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Abstract

We describe several recursive constructions for designs which use designs with “holes”. As an
application, we give a short new proof of the Doyen-Wilson Theorem,

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 05 B 05, 05 B 07.

1. Introduction

A pairwise balanced design (or, PBD) is a pair (X,.%), such that X is a set
of elements (called points) and & is a set of subsets of X (called blocks),
each of cardinality at least two, such that every unordered pair of points is
contained in a unique block of .. If v is a positive integer and X is a set
of positive integers, each of which is greater than or equal to 2, then we say
that (X,%) is a (v,K)-PBD if |X| = v, and |4| € K for every A € &. The
integer v is called the order of the PBD.

Using this notation, we can define a Steiner triple system of order v, which
we denote STS(v), to be a (v, {3})-PBD. It is of course well-known that an
STS(v) exists if and only if v = 1 or 3 modulo 6.

Let (X,&) be a PBD. If a set of points Y C X has the property that, for
any A € &, either [Y NA| <1 or ACY, then we say that Y is a subdesign
or flat of the PBD. The order of the subdesign is |Y|. The subdesign Y is
properif Y # X. If Y is a subdesign, then we can delete all blocks 4 C Y and
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replace them by a single block, Y, and the result is a PBD. Also, any block
or point of a PBD is itself a subdesign.

In the case of Steiner triple systems, it is easy to see that if an STS(v)
contains an STS(w) as a proper subdesign, then v > 2w + 1. Of course,
v =1 or 3 modulo 6 and w = 1 or 3 modulo 6. In 1973, Doyen and Wilson
showed in [3] that these necessary conditions were sufficient.

DOYEN-WILSON THEOREM. There exists an STS(v) which contains an
STS(w) as a proper subdesign if and only if v > 2w + 1, v = 1 or 3 modulo
6, and w = 1 or 3 modulo 6.

More recently, a very different proof of this result has been given by Stern
and Lenz [15], using graph-theoretic methods. Generalizations of the Doyen-
Wilson theorem have been studied in [14] and [7].

In this paper, we give yet another proof of this theorem, which is recursive
and completely design-theoretic in nature. This proof depends on some new
constructions utilizing designs with “holes”, which we describe in the next
section. Once we have developed the necessary machinery, the proof of
the Doyen-Wilson Theorem which we present is very brief. This is done in
Section 3.

2. Designs with holes

In this section, we review some well-known design constructions using
various types of designs with “holes”, and present some new generalizations
of these constructions. This section is intended to be a leisurely exposition,
so that the concepts we discuss can be made as clear as possible.

First, we define a useful generalizations of a PBD, called a group-divisible
design. A group-divisible design (or, GDD), is a triple (X, Z,.%), which sat-
isfies the following properties:

(1) Z is a partition of X into subsets called groups;

(2) & is a set of subsets of X (called blocks) such that a group and a

block contain at most one common point;

(3) every pair of points from distinct groups occurs in a unique block.
The group-type of a GDD(X, Z,%) is the multiset {|G|: G € &}. We usu-
ally use an “exponential” notation to describe group-types: a group-type
112/3k .. denotes i occurrences of 1, j occurrences of 2, etc. As with PBDs,
we will say that a GDD is a K-GDD if [4| € K for every A € & .
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A parallel class in a GDD or PBD is a set of blocks that form a partition of
the point set. A GDD or PBD is resolvable if the block set can be partitioned
into parallel classes.

Now, we define the idea of a GDD with a hole. Informally, an incomplete
GDD, or IGDD, is a GDD from which a sub-GDD is missing (this is the
“hole”). We give a formal definition. An IGDD is a quadruple (X, Y, %, %)
which satisfies the following properties:

(1) X is a set of points,and Y C X

(2) & is a partition of X into groups;

(4) & is a set of blocks, each of which intersects each group in at most
one point;

(5) no block contains two members of Y;

(6) every pair of points {x,y} from distinct groups, such that at least one
of x, y is in X\Y, occurs in a unique block of .% .

We say that an IGDD (X,7Y,¥%,%) is a K-IGDD if |4| € K for every block
A € . The type of the IGDD is defined to be the multiset of ordered pairs
{(|IGI,|GNYY]): G € £}. As with GDDs, we shall use an exponential notation
to describe types. Note that if Y = &, then the IGDD is a GDD.

We have already defined PBDs with subdesigns. If we allow the subdesign
to be missing (i.e., a hole), we have an incomplete PBD, as follows. An
incomplete PBD (or (IPBD) is a triple (X, Y, ), where X is a set of points,
Y C X, and & is a set of blocks which satisfies the following properties:

(1) forany Ae s, |ANY|<1;

(2) any two points x, y, not both in Y, occur in a unique block,
Hence, Y is the hole. Note that (X, Y,&) is an IPBD if and only if (X,% U
{Y})is a PBD. We say that (X,Y,& ) isa (v,w; K)-IPBD if |[X| =, |Y|=w,
and |A4] € K for every 4 € &/. Of course, we can fill in the hole of an IPBD,
as follows.

CONSTRUCTION 2.1, Suppose (X,Y,%) is an IPBD and (Y, %) is a PBD.
Then (X, UZ) is a PBD.

We can obtain IPBDs from IGDDs by filling in groups. The following con-
struction was first stated in a general form in [9, Construction 4.1], although
it was earlier applied in various special cases (see, for example, [2], [5], and

[4]).

CONSTRUCTION 2.2. FILLING IN GROUPS. Let K be a set of positive inte-
gers, and let a > 0. Suppose that there exists a K-IGDD of type {(¢;, uy), (£2, u2),
...»(tn,un)}, and suppose (¢; + a, u; + a; K)-IPBDs exist for 1 < i < n. Then
there exists a (t + a,u + a; K)-IPBD, where u =Y u; and t = _ ¢;.
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The special case when we start with a GDD (thatis, u; = --- = u, = 0) and
when we fill in the hole at the end is the construction Wilson calls “adjoining
subdesigns” [16].

CONSTRUCTION 2.3: ADJOINING SUBDESIGNS. Let K be a set of positive
integers, and let ¢ > 0. Suppose that the following designs exist: a K-GDD
of type {t1,12,...,tn}; (ti+a,a; K)-IPBDs, for 1 < i < n; and an (a, K)-PBD.
Then there exists a (¢ + a, K)-PBD, where ¢ = }_ ¢;, containing subdesigns of
order ¢; + a, (1 £ i < n), and order a.

One of our main tools in the proof of the Doyen-Wilson Theorem is a more
powerful method of filling in groups. First, we need to define a more general
type of incomplete PBD. PBDs can contain many different subdesigns, which
in turn can intersect in further subdesigns. These subdesigns will form a
lattice. We are interested in the situation when the lattice is a square. That is,
we have two subdesigns, of given sizes, which intersect in a third subdesign of
a given size. However, as before, the subdesigns need not be present, that is,
we allow holes. We will refer to the designs as (-IPBDs, in order to suggest
the lattice structure. Based on this informal discussion, we give a formal
definition. An incomplete (-PBD is a tuple (X, Y;,Y;,%), where Y; C X,
Y, C X, and & is a set of blocks such that every pair of points {x, y} occurs
in a unique block, unless {x,y} C Y; or {x,y} C Y3, in which case the pair
occurs in no block. We say that the {-IPBD is a (v; w,, w;; w3; K)-O-IPBD if
| X1 =, |Yi|=w, |Y2| =w,, |Y1 N Y3 = w;, and |4| € K for every 4 € &/ .

ExaMmpLE. A4 (15; 7, 7; 3; {3})-0-IPBD. X = {1,2,...,15}, Y} = {1,2,3,
4,13,14,15},and Y, = {5,6,7, 8, 13, 14, 15}. The blocks are
{1,5,9}, {2,6,9,}, {3,7,9}, {4,8,9}, {1,6,10}, {2,7,10}, {3,8,10},
{4,5,10}, {1,7,11}, {2,8,11}, {3,5,11}, {4,6,11}, {1,8,12}, {2,5,12},
{3,6,12}, {4,7,12}, {9,10,13}, {11,12,13}, {9,11,14}, {10,12,14},
{9,12,15}, {10,11, 15}.
The holes of ¢-IPBD can be filled in various ways. We have the following
simple observations.

CONSTRUCTION 2.4. Suppose (X,Y,,Y,,&) is a ¢-IPBD, and that
(Y1, Y1NY,, &) and (Y3, Y|NY,, ) are IPBDs. Then (X, Y,,&# U%), (X, Y,, &
UZ),and (X,Y1NY,, & UF UF) are IPBD:s.

ReMARK. If we fill in all but one group of an IGDD by the method of
Construction 2.2, we obtain a {-IPBD.
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Our main application of {-IPBDs involves using them to fill in the groups
of IGDDs. This is a generalization of Construction 2.2.

CONSTRUCTION 2.5: GENERALIZED FILLING IN GROUPS. Let K be a set of
positive integers, and let b > a > 0. Suppose that the following designs exist:

(1) a K-IGDD of type {(t;,u1),(t2,u42), -, (tns Un)};
(2) a(t;i+ b,u; + a,b;a; K)-Q-IPBD, for 1 <i < n; and
(3) a (b,a; K)-IPBD.

Then there exists a (¢ + b,u + a; K)-IPBD, where u =Y_u; and t = ) _ ¢,.

ReMARK. R. Rees (private communication) has observed that we can con-
struct the desired design under slightly weaker hypotheses, as follows.

CONSTRUCTION 2.6: GENERALIZED FILLING IN GROUPS. Let K be a set of
positive integers, and let b > a > 0. Suppose that the following designs exist:

(l) a K-IGDD of type {(tl’ ul)’ (tZa uZ)a ey (tn, un)};
(2) a(ti+byu;+a,b;a;K)-¢-IPBD, for 1 <i<n-1;and
(3) a (¢t + b;u; + a)-IPBD.,
Then there exists a (¢ + b, u + a; K)-IPBD, where u = > u; and t = )_ ¢;.

As applications of the “filling in groups” technique, we mention a family of
constructions which are called the product constructions. These are based on
filling in the groups of (incomplete) transversal designs, which we now define.
A transversal design TD(k, n) is a {k}-GDD of type n*. It is well-known that
a TD(k, n) is equivalent to k — 2 mutually orthogonal Latin squares (MOLS)
of order n. We also define a TD(k, n) — TD(k, m) (an incomplete transversal
design) to be a {k}-IGDD of group-type (n, m)*.

The following construction is referred to as the singular indirect product,
or SIP [9, Theorem 4.5] (see also [8]).

CONSTRUCTION 2.7: SINGULAR INDIRECT PRODUCT. Suppose K is a set
of positive integers and u € K; suppose v, w, and a are integers such that
0 € a £ w £ v; and suppose that there exists a TD(u, v — a) — TD(u,w — a)
and a (v, w; K)-IPBD. Then, a (u(v — a) + a, u(w — a) + a; K)-IPBD exists.

If we let w = a in the singular indirect product, we obtain the singular
direct product, or SDP.

CONSTRUCTION 2.8: SINGULAR DIRECT PRODUCT. Suppose K is a set of
positive integers and u € K. Suppose v and w are non-negative integers such
that w < v, there exists a TD(u, v), and there is a (v, w; K)-IPBD. Then there
is a (u(v — w) + w, w; K)-IPBD. If further, there exists a (w, K)-PBD, then
there exists a (u(v — w) + w;v; K)-IPBD.
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At this point we want to state a generalized singular indirect product
(GSIP), using the ¢-IPBD:s to fill in groups of an ITD.

CONSTRUCTION 2.9: GENERALIZED SINGULAR INDIRECT PRODUCT. Let K
be a set of positive integers and u € K, and let v, w, a, and b be non-negative
integers suchthat 0 < b—-a <v-w,a <w < v, and a < b < v. Suppose that
the following designs exist: a TD(¥,v — b) — TD(u,w — a), a(v;w, b;a; K)-
¢-IPBD; and a (b, a; K)-IPBD. Then there exists a (u(v —b) + b, u(w —a)+
a; K)-IPBD.

REMARK. When b = a, GSIP becomes SIP.

If we are to fill in groups of IGDDs, we need methods of building IGDDs.
Our basic construction is a recursive one. We refer to it as the “Fundamental
IGDD Construction”. A variation of this construction is presented in [12].

CoNSTRUCTION 2.10: FUNDAMENTAL IGDD CONSTRUCTION. Suppose
(X,Y,Z,%) is an IGDD, which we call the master IGDD. Let ¢, s: X —
Z+ U {0} be functions such that ¢(x) < s(x), for every x € X (we refer to ¢
and s as weightings). For every x € X, let S(x) be a set of cardinality s(x) and
let T(x) be a set of cardinality ¢(x), where T(x) C S(x). Also, suppose that
S(x)NS(y) = if x # y. For any subset Y C X, denote S(Y) (resp. T(Y))
to be U,y S(x) (respectively |,y T(x)). Now, for every block 4 € &,
suppose that we have an IGDD.

(S(A4), T(A4),{S(x): x € A}, Z(A)).
Also, suppose that we have an IGDD,
(S(Y),T(Y),{S(GNY): Ge Z},B(Y)).
Then
(S(X), T(X),{S(G): Ge &}, |J Z(4) ug(Y))

Acs
is an IGDD.

When the master IGDD is a GDD, we obtain a construction which was
presented by Mullin et al. in [9, Construction 4.4].

CONSTRUCTION 2.11. Suppose (X,&,%) is a GDD, and let ¢, s: X —
Z* U {0} be functions such that 7(x) < s(x), for every x € X. For every
x € X, let S(x) be a set of cardinality s(x) and let 7(x) be a set of cardinality
t(x), where T(x) C S(x). Also, suppose S(x)NS(y) = if x # y. For any
subset Y C X, define S(Y) (resp. T(Y)) to be U,y S(x) (resp. U,cy T(x)).
For every block A € &/, suppose that we have an IGDD,

(S(A4), T(A4),{S(x): x € A}, F(A4)).
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Then
(S(X), T(X),{8(G): Ge&}, |J Q(A))

Aey
is an IGDD.

As an immediate corollary of this construction we obtain the Fundamental
Construction for GDDs [16].

CONSTRUCTION 2.12: FUNDAMENTAL GDD CONSTRUCTION. Suppose
(X,2,%) is a GDD, and let s: X — Z* U {0} be a function. For every
x € X, let S(x) be a set of cardinality s(x). Also, suppose S(x)NS(y) =@ if
x # y. For any subset Y C X, define S(Y) to be |J, .y S(x). For every block
A € &, suppose that we have a GDD,

(S(A), {S(x): x € A}, B (A)).
Then
(S(X), {sG):6¢%}, U Q(A))

Ae
is a GDD.

3. A new proof of the Doyen-Wilson Theorem

We present two lemmata which suffice to prove the Doyen-Wilson Theo-
rem, except for a handful of special cases which are dealt with by means of
the product constructions and ad hoc methods.

LemMA 3.1. For all w = 3 modulo 6, and for all v = 1 or 3 modulo 6,
2w+1 < v £ 3w, there exists an STS(v) containing an STS(w). Forallw =1
modulo 6, w > 25, and for all v = 1 or 3 modulo 6, 2w +1 < v < 3w -6,
there exist an STS(v) containing an STS(w)

ProoF. Suppose we have a resolvable {3}-GDD of type g¥ (these designs
have been studied in [10], [1], and [6]). Adjoin infinite points to ¢ parallel
classes (where 0 < ¢ < g(u — 1)/2), constructing a {3,4}-GDD of type g*t!.
Now, give the points of the original GDD weight (2, 1), give the ¢ infinite
points weight (2,0), and apply the IGDD construction. Since every block of
size 4 hits the group of size ¢, we require only IGDDs of type (2,1)? and
(2,1)321. There exist {3}-IGDDs of these two types: a {3}-IGDD of type
(2,1)3 is just a {3}-GDD of type 23 with a block removed; and a {3}-IGDD
of type (2, 1)32! is just a {3}-GDD of type 2* with a block removed (these are
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constructed by removing a point from an STS(7) and STS(9), respectively).
In this way, we produce a {3}-IGDD of type (2g, g)*(2f)'.

If we take g = 1, we start with a resolvable {3}-GDD of type 1%, which
exists for all ¥ = 3 modulo 6 [10] (these are just resolvable STS(u), or Kirk-
man triple systems). The construction builds {3}-IGDD of type (2, 1)*(2¢)!,
forall 0 <t < (u—1)/2. If we take ¢t = 0 or 1 modulo 3, then we can adjoin
a point at infinity (b = 1,a = 0), filling in STS(3) and STS(2¢ + 1). Hence,
we end up with an IPBD(2u + 2t + 1, u; {3}). Filling in the hole, we have an
STS(2u + 2t + 1) containing an STS(«). That is, for all w = 3 modulo 6, we
can construct an STS(v) containing an STS(w) for all v = 1 or 3 modulo 6,
2w+1<v <3w.

If we take g = 6, then we start with a resolvable {3}-GDD of type 6%, which
exists for all ¥ > 4 [11, 1]. Adjoining infinite points, we obtain a {3}-IGDD
of type (12,6)¥(21)', 0 <t < 3(u—1). Let ¢t = 0 or 2 modulo 3, and adjoin
3 points at infinity (b = 3,a = 1), filling in a ¢-IPBD (15;7,3;1;{3}),
an IPBD(2¢t + 3,3;{3}), and an IPBD(3,1;{3}). We end up with an
IPBD(12u + 2t + 3,6u + 1;{3}). The hole can then be filled in with an
STS(6u+1). So, for all w = 1 modulo 6, w > 25, we can construct an STS(v)
containing an STS(w) for all v =1 or 3 modulo 6, 2w + 1 < v < 3w — 6.

LEMMA 3.2. For w = | modulo 6, w # 13, and for all v = 1 or 3 modulo
6, 3w — 2 < v < Sw — 4, there exists an STS(v) containing an STS(w). For
w = 3 modulo 6, and for all v = 1 or 3 modulo 6, 3w —2 < v < 5w — 6, there
exists an STS(v) containing an STS(w).

ProOF. Start with a TD(4, m), where m = 0 or 1 modulo 3, m # 6. Assign
weight 2 to points in the first three groups, and weights 0, 2, and 4 to the
points in the last group. Apply the GDD construction filling in {3}-GDDs
of types 23, 24, and 234! (these are obtained respectively from an STS(7),
STS(9), and by completing a one-factorization of Kg). We construct a {3}-
GDD of type (2m)3(2¢)!, for all 0 < ¢ < 2m. If t = 0 or 1 modulo 3, then
we can add on one point at infinity (@ = b = 1) and fill STS(2¢ + 1) and
STS(2m + 1). For w = 1 modulo 6, w # 13, this allows us to construct an
STS(v) containing an STS(w) for all 3w -~ 2 < v < 5w — 4. Forw = 3
modulo 6, this allows us to construct an STS(v) containing an STS(w) for
all3w-2<v<5w-6.

We have only a few special cases to handle before we can prove the main
result. These are described in Table 1. We note that a TD(3, m) — TD(3,n)
exists whenever m > 2n,

Now we can prove the Doyen-Wilson Theorem.
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31

33

37

39

43

45

49

51

39

43

45

49

51

e

19

19

construction

SDP 15=3(7-3)+3

GSIP 27=3(11-3)+3

w=5a=1

SIP 31 =3(11-1)+1
w=35

SDP 33=3(13-3)+3

SDP 37=3(13-1)+1

SDP 39=3(13-0)+0

(21,6;{3,4}) — IPBD.

GSIP 45=3(17-3)+3

w=5a=1

SIP 49=3(17—-1)+1
w=>3;

(25,6;{3,4,6,7}) — IPBD

SDP 39=3(19-9)+9

SIP 43=3(15-1)+1
w=17

(22,9;{3,4}) - IPBD

SIP 49=3(19-4)+4
w=9

SDP 51=3(19-3)+3

D. R. Stinson (9]

TABLE |

ingredients

STS(7) containing STS(3)
TD(3,4)
¢0-IPBD(11;5,3;1;{3})

remarks

add 5 infinite points to
a one-factorization of K
IPBD(3, 1;{3})
TD(3,8) — TD(3,4)
3(S-1+1=13
IPBD(11, 5;{3}) add 5 infinite points to
a one-factorization of K
TD(3,10) — TD(3,4)
3(5-N+1=13

STS(13) containing STS(3)

TD(3,10)

STS(13) containing STS(1)

TD(3,12)

STS(13)

TD(3,13)

To construct the PBD, adjoin 6 infinite
points to a resolvable STS(15).

Then, give every point weight 2,

apply the GDD constuction,

and fill in one infinite point.
¢-1PBD(17; 5, 3; 1;{3}) apply SIP with
17=3(7-2)+2,
w=3.

IPBD(3, 1;{3})
TD(3,14) — TD(3,4)
3(5-1+t=13
IPBD(17, 5;{3}) apply SIP with
17=3(7-2)+2,
w=3

TD(3, 16) — TD(3,4)

35-1)+1=13

To construct the PBD, delete 3 points

from a block of a TD(4, 7).

Then, give every point weight 2,

apply the GDD construction,

and fill in one infinite point.

STS(19) containing STS(9)

TD(3, 10)

STS(15) containing STS(7)

TD(3, 14) — TD(3, 6)

7-1)+1=19

The PBD is constructed in [13, p. 214].

Then, give every point weight 2,

apply the GDD construction,

and fill in one infinite point.

STS(19) containing STS(9)

TD(3,15) — TD(3,5)

39-4)+4=19

STS(19) containing STS (3)

TD(3,16)
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THEOREM. For all w = 1 or 3 modulo 6, and for all v = 1 or 3 modulo 6,
v > 2w + 1, there exists an STS(v) containing an STS(w) as a subsystem.

Proor. If w = 3, the theorem is true since any block of an STS(v) is a
sub-STS(3); so henceforth we assume w > 7.

First, we prove the theorem is true for 2w + 1 < v < 4w + 3, as follows.
If w = 3 modulo 6, w > 9, then the theorem is true for 2w + 1 < v < 3w by
Lemma 3.1, and for 3w - 2 < v < 5w — 6 by Lemma 3.2. If w = 1 modulo
6 w > 25, the theorem is true for 2w + 1 < v < 3w — 6 by Lemma 3.1, and
for 3w -2 <v < 5w — 4 by Lemma 3.2. For w = 7, 13, or 19, the theorem
is true for 2w + 1 < v < 4w — 1, by Lemma 3.2 and Table 1.

Now, we prove the theorem by induction on the ratio [(v + 1)/(w + 1)]
(where [x] denotes the largest integer not exceeding x). By the above obser-
vations, the theorem is true when the ratio [(v + 1)/(w + 1)] = 2 or 3, so
we can assume [(v + 1)/(w + 1)] > 4. By our induction hypothesis, there
exists an STS(v) containing an STS(2w + 1) and there is an STS2w + 1)
containing an STS(w). Hence, there exists an STS(v) containing an STS(w).
This proves the theorem.
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