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GROUP CLOSURES OF ONE-TO-ONE TRANSFORMATIONS

INEssA LEvVI

For a semigroup S of transformations of an infinite set X let G be the group of
all the permutations of X that preserve S under conjugation. Fix a permutation
group H on X and a transformation f of X, and let (f : H) = ({hfh~! : h € H})
be the H-closure of f. We find necessary and sufficient conditions on a one-to-one
transformation f and a normal subgroup H of the symmetric group on X to satisfy
G(s.ny = H. We also show that if S is a semigroup of one-to-one transformations’ of
X and G contains the alternating group on X then Aut{S) =Inn(S) = Gs.

1. INTRODUCTION

Given a transformation f of a set X and a group H of permutations of X, the
H-closure of f in the semigroup Tx of all the total transformations of X is the semigroup

(f:H)y=({hfh7': h € H}).

The H-closure of f is the smallest subsemigroup of 7x that contains f and whose au-
tomorphism group Aut((f : H)) contains all the inner automorphisms @y, : g — hgh™!,
where h € H and g € (f : H).

Let Gx denote the symmetric group on X. For an arbitrary subsemigroup $ of 7T,
the group G of all the permutations of X that preserve S under conjugation,

Gs ={h €Gx :hSh™' C S},

was introduced in [10). Given a.subgroup H of Gx, a semigroup S of transformations of
X is said to be H-normal if Gs = H. The centraliser Cg, (S) of S in Gy,

Co(S)={he€Gx :hg=gh, forall g € S},

is a normal subgroup of Gs, and the group Inn(S) of all the inner automorphisms of §
is a homomorphic image of Gs, specifically

(1) Inn(S) = Gs/Cgx ().
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While H < Gp.my for a transformation f of X, the group H may be a proper
subgroup of G(s.xy. For example, if X is a finite set, and f is a total transformation of
X having |X| — 1 elements in its image im(f), then G(s.ny = Gx precisely when H is
a 2-block transitive (see [11]). Thus if H is 2-block transitive and f is as stated, then
H = Gy only when H = Gx. If H is the alternating group Ax on a finite set X, and
[ is a non-bijective transformation of X, then G(;.5y = H if and only if |X| = 0 mod 4
and f is an z-nilpotent (see (6, 7, 8, 9]). Presently we extend the above studies to the
case of an infinite set X by addressing the following problem (see also {12]).

PROBLEM 1. Given an infinite set X, characterise the normal subgroups H of
Gx and transformations f of X such that the semigroup (f : H) is H-normal, that is
G( f:HY = H.

Theorem 4.2 of this paper gives a solution for the above problem when f is a one-
to-one transformation. Information on Gy is useful in considering the following problem.
A semigroup S of transformations is said to have the inner automorphism property [14]
if all the automorphisms of S are inner.

PROBLEM 2 Characterise the semigroups of transformations that have the inner
automorphism property.

The automorphisms of specific Gx-normal semigroups were described by a number
of authors (see, for example, [1, 2, 15, 16, 17]). It was shown in [18] (for a finite X) and
in [3] and [4] (for an infinite X) that if S is a Gx-normal semigroup, then S has the inner
automorphism property and Aut(S) = Inn(S) = Gx. If a semigroup of transformations
contains certain constant transformations then it has only inner automorphisms [14]. If
X is finite and S is an Ax-normal semigroup then Aut(S) = Inn(S) & Ax [9]. If X
is finite, and a subgroup H of Gx is either transitive or equal to its normaliser, then a
semigroup S, that is maximal amongst all the H-normal subsemigroups of Tx containing
H, has the inner automorphism property and Aut(S) = Inn(S) = H [10]. Here we
continue this line of investigation. We prove that if X is infinite and S is a semigroup
of one-to-one transformations such that Ax C Gg, then S has the inner automorphism
property (Theorem 5.5). We also investigate the form of the group Aut(S).

2. NOTATION AND PROPERTIES OF ONE-TO-ONE TRANSFORMATIONS

Let X be an infinite set, and let Wy be the semigroup of all the total one-to-one
transformations of X. There are several parameters associated with a transformation f
of X. The rank and the defect of f are

rank(f) = [im(f)|, and def(f) =|X —im(f)|.
The subset of all the points of X moved by f is

S5(f) = {z € X : f(z) #z} and shift(f) = |S(f)|-
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Just as any permutation of X may be written as a formal product of disjoint fi-
nite and infinite cycies, any one-to-one transformation of X may be written (essentially
uniquely) as a formal product of disjoint cycles (finite or infinite) and chains (defined
below) [5]. As usual, transformations f and g are disjoint if S(f)NS(g) = 0. The formal
product of a set A of pairwise disjoint transformations of X is denoted by I1{f : f € A}
and defined by the following:

f(=), iffeAandxéS(f)
T, ifxeX—U{S(f):fEA},

where z € X. If A C Wy then II{f : f € A} is also in Wx. For a countable ordered
subset Y = {y;,¥2,¥3,...} of X let (¥1,¥2,¥3,...) denote the transformation f- € Wy
such that f(y) = wip1 for i = 1,2,3,..., and f(z) = z forall z € X —Y. The
transformation f = (y1,¥y2,9s,..-) is called a y,-chain or just a chain. If f is a y,-chain,
then X —im(f) = {1} and def(f) = 1. The following result has been proved in [5].

PROPOSITION 2.1. Let f be a non-identity transformation in Wx. Then f is
a formal product of pairwise disjoint cycles and chains, f =T1{g: g € A}, withnoge€ A
being a 1-cycle. The number of chains in A is equal todef(f). If f =1I{g: g€ A'} is
another such product then A = A’.

I{f: feA}z) =

Let Chx C Wx be the set of all formal products of disjoint chains. Proposition 2.1
assures that every f € Wx can be written as a product of two unique disjoint transfor-
mations f, € Gx and f. € Chx (the subscripts p and ¢ stand for permutation and chain
correspondingly). The following results are easily derived from elementary properties of
one-to-one transformations and an observation that a non-permutation in Wy has an
infinite shift.

LEMMA 2.2. Let f,g € Wy, then

1. def(fg) = def(f) + def(g),
2. shift(fg) < shift(f) + shift(g),
3. ifshift(f) # shift(g), then shift(fg) = max(shift(f), shift(g)).

For any infinite cardinal o less than or equal to the cardinal successor |X|* of | X|,
let

S(X,a) = {f € Gx : shift(f) < a}.
Then S(X, @) is a normal subgroup of the symmetric group Gx and these groups together
with the alternating group Ax constitute the set of all the non-trivial normal subgroups
of Gx [13].

3. CENTRALISERS OF ONE-TO-ONE TRANSFORMATIONS

Since the centraliser Cg, (S) of a semigroup S is a normal subgroup of the group
Gs, we start by considering properties of centralisers. For a transformation f of X let
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Cox(f) = {h € Gx : hf = fh} be the centraliser of f in Gx. It is self-evident that
Cgx (f) < G{yy, and the result below presents a condition sufficient for equality.

PROPOSITION 3.1. Let f be aone-to-one transformation with a finite defect.
Then G(j) = Cgx (f)-

PROOF: Let h € Gyy. Then hfh~! € (f), so hfh™! = f* for some integer k > 1.
Therefore def(f) = def(hfh™!) = def(f*) = k def(f) by Lemma 2.2. Thus k¥ = 1 and
he CGx (f ) D

Let N(H) denote the normaliser of the group H < Gx in Gx. The next result aids in
determining the relationship between a normal subgroup H of Gx and the group G;.q.

LEMMA 3.2. Let f € Tx and H < Gx. Then Gy NN(H) < G.my-

PROOF: Let h € Gy N N(H) and t € (f : H) so that t = g1 fg1™" ... gafga™" for
some ¢gi1,...,9, € H. Then

hth_l = h'(glfgl—1 . ~gnfgn_l)h_l
= (hgt A" ) (hfR~ ) (g7 'RY) .. (hgoh ) (hFRTY) (hgntRTY)
€ (f: H),

since hg/h~' € H foreachi=1,...,nand j = -1 or 1,50 h € Gs.m. 1]

REMARK 3.3. If h and ¢ are permutations of X then hgh~! is a permutation of X
that has the same cyclic structure as g. Moreover the permutation hgh~! is obtained by
applying h to the symbols in g. Therefore h € Cg, (¢) precisely when for each (finite
or infinite) cycle (... Z;ZTir1Zirz...) of g, the cycle (... h(z)h(zit1)h(Tis2) ... ) is also a
cycle of q.

Just as the conjugation of permutations preserves their cyclic structure, conjugation
of transformations in Wy by permutations of X preserves the cyclic-chain structure of
the transformations [5].

LEMMA 3.4. Let f,g € Wx. Then f,g are conjugate if and only if def(f) =
def(g) and f and g have the same number of cycles of each length (including 1-cycles
and infinite cycles) in their cyclic-chain decomposition.

The next proposition in conjunction with Remark 3.3 describes centralisers of trans-
formations in Wx. For a subset A of X and a permutation h of X, the set h(A) is
{h(a) : a € A}.

PROPOSITION 3.5. Take f € Wx and write it as a product of disjoint trans-
formations f = f,f., where f, € Gx, f. € Chx. A permutation h € Cg, (f) if and only
if

1. he€ Cgylfp),
2. h(S(f)) =S(f.), and

https://doi.org/10.1017/5000497270003985X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270003985X

(5] Group closures 181

3. for each z,-chain (z1z2z3 . ..) in f,, (h(z1)h(z2)h(z3) . .. ) is an h{z,)-chain
in f..

Proor: Note that h € Cg,(f) if and only if f,f. = hfph 'hfh™!, so that by
the uniqueness of the cyclic-chain decomposition of f we have that f, = hf,h™! and
fe=hfhL

Take a permutation h satisfying conditions (1)-(3) above. Then h commutes with
f», and we only need to show that f. = hfh™!. For any £ € X — S(f.), we have
that A~'(z) € X — S(f.), so that hf.h™'(z) = hh~}(z) = f.(z). If z € S(f.), then
h='(z) € S(f.), and there exists a chain (z;25z3...) in f, such that h™!(z) = z; for
some i. Hence hf.h~!(z) = hf(z:) = h(zis1), and also f.(z) = fo(h(z:)) = h(zis1),
since (h(z1)h(z2)h(zs)...) is a chain in f.. A

For the converse suppose that h € Cg, (f). Then f, = h f,,ii“ implies that condition
(1) holds. We show that A maps a chain onto a chain, that is condition (3) holds. Let
(z12223...) be an z;-chain in f.. Since A~! is also in Cg, (f) we have that h=! fh(z;) =
f(z;) = zy41, so that f(h(z:)) = h(ziy) for each i = 1,2,.... Since.z) € X —im(f) =
X —im(hfh™"), it follows that (A(z1)h(z2)h(z3)...) is an h(z;)-chain in f.. Finally
condition (2) follows from (3) applied to h (to obtain h(S(f;)) C S(f.) and h~! (to
obtain A='(S(f.)) € S(f.), or A(S(f2)) 2 S(£). 0

The above result has several useful consequences.

COROLLARY 3.6. Take f € Wy and write it as a product of disjoint transfor-
mations f = f,f., where f, € Gx, f. € Chx.
1. If|X — S(f.)| <1 then the identity permutation ix is the only element of
Cg, (f) with a finite shift.
2. Ifdef(f) =1 then

Cox(f) = {h € Coy(fp) : h(z) = z for all z € S(f.)}.

ProOOF: To prove (1), assume h € Cg,(f) is a non-identity permutation. Since
X—S(fc)| < 1, there exists z € S(h)NS(f.), so that £ = x; in an z,-chain (z,z2 ... 7;...)
in f.. Then by Proposition 3.5, (h(z1)h(z2) ... h(z;).. .) is an h(z,)-chain in f,. Since
z; = ¢ # h(z) = h(z:), the chains (z122...z;...) and (h(z1)h(zs2).. . h(z:)...) are
distinct, so that A maps a countable set {z,,z,,...,%;,...} into its complement in X,
therefore shift(h) is infinite.

To verify (2), note that def(f) =1 if and only if f, consists of a single chain. Then
by Proposition 3.5, the permutations in Cg, (f) fix every element of S(f.) pointwise. [

The next result provides necessary conditions for a group H € Gx and a transfor-
mation f € Wy to give rise to an H-normal semigroup (f : H).
ProPOSITION 3.7.
1. Take f € Wx and write it as a product of disjoint transformations f = f,f.,
where f, € Gx, f. € Chx. Suppose that either
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(a) def(f) =2, or
(b) def(f) =1 and |X — S(£.)| = |X].
Then Cg, (f) contains a permutation h with shift(h) = |X|.
2. Take f € Wx with def(f) > 2 and a group H < S(X,|X|) 9 Gx.
(c) IfCgy(f) < N(H) then Gip.ny # H.
(d) IfH QGx then Gy # H.

ProoF: We shall concentrate on proving the first result, as the second result is an
easy consequence of the first result and Lemma 3.2. Indeed, if A is the permutation as
stated in the first result, then, while h € Cg, (f) N N(H) < Gy N N(H) < Gs.y, we
have that h is not an element of H.

Now assume f satisfies the conditions in (1). If shift(f,} = |X|[, then since f, €
Cg, (f), we may take h = f,. Thus assume that shift(f,) < |X|, and so |X| = |X —
S(fo)| = | X =S(£)|+|S(fc)|- Suppose first that | X —S(f)| = | X|. Choose a permutation
g of X — S(f) that moves every point of X — S(f}, and let h € Gx coincide with ¢ on
X — S(f) and be the identity otherwise. Then h € Cg,(f) with shift(h) = |X|, as
required.

We may assume now that |X — S(f)| < |X|, so that | X ~ S(fo)| = |X — S(f)| +
shift(f,) < |X|. Hence by (1b) above, we have that def(f) > 2, and also shift(f.) = | X]|.
Let B be the set of all the chains in f., and recall that |B| = def(f). Take an index set
I with |I| = |B| if B is infinite, and |I| = 1 if B is finite. Choose |I| disjoint doubleton
subsets B; of B, where i € I, and let B; = {g;,7;}, where ¢; = (2122...),7i = (n1¥2..-)-
For each ¢ € I choose a permutation ¢; of X with S(¢;) = S(¢;) U S(r;) that interchanges
z;’s and y;’s; that is, for j = 1,2,3,... we have that t;(z;) = y;,t:(y;) = z; and t;(z) =
z forallz € X — (S(qi)US(r,-)). Then by Proposition 3.5, each permutation t; € Cg, (f).
Observe that the permutations t; are pairwise disjoint, and take h to be the (formal)
product of all ¢;’s where 7 € I. By Proposition 3.5 again, the permutation k is in Cg, (f)-
Since for each i € I, shift(t;) = R,, we have that shift(h) = max(R,, |1]). If |X| = X,,
then shift(h) = |X|. If |X| > R,, then since |X| = shift(f.) = N,|B|, we have that
|B| = |X|, so |I| = |B] = |X|, and again shift(h) = |X|, as required. 0

LEMMA 3.8. LetY be asubset of X, and let ¢ be a permutation of Y having no
infinite cycles in its cyclic decomposition. Then Cg, (g) N S(Y,R,) < Ay if and only if

1. |[Y-S(g)|<1,and
2. gq is a product of disjoint cycles of distinct odd lengths.

PRrooF: Write ¢ = II{a;: ¢ € I} as a product of disjoint cycles q;.

Suppose that Cg, (g) N S(Y,R,) < Ay. Then |Y — S(g)| < 1 (else any 2-cycle
(zy) with z,y € Y — S(g) is an odd permutation in Cg, (g)). To prove (2), recall that
g = I{a; : i € I}, and so for any finite subset J of I, the permutation ¢; = [I{e; : ¢ € J}
is in Cg,(g). By our assumption ¢, is an even permutation, therefore each a;, i € I,
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has an odd length. If o; and a; are two distinct cycles in g of the same odd length,
o; = (T1%2...2x) # (N1y2 .- . Yx) = oy, then t = H{(xm,ym) m=12,.. .,k} is an odd
finite permutation in Cg, (), a contradiction. Therefore |o;| # |oy| if i # j.

Conversely, if ¢ is a product of disjoint cycles o; of odd distinct length, forie I,
then the group (e : i € I), is a subgroup of Cg, (g) N Ay. Assume that |Y — S(g)| < 1.
We show that, in fact, {a; : i € I) = Cg, (g) NV S(Y,R,). Indeed, let h € Cg, (q)NS(Y,R,)
and let

Z = {¢"(z) : z € S(h), k is an integer}.

Since shift(h) is finite and ¢ is a product of finite cycles, the set Z is. finite. Moreover,
if @ = (T122...Tm) is a cycle in g such that z; € S(h), for some ¢ = 1,2,... ,m, then
by the definition of Z, the set {z1,2s,...,Zm} is a subset of Z. If |X — S(q)| = 1,
then {y} = X — S(q) is not Z, since h has to map the single one-cycle (y) onto itself
(Observation 3.3). Therefore the restriction ¢|z of g to Z is a permutation of Z that moves
every element of Z. Without loss of generality assume that a;|z,@s|z,...,aa|z are the
restrictions of cycles in ¢ that move the points of Z, and note that S(e;) = S(aiz),
for i = 1,2,...,m. Write ¢|z = ay|zas|z...0an|z. Since S(h) C Z, we have that
h|z € Cg,(qlz).

Set T = (au|z, 02|z, -..,om|z), and let |z be an my-cycle, m; > 3. Then T is a
subgroup of Cg,(glz) of size |T| = mim,...my. The number of elements in Cg,(q|z)
equals |Gz| divided by the number of conjugates of g|z in Gz. Since the number of
conjugates of g|z in Gz equals the number |Z|!/(m;!m,!. .. m,!) of partitions of Z into
classes of sizes my, mo, ... , my,, multiplied by the number (m; — 1}!(m; - 1)!... (m, — 1)!
of distinct m;-cycles on the elements of the m;-class, we see that in fact T = Cg,(g]z)
and h|z € T. Therefore h € (o; : ¢ € I).

4. H-NORMAL SEMIGROUPS

In this section we characterise those pairs (H, f) of normal subgroups H of the
symmetric group Gx and one-to-one transformations f of X, that produce H-normal
semigroups {f : H) (having the property that H = G(s.x4)).

LEMMA 4.1. Let f € Wx be a transformation with a finite non-zero defect,
and let H < Gx. Then Gi.gy < HCq,(f). If additionally Cg, (f) < N(H) then
Gy = HCgx (f).

Proor: Take g € G(.uy, then gfg~" € (f : H), and so there exist permutations
1,92, - - -, gm € H such that

gfs ' =afa'efe" . amfan

Then by Lemma 2.2, def(f) = def(gfg™!) = def(qifq™") + def(qafg™!) + - +
def(gmfam™") = m def(f), so that m = 1. Hence gfg™! = q,fq ", and so ¢,"'g €
Coy (f). Therefore Gy < HCgy (f).
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Now assume that Cg, (f) < N(H) and.take h € H and t € Cg,(f). Then for
any element ¢, fqi"'q2fq27" .. .qmfam ™" € (f : H) its conjugate by ht is a product of
the conjugates of f of the form htg; fg;"'t='h~! = htqit~' ftg;"'¢'h™" € (f : H) since
tg;t~* € H for all i. Therefore ht € G(;.p.

THEOREM 4.2. Let f € Wx ~ Gx and write f as a product of disjoint transfor-
mations f = f,f., where f, € Gx, f. € Chx. Take H 94 Gx. Then G(;.y = H if and
only if one of the following holds:

1. H=¢Gx,

2. H=S8(X,R,), | X| =R, def(f) =1, |X = S(f)]| < R,,

3. H=Ax, |X|=R,, def(f)=1, |X—S(fc)| <R, | X = S(f)| <1, and f,
is a product of disjoint cycles of distinct odd lengths,

4. H = {ix}, |X|=R,, def(f) =1, |X - S(fc)l <L

PROOF: Suppose that H is a proper normal subgroup of Gx, so that H S(X, 1X1),
and assume that H = Gz for a one-to one transformation f. By Proposition 3.7, we
‘have that def(f) =1 and |X — S(fc)| < |X| so that |S(fc)| = |X|. Since the defect of
fis 1, f. consists of a single chain, and so |S(fc)| = R,. Therefore X is countable and
X — S(f.) is at most finite. By Lemma 4.1 we have that H = G(y.yy = HCg, (f), so by
Corollary 3.6,

{h € Cgy(fp) : h(z) =z for all z € S(fc)}= Cg, (f) < H.

When X is countable the only non-trivial proper normal subgroups of Gx are S(X,R,)
and Ax. If H = Ay, then it follows from Lemma 3.8 that f can fix at most one point
of X and f, is a product of disjoint cycles of distinct odd lengths. If H = {ix} then
ng(f) = {‘I.x} so that ng(fp) = {’tx} and hence |X - S(fc)l <L

For the converse note that H < Gz < Gx for any subgroup H of Gx, therefore
if H = Gx we have that G(s.g,) = Gx. Now assume that H < S(X,R,), X is countable,
def(f) =1 and X — S(f.) is finite. Then by Lemma 4.1 and Corollary 3.6, we have that
G-y = HCg(f) = H{h € Cgx(fp) : h(z) = z for all z € S(fc)}. Since X — S(f.) is
finite, ng(f) < S(X, No), S0 G([;H) =H for H= S(X, R,).

If we assume additionally that f, is a product of disjoint cycles of distinct odd
lengths, and f fixes at most one point, then Corollary 3.6 and Lemma 3.8 imply that
Cgx (f) € Ax, and 50 G(y.45) = Ax. Similarly, if |X - S(fc)| < 1, then Cg, (f) = {ix},
and G(z.(ixp = {ix}-

5. AUTOMORPHISMS

If S is a semigroup of total transformations of a finite set X, and G contains
the alternating group Ax on X, then Gy = Gx, S is a Gx-normal semigroup, all the
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automorphisms of S are inner, and the automorphism group Aut(S) of S is isomorphic
to Gx [6]. For an infinite set X the fact that Ay < Gs does not imply that Gs = Gx.
However it will be shown in this section that if S Q Gx is a semigroup of one-to-one
transformations of an infinite set X such that Gg contains Ay, then S has the inner
automorphism property. The technique used here is based on that of [3] developed to
describe the automorphisms of Gx -normal semigroups.

Everywhere in this section we assume that S is a subsemigroup of Wx that contains
transformations with non-zero defects, and that Ax < Gs. To describe the automorphism
group Aut(S), in view of Equation 1 (in Section 1), we need to know the structure of the
centraliser of the semigroup S in Gx.

PROPOSITION 5.1. The centraliser Cg,(S) of S is equal to {ix}.

PROOF: Let f € S and let T = (f : Ax) be a subsemigroup of S. We show that
Ce, (T) = {ix}, and deduce the statement of the Proposition from an observation that
since T is a subsemigroup of S, the centraliser Cg, (S) C Cg, (T). First we demonstrate
that '

(2) Cox (T) = ﬂ{thx(f h':he .Ax}

Indeed for each ¢ € Cg, (T) and h € Ax we have that ghfh~¢™! = hfh~!, so that
h=lqh € Cg,(f), and q € hCq, (f) h~*. Conversely, assume that p € N{hCg, (f)h":
he Ax} and take g = hy fhi'hofhs' .. hmfh;! € T. Foreachi =1,2,...,m, there ex-
ists r; € Cg, (f) such that p = h;r;h7 . Therefore phifh7'p™" = hyrihMhy fh Yhiri~h =
hifh7!, so that pgp~! = g, and g € Cg, (T).

Take g € Cg, (T) C Cg,(f), and suppose that g maps a chain (z;z273...) of f to
a different chain (g(z,)g9(z2)g(z3)...) of f (Proposition 3.5). Take s = (zzo13) € Ayx.
By Equation (2) above, g = sgs™! for some ¢ € Cg, (f), and this ¢ has to map every
chain of f onto a chain in f in prescribed order (Proposition 3.5). However we have
that g(z1) = s~!gs(z1) = s~ 'g(z2) = g(z2) = z3, hence ¢(z,qz273...) is not a chain in
f. This contradiction proves that g fixes every point of S(f.).

Suppose now that there is an z € X — S(f.) such that g(z) = y # z, and note
that y € X — S(f.). Choose z € S(f.) and take s; = (zy2) € Ax. By Equation (2)
again, g = s,q157" for some q, € Cg,(f). However, in this case q,(z) = s7'gs;(z) =
silg(z) = s7'(y) = z, so qi(S(fe)) # S(f.), a contradiction to the fact that ¢, € Cg, (f)
(Proposition 3.5 again). Therefore g is the identity permutation of X.

We proceed with the description of Aut(S). For an z € X define
R.={reS:zeX—im(r)}.

In as much as G contains a transitive group Ax, the set R, is non-empty for every
z € X. In fact R, is a right ideal of S, termed a point right ideal. Moreover, for
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any distinct points z,y € X, the corresponding point right ideals R, and R, are also
distinct. Indeed if r € R, N R,, choose distinct points u,v € im(r) and take h = (yuv)
to be a three-cycle in Ax < Gs. Then im(Arh~!) = h(im(r)), and so Arh~! € R, — R,.
Therefore there is a one-to-one correspondence between the points z of X and the point
right ideals R, of S.

We show that any automorphism of S acts faithfully on the set {R, : z € X} of all
the point right ideals of S. Given distinct transformations s and ¢ in S, define

R(s,t) ={re S:sr=tr}.

If non-empty, R(s,t) is a right ideal of S termed a function right ideal. It is not
difficult to see that there is a relationship between non-empty function right ideals and
point right ideals of S (see [3]) given by

(3) R(s,t) = ﬂ{'Rz cs(z) # t(.'z:)}.

LEMMA §.2. For each x € X there exist transformations s,t € S such that
Rz = R(s,t).

PROOF: Since the defect of a product of two one-to-one transformations is the sum
of their defects, and since S contains transformations with non-zero defects, we may
choose a transformation g in S with def(g) > 3. Since Gs contains a transitive group
Ax we may assume without loss of generality that x € X —im(g). Let g(z) = vy, and
choose two other distinct points v and z in X —im(g). Take three-cycles hy = (zzu) and
hy = (z2y) in Ax < Gs, and let s = hygh; g and t = hyghy~'g.

We show that the above defined s and ¢ are the required transformations. Indeed,
s(z) = highi'g(z) = highi™'(y) = hig(y) = g(y), since g(y) is not an element of
{z,u,2} € X —im(f). Also t(z) = haghy 'g(z) = haghs ' (y) = hag(z) = g(2), since
g(z) # g(z) = y, and g(2) # z,2z € X — im(g), therefore s(z) # t(z). If a # 2,
then g(a) ¢ {z,v,u,2}, so h{'g(a) = h7'g(a) ¢ {z,y,u,2}, and it is easy to see that
s(a) = t{a). 0

The set of function right ideals is partially ordered by set inclusion, and its max-
imal elements are of the form R(s,t) where s and ¢ differ precisely on one point of X
(Equation 3 and Lemma 5.2). Formally:

LEMMA 5.3. Given transformations s, t € S, R(s,t) is a maximal function right
ideal of S if and only if R(s,t) = R,, for some z € X.

Take an automorphism ¢ of S and observe that ¢ acts on the set of function right
ideals:

o(R(s,0)) = {r) : 7 € S, plsr) = p(tr)}
={r':r" €S, o(s)r' = o(t)'}
= ’R'(‘p(s)) (p(t))
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Moreover ¢ maps the set of all maximal function right ideals onto itself, hereby giving
rise to a permutation h of X such that for an z € X, h(z) = y if p(R;) = R, (Lemma
5.3). The next result follows then from the observation that for any z € X and f € §
we have that z € X — im(f) if and only if f € R, if and only if o(f) € p(R;) = Ru@).

LEMMA 5.4. Given f € S, im(p(f)) = h(im(f)).

To see that ¢ indeed acts on S by conjugation by h, take an arbitrary z € X,
f € S, and choose a non-permutation g in S with z € im(g). Take u € im(g) with
v # z and v € X — im(g), and let ¢ = (urv) € Ax < Gs. Then gg¢7! € S and
im(ggq™") = ¢q(im(g)) = im(g) — {z} U{v}, so that im(g) —im(ggq~") = {z}. By Lemma
5.4,

o(f) (h(x)) = o(f)im(p(g)) — im(p(g9g™"))
= im(p(fg)) — im(x(fgg9g™"))
= hf(z),

and so ¢(f) = hfh~!. The above discussion together with Proposition 5.1 implies the
next result.

THEOREM 5.5. Let X be an infinite set, and let S be a semigroup of one-to-one
transformations of X that contains non-permutations. If the alternating group Ax is a
subgroup of Gs, then each automorphism ¢ of S is inner, and Aut(S) = Gg.

COROLLARY 5.6. Let f € Wy be a transformation with a non-zero defect, and
let H be a normal subgroup of Gx, then

1. Aut((f: H)) =Im({f : H)),
2. if H # {ix} and f has a finite defect, then

Aut({f : H)) =Inn((f : H)) = HCg,(f).

PRrROOF: To prove the first part of the Corollary, note that if H is a non-trivial
normal subgroup of Gx, then the result follows from Theorem 5.5. If H = {ix}, then
(f : H) is the monogenic semigroup generated by f. Since f € Wx — Gy, for any integer
k > 2 we have that f* # f and so the identity automorphism is the only automorphism
of (f : H).

The second part of the Corollary follows directly from Theorem 5.5 and Lemma
4.1. 0

Qbserve that if H is a proper normal subgroup of Gx and f € Wy is a non-
permutation satisfying Aut((f : H)) = H, then by Proposition 3.7 and Corollary 5.6, we
have that def(f) =1 and |X — S(fc)| < |X], so that X is a countable set.

COROLLARY 5.7. Let X be acountableset. Then there exists a non-permutation
f € Wy such that for any normal subgroup H of Gx we have that Aut((f : H)) ~H.
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ProoF: Take f to be a single chain shifting all the points of X. Then, by Corol-
lary 3.6, Cg, (f) = {ix}. The result follows from Corollary 5.6. 0
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