful in considering the following problem.
A semigroup S of transformations is said to have the inner automorphism property [14]
if all the automorphisms of S are inner.

PROBLEM 2 Characterise the semigroups of transformations that have the inner
automorphism property.

The automorphisms of specific Gx-nounal semigroups were described by a number
of authors (see, for example, [1, 2, 15, 16,17]). It was shown in [18] (for a finite X) and
in [3] and [4] (for an infinite X) that if S is a Gx-norma\ semigroup, then 5 has the inner
automorphism property and Aut(S) = Inn(S) = Gx- If a semigroup of transformations
contains certain constant transformations then it has only inner automorphisms [14]. If
X is finite and S is an .Ax-normal semigroup then Aut(S) = Inn (5) = Ax [9]. If X
is finite, and a subgroup H of Gx is either transitive or equal to its normaliser, then a
semigroup 5, that is maximal amongst all the //-normal subsemigroups of Tx containing
H, has the inner automorphism property and Aut(S) = Inn(S) = H [10]. Here we
continue this line of investigation. We prove that if X is infinite and 5 is a semigroup
of one-to-one transformations such that Ax Q Gs, then 5 has the inner automorphism
property (Theorem 5.5). We also investigate the form of the group Aut(S).

2. NOTATION AND PROPERTIES OF ONE-TO-ONE TRANSFORMATIONS

Let X be an infinite set, and let W* be the semigroup of all the total one-to-one
transformations of X. There are several parameters associated with a transformation /
of X. The rank and the defect of / are

rank(/) = |im(/)|, and def(/) = \X - im(/)|.

The subset of all the points of X moved by / is

S(f) = {x&X: f{x) ± x} and shift(/) = \S{f)\.
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Just as any permutation of X may be written as a formal product of disjoint fi-

nite and infinite cycles, any one-to-one transformation of X may be written (essentially

uniquely) as a formal product of disjoint cycles (finite or infinite) and chains (defined

below) [5]. As usual, transformations / and g are disjoint if S{f)C\S{g) = 0. The formal

product of a set A of pairwise disjoint transformations of X is denoted by FI{/ : f £ A]

and defined by the following:

-u{S(f):feA),

where x S X. If A C Wx then n { / : / 6 A) is also in VVx- For a countable ordered
subset Y = {2/1,2/2,2/3, • •• } of X let (y 1,1/2, V3, • • •) denote the transformation / 6 W*
such that f(y{) = yi+l for i = 1,2,3,. . . , and f{x) = x for all x € X-Y. The
transformation / = (2/1,2/2, J/3, • • •) is called a j/i-chain or just a chain. If / is a j/i-chain,
then X — im(/) = {j/i} and def(/) = 1. The following result has been proved in [5].

PROPOSITION 2 . 1 . Let f be a non-identity transformation in WX- Then f is
a formal product of pairwise disjoint cycles and chains, f = Tl{g : g € A}, with no g € A
being a 1-cycle. The number of chains in A is equal to def(/). If f = U{g : g e A'} is
another such product then A — A'.

Let Ch-x Q Wx be the set of all formal products of disjoint chains. Proposition 2.1
assures that every / € VV* can be written as a product of two unique disjoint transfor-
mations / p € Qx and fc € Chx (the subscripts p and c stand for permutation and chain
correspondingly). The following results are easily derived from elementary properties of
one-to-one transformations and an observation that a non-permutation in W* has an
infinite shift.

LEMMA 2 . 2 . Let f,g e Wx, then

1. def(/5) = def(/)+def(ff);

2. shift(/#) ^ shift(/) + shift(^),

3. if shift(/) / shift^), then shiit(fg) = max(shift(/),shift(p)).

For any infinite cardinal a less than or equal to the cardinal successor \X\+ of \X\,
let

S(X,a) = {fegx:shift(f)<a}.

Then S(X, a) is a normal subgroup of the symmetric group Qx and these groups together

with the alternating group Ax constitute the set of all the non-trivial normal subgroups

oiQx [13].

3. C E N T R A L I S E R S O F O N E - T O - O N E TRANSFORMATIONS

Since the centraliser Cgx (S) of a semigroup 5 is a normal subgroup of the group

Gs, we start by considering properties of centralisers. For a transformation / of X let
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Cgx(f) = {h £ Gx '• hf — fh} be the centraliser of / in Gx- It is self-evident that
Cgx(f) ^ G(j), and the result below presents a condition sufficient for equality.

PROPOSITION 3 . 1 . Let f be a one-to-one transformation with a finite defect.

ThenG{f) = CSx(f).

PROOF: Let h € G</>. Then hfh'1 e (/) , so hfh~l = fk for some integer k ^ 1.
Therefore def(/) = de{(hfh~l) = def(/*) = A; def(/) by Lemma 2.2. Thus k = 1 and
heCgx(f). 0

Let N(H) denote the normaliser of the group H < Gx in Gx- The next result aids in
determining the relationship between a normal subgroup H of Qx and the group Gy-.H)-

LEMMA 3 . 2 . Let f 6 Tx and H ^Qx. Then GU) n N{H) ^ G</:W>.

PROOF: Let h e G(/) n A^(^) and t € (/ : H) so that t = gifgr1 • • -9n}gn~
l for

some p i , . . . , gn € H. Then

1 =h{glfg1-
l...gnfgn-

1)h

e (f : H),

since hgjh~l € i? for each i = 1 , . . . , n and j — —1 or 1, so h 6 Gy-.u)- D

REMARK 3.3. If /J and g are permutations of X then hqh~l is a permutation of X
that has the same cyclic structure as q. Moreover the permutation hqh"1 is obtained by
applying h to the symbols in q. Therefore h € Cgx(q) precisely when for each (finite
or infinite) cycle (... XiXi+iX{+2 . . . ) of q, the cycle (... h(xi)h(xi+i)h(xi+2)...) is also a
cycle of q.

Just as the conjugation of permutations preserves their cyclic structure, conjugation
of transformations in Wx by permutations of X preserves the cyclic-chain structure of
the transformations [5].

LEMMA 3 . 4 . Let f,g € Wx- Then f,g are conjugate if and only if def(/) =
def (g) and f and g have the same number of cycles of each length (including 1-cycles
and infinite cycles) in their cyclic-chain decomposition.

The next proposition in conjunction with Remark 3.3 describes centralisers of trans-
formations in Wx- For a subset A of X and a permutation h of X, the set h(A) is
{h(d) :a£A}.

PROPOSITION 3 . 5 . Take f e Wx and write it as a product of disjoint trans-
formations f = fpfc, where fp € Gx, fc € Chx. A permutation h 6 Cgx(f) if and only
if

1. heCgx(fp),

2. h(S(fe)) = S(fc), and
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3. for each xt-chain (X1X2X3 • • •) in fc, (h(xi)h(x2)h,(x3)...) is an h{x\)-chain

in fc.

P R O O F : Note that h € CSx{f) if and only if fpfc = hfph~lhfch.-\ so that by
the uniqueness of the cyclic-chain decomposition of / we have that fp = hfph~l and
fc = hfjrl.

Take a permutation h satisfying conditions (l)-(3) above. Then h commutes with
fp, and we only need to show that fc = hfch~l. For any x € X - S(fc), we have
that h~l(x) 6 X - S(fc), so that hfch~l{x) = hh~\x) = fc(x). If x € 5 ( / c ) , then
h~l(x) € S(fc), a n d t h e r e ex i s t s a c h a i n {X1X2X3...) in fc s u c h t h a t h~1(x) = Xi for
some i. Hence hfch~l(x) = hfc(xi) = h(xi+i), and also /c(a;) = fc(h(xi)) = h(xi+x),
since [h(x\)h(x2)h{x3)...) is a chain in /c.

For the converse suppose that h G Cgx(f). Then / p = hfph~l implies that condition
(1) holds. We show that h maps a chain onto a chain, that is condition (3) holds. Let
(£1X22:3 • • •) be an Xi-chain in } c . Since h~l is also in Cgx{f) we have that h~lfh(xi) =
/ ( X J ) = Xj+i, so that / ( / i (x ,)) = h{xi+i) for each j = 1, 2 , . . . . Since xx e X — im(/) =
X — \m{hfh~l), it follows that (h{xx)h{x2)h{x3)...) is an /i(xi)-chain in /c. Finally
condition (2) follows from (3) applied to h (to obtain h(S(fc)) C S(/ c) and /i"1 (to
obtain h-l(S(fc)) C 5 ( / c ) , or h(S(fc)) D S(fe). •

The above result has several useful consequences.

COROLLARY 3 . 6 . Take f € Wx and write it as a product of disjoint transfor-

mations f = fpfc, where fp € Qx, / c £ ChX-

1. If \X - S{fc)\ ^ 1 then the identity permutation ix is the only element of

Cgx ( /) with a finite shift.

2. Ifdet(f) = 1 then

CBx(f) = {h 6 CeAU) • Kx) = x for all x e S(/c)}.

P R O O F : TO prove (1), assume h € Cgx(f) is a non-identity permutation. Since
I A'—S(fc)\ ^ 1, there exists x € S{h)C\S{fc), so that x = x,- in an Xi-chain {x\Xi.. .X{...)
in fc. Then by Proposition 3.5, (h(x])h{x2) • • • h(x{)...) is an /i(xi)-chain in fc. Since
Xi = x ^ h(x) = /I(XJ), the chains (11I2. . .a;*. . . ) and [h{xi)h{x2) • • -h(xi)...) are
distinct, so that h maps a countable set {ii,X2, •.. ,x<, . . . } into its complement in X,
therefore shift(/i) is infinite.

To verify (2), note that def(/) — 1 if and only if fc consists of a single chain. Then
by Proposition 3.5, the permutations in Cgx(f) fix every element of S(fc) pointwise. D

The next result provides necessary conditions for a group H ^ Qx and a transfor-
mation / S Wx to give rise to an //-normal semigroup (f : H).

PROPOSITION 3.7.

1. Take f € Wx and write it as a product of disjoint transformations f = fpfc,

where fp 6 Qx, fc S Chx- Suppose that either
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(a) def (/) ^ 2, or

(b) def(/) = land|X-S(/c)| = |X|.

Then Cgx(f) contains a permutation h with shift(/i) = |X|.

2. Take f € Wx with def(/) > 2 and a group H < S(X, \X\) < QX-

(c) If C5x (/) ̂  N(H) then GU.H) ± H.

(d) IfH <QX thenGu..H)^H.

PROOF: We shall concentrate on proving the first result, as the second result is an
easy consequence of the first result and Lemma 3.2. Indeed, if h is the permutation as
stated in the first result, then, while h € C6x(f) n N(H) ̂  G(/> D N(H) ̂  Gy:H), we
have that h is not an element of H.

Now assume / satisfies the conditions in (1). If shift(/p) = \X\, then since fp €
CSx(f), we may take h = fp. Thus assume that shift(/p) < \X\, and so \X\ = \X -
5(/p) | = \X-S(f)\ + \S{fc)\. Suppose first that \X-S(f)\ = \X\. Choose a permutation
q of X - S(f) that moves every point of X - S(f), and let h e Qx coincide with q on
X - S(f) and be the identity otherwise. Then h e CSx(f) with shift(/i) = \X\, as
required.

We may assume now that \X - S(f)\ < \X\, so that \X - S(fc)\ = \X - S(f)\ +
shift(/p) < \X\. Hence by (lb) above, we have that def(/) ^ 2, and also shift(/c) = |A"|.
Let B be the set of all the chains in /c, and recall that \B\ = def(/). Take an index set
/ with | / | = \B\ if B is infinite, and | / | = 1 if B is finite. Choose | / | disjoint doubleton
subsets B{ of B, where i € / , and let Bt = {<&,rt}, where ft = (x ix 2 . . . ) ,u = (y\V2...).
For each i £ I choose a permutation U of X with S(U) = 5(ft) U S(r;) that interchanges
Xj's and y/s; that is, for j = 1, 2 ,3 , . . . we have that U(XJ) = yj, U(yj) — Xj and U(x) =
x for all x e X-(S{qi)uS(ri)). Then by Proposition 3.5, each permutation t{ € Cgx{f).
Observe that the permutations U are pairwise disjoint, and take h to be the (formal)
product of all ti's where i e / . By Proposition 3.5 again, the permutation h is in Cgx{f).
Since for each i € / , shiftfo) = No, we have that shift(/i) = max(N0, | / | ) . If |X| = No,
then shift(/i) = \X\. If \X\ > No, then since |X| = shift(/c) = K\B\, we have that
| S | = \X\, so |/ | = \B\ = \X\, and again shift(/i) = \X\, as required. D

LEMMA 3 . 8 . Let Y be a subset of X, and let q be a permutation of Y having no
infinite cycles in its cyclic decomposition. Then CgY (q) l~l S(Y, Ho) ̂  Ay if and only if

1. | r - 5 ( g ) | ^ 1, and

2. q is a product of disjoint cycles of distinct odd lengths.

PROOF: Write q — T\{oci : i € /} as a product of disjoint cycles a*.
Suppose that CgY{q) n S(Y,X0) ^ AY. Then \Y - S(q)\ s$ 1 (else any 2-cycle

(xy) with x,y e Y - S(q) is an odd permutation in CgY(q)). To prove (2), recall that
q = Il{cti : i € / } , and so for any finite subset J of / , the permutation qj = n{c*i: i € J}
is in CgY(q). By our assumption qj is an even permutation, therefore each a*, i S /,
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has an odd length. If a, and ctj are two distinct cycles in q of the same odd length,

a{ = {xxx2...xk) ^ (2/12/2 •••2/*) =otj, then t = U{(xm,ym) : m = 1 ,2 , . . . , k} is an odd

finite permutation in CgY(q), a contradiction. Therefore \ai\ ̂  | a j | if i ^ j .

Conversely, if q is a product of disjoint cycles a* of odd distinct length, for i s / ,

then the group (a, : i € / ) , is a subgroup of CgY(q) n Ay- Assume that \Y - S(q)\ ^ 1.

We show that, in fact, (a{ : i € I) = CgY(q)nS(Y,H0)- Indeed, let h € CgY{q)DS{Y,H0)
and let

Z = {qk(x) : x € S(h), k is an integer}.

Since shift(/i) is finite and q is a product of finite cycles, the set Z is finite. Moreover,
if a — {x\X2 • • • xm) is a cycle in q such that i,- € S(/i), for some i = 1,2,... , m, then
by the definition of Z, the set {xi,X2,--- ,xm} is a subset of Z. If \X — S(q)\ = 1,
then {y} = X - S(q) is not Z, since /i has to map the single one-cycle (y) onto itself
(Observation 3.3). Therefore the restriction q\z of q to Z is a permutation of Z that moves
every element of Z. Without loss of generality assume that al\z,a2\z,-• • ,an\z are the
restrictions of cycles in q that move the points of Z, and note that 5(aj) = S(ai\z),
for i = 1,2,... ,m. Write g|z = al\za2\z •••cen\z- Since S(/i) C Z, we have that
h\z€Cgz(q\z).

Set T = ( a i l z j ^Ui • • • ,&n\z), and let a,\z be an m^-cycle, m^ ̂  3. Then T is a
subgroup of Cgz(q\z) of size \T\ = mim2. . .mn. The number of elements in Cgz(q\z)
equals \QZ\ divided by the number of conjugates of q\z in Qz. Since the number of
conjugates of q\z in Qz equals the number \Z\\/{m\\m2\.. .mn\) of partitions of Z into
classes of sizes mi,m2,... ,mn, multiplied by the number (mi — I)!(77i2 — 1)!. . . (mn — 1)!
of distinct mi-cycles on the elements of the m,-class, we see that in fact T = Cgz(q\z)
and h\z 6 T. Therefore h£ {a{ : i e I). D

4. //-NORMAL SEMIGROUPS

In this section we characterise those pairs (H, f) of normal subgroups H of the
symmetric group Qx and one-to-one transformations / of X, that produce //-normal
semigroups (/ : H) (having the property that H = Gy-.H))-

LEMMA 4 . 1 . Let f 6 Wx be a transformation with a finite non-zero defect,
and let H ^ QX- Then GU:H) ^ HCgx(f). If additionally Cgx(f) ^ N(H) then
G{f.H) = HCgx{f).

PROOF: Take g € Gy-.u), then gfg~l 6 (/ : / / ) , and so there exist permutations
<?i, Q2, • • •, 9m € H such that

gfg~l = Qifqi~lq2fq2~l • ••qmfqm~l-

Then by Lemma 2.2, def(/) = def(gfg~l) = deffai/gr1) + def(g2/92~1) + • • • +
de{(qmfqm~l) = m def(/), so that m = 1. Hence gfg~l = qifqr1, and so qClg £
CGx(f). Therefore GU:H) ^ HCgx(f).
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Now assume that Cgx{f) ^ N(H) and.take h € H and t € CGx{f). Then for
any element qifqi^qvfqi'1 • •qmfqm~l € (/ : H) its conjugate by ht is a product of
the conjugates of / of the form htqifqi~xt~lh~l = htqit~lftqi~xt~xh~x € (/ : H) since
tqit~x € H for all i. Therefore ht <E G{f:H). D

THEOREM 4 . 2 . Let f € VV* - Qx and write j as a product of disjoint transfor-
mations f = fpfc, where fp 6 Qx, /c 6 Chx. Take H < Qx. Then GU-.H) = H if and
only if one of the following holds:

1. H = QX,

2. H = S(X, K), \X\ - K, def(/) = 1, |Jf - 5( / e ) | < Ko,

3. H = Ax, \X\ - K, def(/) = 1, |X - S(/e) | < H8> \X - S(f)\ ^ 1, and fp

is a product of disjoint cycles of distinct odd lengths,

4. H = {ix}, \X\ = K, de f ( / ) = 1,\X- S(fe)\ < 1.

PROOF: Suppose that H is a proper normal subgroup of Qx, so that H ^ 5(X, |X|),
and assume that H = G</:w) for a one-to one transformation / . By Proposition 3.7, we
have that def(/) = 1 and \X - S{fc)\ < \X\ so that \S(fc)\ = \X\. Since the defect of
/ is 1, fc consists of a single chain, and so |S(/C)| = No. Therefore X is countable and
X — S(fc) is at most finite. By Lemma 4.1 we have that H = G(f:H) = HCgx(f), so by
Corollary 3.6,

{h € Cex(fp) • M*) = x for all x € S(fc)}= CBx(f) ^ H.

When X is countable the only non-trivial proper normal subgroups of Qx are S(X, No)
and Ax- U H = Ax, then it follows from Lemma 3.8 that / can fix at most one point
of X and fp is a product of disjoint cycles of distinct odd lengths. If H = {ix} then
CoxU) = {ix} so that C6x{fp) = {^} and hence \X - S(fc)\ ^ 1.

For the converse note that H < G(/:H) ^ Qx for any subgroup H of Qx, therefore
if H — Qx we have that Gy-gx) — Qx- Now assume that H ^ S(X, No), X is countable,
def(/) = 1 and X — S(fc) is finite. Then by Lemma 4.1 and Corollary 3.6, we have that
G(J..H) = HCOx(f) = H{h e CgxUP) • Kx) = x for all x € S(fc)}. Since X - S(fc) is
finite, Cgx{f) < S(X, K), so GU:H) = H for H = S{X, Ko).

If we assume additionally that fp is a product of disjoint cycles of distinct odd
lengths, and / fixes at most one point, then Corollary 3.6 and Lemma 3.8 imply that
Cgx(f) ^ Ax, and so G{f:Ax) = AX- Similarly, if \X - S(fc)\ ^ 1, then Cgx{f) = {ix},
and G(/:{ix}> = {ix}- D

5. AUTOMORPHISMS

If S is a semigroup of total transformations of a finite set X, and Gs contains
the alternating group Ax on X, then Gs = Qx, S is a £x-normal semigroup, all the

https://doi.org/10.1017/S000497270003985X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003985X


[9] Group closures 185

automorphisms of 5 are inner, and the automorphism group Aut(S) of 5 is isomorphic
to Qx [6]. For an infinite set X the fact that Ax ^ Gs does not imply that Gs = Qx-
However it will be shown in this section that if S (jt. Qx is a semigroup of one-to-one
transformations of an infinite set X such that Gs contains Ax, then 5 has the inner
automorphism property. The technique used here is based on that of [3] developed to
describe the automorphisms of Qx -normal semigroups.

Everywhere in this section we assume that 5 is a subsemigroup of Wx that contains
transformations with non-zero defects, and that Ax ^ Gs- To describe the automorphism
group Aut(S), in view of Equation 1 (in Section 1), we need to know the structure of the
centraliser of the semigroup 5 in Qx •

PROPOSITION 5 . 1 . The centraliser CQX (S) ofS is equal to {ix}-

PROOF: Let f € S and let T = (f : Ax) be a subsemigroup of S. We show that
Cgx(T) = {ix}, and deduce the statement of the Proposition from an observation that
since T is a subsemigroup of 5, the centraliser Cgx(S) C Cgx(T). First we demonstrate
that

(2) Cgx(T) = n{hCgx(f)h-1:heAx}.

Indeed for each q € Cgx(T) and h 6 Ax we have that qhfh~lq~l — hfh'1, so that
h'lqh e Cgx(f), and q e hCgx(f)h~l. Conversely, assume that p 6 C\{hCgx{f)h~x :
h S Ax} and take g = /ii/ftf'/^/ZiJ1 • • • hmfh^ € T. For each i = 1, 2 , . . . , m, there ex-
ists n € Cgx(f) such thatp = hiVihJ1. Thereforephifh~lp~l = hirihjlhifh~lhiri-

lhjl =
hifh~\ so that pgp'1 = g, and g € Cgx{T).

Take g € Cgx(T) C Cgx(f), and suppose that g maps a chain (£1X23:3. • •) of / to
a different chain (g(xi)g(x2)g(x3)...) of / (Proposition 3.5). Take s = (xia^a) G Ax-
By Equation (2) above, g — sqs~x for some q € Cgx(f), and this q has to map every
chain of/ onto a chain in / in prescribed order (Proposition 3.5). However we have
that q(xi) = s~1gs(xi) = s~1g(x2) = g{x2) = x3, hence q(xiqx2X3...) is not a chain in
/ . This contradiction proves that g fixes every point of 5(/c).

Suppose now that there is an x 6 X — S(fc) such that g(x) = y / x, and note
that y 6 X - S(/c). Choose z € S(fc) and take sx - (xyz) e AX- By Equation (2)
again, g = s^isf1 for some 91 e Cgx(f). However, in this case qx(z) = s^lgsi(z) =
s^gix) = sll(y) = x, so qi(S(fc)) ^ S(fc), a contradiction to the fact that Qi € CQx{j)
(Proposition 3.5 again). Therefore g is the identity permutation of X. D

We proceed with the description of Aut(S). For a n i 6 X define

In as much as Gs contains a transitive group Ax, the set TZX is non-empty for every
x € X. In fact Hx is a right ideal of S, termed a point right ideal. Moreover, for
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any distinct points x,y G X, the corresponding point right ideals "R.x and 1Zy are also
distinct. Indeed if r € Hx D 7£y, choose distinct points u, v € im(r) and take h = (yuv)
to be a three-cycle in Ax < Gs- Then im(/ir/i~') = /i(im(r)), and so /ir/i"1 € V.x - 1Zy.
Therefore there is a one-to-one correspondence between the points x of X and the point
right ideals "R.x of S.

We show that any automorphism of S acts faithfully on the set {Hx : x € X} of all
the point right ideals of S. Given distinct transformations s and t in S, define

7£(s,t) = {r£ 5 : sr = tr}.

If non-empty, TZ(s, t) is a right ideal of S termed a function right ideal. It is not
difficult to see that there is a relationship between non-empty function right ideals and
point right ideals of S (see [3]) given by

(3) n{s,t) = n{nx:s{x)^t(x)}.

LEMMA 5 . 2 . For each x € X there exist transformations s,t € S such that

Hx = TZ{s,t).

PROOF: Since the defect of a product of two one-to-one transformations is the sum
of their defects, and since S contains transformations with non-zero defects, we may
choose a transformation g in 5 with def(g) ^ 3. Since Gs contains a transitive group
Ax we may assume without loss of generality that x € X — im(^). Let g(x) = y, and
choose two other distinct points u and z in X — im(<?). Take three-cycles hi = (xzu) and
/»2 = {xzy) in Ax ^ Gs, and let s = h1ghi~1g and t = high<fxg.

We show that the above defined s and t are the required transformations. Indeed,
s(x) = highrlg(x) = highx~l{y) - h^g{y) = g(y), since g(y) is not an element of
{x,u,z} C X - im(/). Also t(x) = h2gh2~

lg{x) - h2gh2~
1(y) = h2g{z) = g(z), since

g(z) ^= g(x) = y, and g(z) ^ x, z € X - \m{g), therefore s(x) ^ t(x). If a ^ x,
then g(a) $ {x,y,u,z}, so /ij"1^) = /i '̂ff(a) $ {x,y,u, z}, and it is easy to see that
s{a) = t(a). D

The set of function right ideals is partially ordered by set inclusion, and its max-
imal elements are of the form TZ(s,t) where s and t differ precisely on one point of X
(Equation 3 and Lemma 5.2). Formally:

LEMMA 5 . 3 . Given transformations s, t 6 S, Tl(s, t) is a maximal function right
ideal of S if and only ifR{s, i) = ~RX, for some x € X.

Take an automorphism ip of 5 and observe that <p acts on the set of function right
ideals:

<p(Tl(s,t)) = {f(r) : r € S, <p(sr) = >p{tr)}

= {r' :r'eS, <p{s)r' =
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Moreover ip maps the set of all maximal function right ideals onto itself, hereby giving
rise to a permutation h of X such that for an x € X, h(x) = y if <£>(7?-z) = V,y (Lemma
5.3). The next result follows then from the observation that for any x e X and / € S
we have that x 6 X - im(/) if and only if / € Tlx if and only if ip(f) € <fi{Tlx) = Tih{x)-

LEMMA 5 . 4 . Given f e S, im(<p(f)) = h(im(f)).

To see that tp indeed acts on S by conjugation by h, take an arbitrary x G X,
f e S, and choose a non-permutation g in S with x € im(p). Take u £ \m(g) with
u ^ x and v € X - im(5), and let g = (uxv) £ .4* ^ GS- Then ggg"1 € S and
\m(qgq~l) = g(im(#)) = im(^) - {z}U{i>}, so that im(g) - i m ^ g " 1 ) = {x}. By Lemma
5.4,

<p(f)(h{x)) = <p(f)(im(ip(g)) - im(<p(qgq-1))

= im(<p(fg)) - imfaifqgq-1))

= hf(x),

and so <p(f) = hfh~l. The above discussion together with Proposition 5.1 implies the
next result.

THEOREM 5 . 5 . Let X be an infinite set, and let S be a semigroup of one-to-one
transformations of X that contains non-permutations. If the alternating group Ax is a
subgroup ofGs, then each automorphism ip of S is inner, and Aut(S) = Gg.

COROLLARY 5 . 6 . Let f e W* be a transformation with a non-zero defect, and

let H be a normal subgroup ofQx, then

1. A u t « / : / 0 ) = I n n « / : H)),

2. if H ^ {ix} and f has a finite defect, then

A u t « / : H)) = Inn((/ : H)) a HCBx(f)-

P R O O F : TO prove the first part of the Corollary, note that if H is a non-trivial
normal subgroup of Qx, then the result follows from Theorem 5.5. If H = {ix}, then
(/ : H) is the monogenic semigroup generated by / . Since / € Wx — Gx, for any integer
k ^ 2 we have that /* ^ / and so the identity automorphism is the only automorphism
of ( / : / / ) .

The second part of the Corollary follows directly from Theorem 5.5 and Lemma
4.1. D

Observe that if H is a proper normal subgroup of Gx and / € Wx is a non-
permutation satisfying Aut(( / : i/)) = H, then by Proposition 3.7 and Corollary 5.6, we
have that def(/) = 1 and \X - S(fc)\ < \X\, so that X is a countable set.

COROLLARY 5 . 7 . Let X be a countable set. Then there exists a non-permutation
f 6 Wx such that for any normal subgroup H ofQx we have that Aut ( ( / : H)) = H.
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PROOF: Take / to be a single chain shifting all the points of X. Then, by Corol-
lary 3.6, CGx(f) = {ix}- The result follows from Corollary 5.6. D
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