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THE COINCIDENCE PROBLEM
FOR COMPOSITIONS OF SET-VALUED MAPS

H. BEN-EL-MECHAIEKH

The main purpose of this work is to give a general and elementary treatment of
the fixed point and the coincidence problems for compositions of set-valued maps
with not necessarily locally convex domains and to display, once more, the central
role played by the selection property.

0. INTRODUCTION

The following coincidence theorem was proved by Granas and Liu in [17]:

THEOREM 0 . Let X, Y be convex subsets of topological vector spaces, and
A, B: X —» Y two set-valued maps satisfying:

(i) A is upper semicontinuous (use) and has non-empty compact acyclic val-
ues;

(ii) B has non-empty convex values and open fibres.

If A is compact, then A and B have a coincidence, that is, there exists (z0, Vo) € X x Y
with y0 G A(x0) D B(x0).

[Recall that a nonempty compact space is acyclic if all its reduced Cech homology
groups over Q vanish.]

The proof of Theorem 0 relies on a Lefschetz-type fixed point theorem of Gorniewicz
and Granas [14] which is itself based on sophisticated homological machinery. One of
our concerns was to provide a simple proof of the convex case, that is when A is use
and has non-empty convex compact values (such a map will be called a K-map). In
doing so, we were driven to give an elementary proof of a fairly general fixed point
theorem for compositions of K-maps defined on a general extension space containing
the locally convex and the not necessarily locally convex cases. Weaker results were
recently and independently obtained by Lassonde [24]. However, our fixed point the-
orems are different from Lassonde's in the sense that the spaces are more general and
an approximate selection technique is used here rather then the approximation by sim-
plicial maps (see Kakutani [21], Ha [18], Lassonde [24]). We are thus able to deduce
some general coincidence theorems for compositions of set-valued maps.
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Parts of this paper are taken from the author's thesis [3] and are motivated by a
joint work with Deguire and Granas [6] to whom the author expresses his appreciation.

1. DEFINITIONS AND PRELIMINARY RESULTS

Let X and Y be two sets. A set-valued map A: X —» Y is a map that associates
with any x G X a subset A(x) of Y. The subsets A(x) of Y are called the values of
A and the subsets A~1(y) = {x G X | y G A(x)} of X are the fibres of A; the map
A~x: Y —> X is the inverse of J4.

In what follows, set-valued maps, simply called maps, are denoted by capital letters
while single valued functions, called functions, are denoted by small letters. The graph of
map A: X -» Y is the set YA = {(x,y) e X xY \y eA(x)}. Given two A, B: X -* Y,
B is said to be a multis election or simply selectionoi A if YB Q ^A that is B{x) C A(x)
for each a G X; similarly, a function s: X —> Y is a selection of .A if F , C YA-

We say that A and 5 have a coincidence if Fj3 D F^ ^ 0. If A is a self map,
x G -X" is a yixei potnf for A if z G A(x); we denote by Fix(.A) the set of all fixed
points of A. For a subset if of a topological space X, we denote by Covx {K) the
directed set of all coverings of K by open sets of X (Cov(X) = Cov^ {X)). Given a
map A: X —> X and a G Cov(X) , a point x G X is said to be an a-fixed point of
A if there exists a member U G a such that (i) x G i7 and (ii) A(x) C\U ^ 9. Given
two maps A,B: X —» Y and a G Cov(F) , A and B are said to be a-close, if for any
x G X, there exist Ux G o , y G 4(a:) D {7X and y' G S(z) n CA,..

Given a class A of maps, we define

A(X,Y) = {A£A \ A: X -+ Y};A(X) = A(X,X);A- = {A \ A-1 G A}

Ac = {A = AmAn-! ...A1\Ai€ A}, ̂ A = {X \ (VA G A(X))(Fix(A) £ 0)}.

A~ is called the inverse class of A; clearly (A~) = A

and Fix (A) ^ 0 o Fix (A'1) £ 0.

Let C denote the class of all continuous functions. We say that a class of maps A
is regular if (i) A x B G A for all A, B G A and (ii) the composition At G A for all
A G A and t EC.

The following is immediate:

LEMMA 1 . 1 . Given a regular class A and X, Y two sets such that XxY G Tx •

Then

(i) YB n TA ^ 0 whenever .A G A(X,K) and S G A-(X,y) and
(ii) Fix(Byl) ^ 0 whenever A G A(A",y) and 5 G A(F,X).
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In view of this result, if all the spaces are "well behaved" (for example locally
convex) then the existence of fixed point for compositions, and coincidence between
inverse classes, are trivial. But if the intermediate spaces are not "nice" (for example
not locally convex), then the previous lemma does not apply. The study of this case is
the object of this paper.

We recall now some useful properties of maps (for definitions and basic properties
of semicontinuity of maps, the reader is referred to Aubin and Cellina [2] and Berge

mo
LEMMA 1.2 . Let X be a regular topological space and A: X —> X an upper

semicontinuous map with closed values. Assume that there exists a cofinal family of
coverings •& C Cov(JT) such that A has an a-fixed point for every a 6 •d. Then A has
a fixed point.

PROOF: Suppose that Fix (A) = 0. For each x £ X, there exist open sets Ux G
$x{x) (the family of all open neighbourhoods of x in X) and Vx D A(x) such that
Vt D Ux = 0 and A(UX) 2 Vx. Putting /3 = {Ux | x G X} we get a covering of X such
that A has no /3-fixed point. If a is a member of i? that refines /?, then A has no
a-fixed point, which is a contradiction. D

LEMMA 1 . 3 . If the following diagram commutes

then A has a fixed point if and only if B has a fixed point.

For the sake of simplicity, we shall restrict our settings to the class of Hausdorff
topological vector spaces (denoted subsequently by t.v.s.) even though the main results
can be stated in the larger class of affine spaces in the sense of Dugundji [9] or convex
spaces in the sense of Lassonde [23]. When the existence of separating linear functionals
is needed, we shall merely require a locally convex structure rather than the sufficient
and weaker condition of the existence of sufficiently many linear functionals.

2. BASIC CLASSES OF MAPS

We now define the classes of maps which will be studied in the sequel.
In what follows, X and Y are subsets of topological vector spaces E and F,

and, for any subset K of E, conv(A') (respectively conv(.K')) denotes the convex
(respectively convex closed) envelope of K in E.
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Define the classes:

CA(X,Y) = {s =e C(X,Y) I (3{yi> y2,...,yn} C Y)(s(X) C conv(y i , y2, . . . , yn))}

A G M.(X, Y) <$• Afic has a selection s G C&(K, Y) for every compact K of X.

Clearly, CA C M .

A G S(X, Y) •& A/x has a selection s G C(K, Y) for every paracompact K of X.

.A G F(.X", y ) •£> (i) A has non-empty convex values; (ii) A has open fibres.

{ (i) A has convex values;

(ii) A has a selection A with non-empty values and

open fibres.

Such a selection is called an admissible selection. Lassonde [23] remarked that

every * -map has an P-selection (indeed, for a given A G $ , the map A defined by

A(x) = (J f| A(z) is an F-selection of A).

A G K(X, Y) <=> (i) v4 is use; (ii) A has non-empty convex compact values.

A G V(X, Y) <=> (i) A is use; (ii) A has non-empty compact acyclic values.

A G L(X, Y) <=> (i) A is lsc; (ii) A has non-empty closed convex values,

there exist two subsets Z, C C X, with dimjf (Z) < 0

and C countable such that:

A£LW(X,Y)<* { (i) A is lsc;

(ii) A{x) is closed in Y for each x G X \C\

(iii) ^4(x) is convex for each x € X \Z.

[Here dimx (Z) denotes the topological dimension of Z in X, see Hurewicz and Wall-
man, [20].]

Of course, F C • , K C V, and L C I>w • The class F was introduced and studied
by Fan [11] and subsequently by Browder [8]. In special cases, the classes K and V
were considered by Kakutani [21] and Vietoris [31] respectively. The classes S, L and
"L-u, were introduced and studied by Michael [25, 26].

LEMMA 2 . 1 . (i) The classes M, F, • , K, V are regular,
(ii) Mc = M .

Thus, for a suitable choice of spaces, the existence of fixed points for compositions
and of coincidences for these classes follows immediately from Lemma 1.1.
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REMARK. The class S is not regular. However, since the transpositon t in the proof
of Lemma 1.1 is a homeomorphism (and thus closed), and since paracompactness is
invariant under closed surjections, S satisfies the conclusions of Lemma 1.1.

PROPOSITION 2 . 2 . f[5]j. * C M n s .

PROOF: Let A G •(X, y ) , A be an admissible selection of A and K C X be
compact. Since A has non-empty values, a = {A-1{y) | y G Y} G Covx (K)- Now
consider a partition of unity {A,- | i = 1,2,... ,n} subordinated to a finite subcovering

n

{A~1(yi) | i = 1,2,...,n} of a and define a function a: K —> Y by s(x) = £) A,(a;)j/,-
i

for all x € K. If Aj(x) ̂  0 then a; € .A"1^) and so j/j € ^(z) C J4(Z); by convexity,
s{x) G A(z). The proof of • C S is similar. D

THEOREM 2 . 3 . (Michael [25, 26]).

(i) If V is a convex symmetric neighbourhood of 0 and A & L, then A + V £
M D S ;

(ii) if Y is a closed subset of a. Frechet space, then L(X,Y) C S(X,y);
(iii) if Y is a Banach space, LW(X, Y) C S(X, Y).

3. EXTENSION SPACES

We give in this section some definitions and basic properties of extension spaces.
For a more comprehensive exposition, the reader is referred to Granas [16] and Hanner
[19]. In what follows, Q denotes a class of topological spaces.

DEFINITION 3.1: (i) A space Y is an extension (respectively neighbourhood exten-
sion) space for Q if for any pair (X, K) in Q with K C X closed and any continuous
function f0: K -* Y there is a continuous extension f: X -* Y (respectively neigh-
bourhood extension f:U—>Y)o{fo over X (respectively over a neighbourhood U
of K in X). The corresponding classes of extension spaces will be denoted by ES(Q)
and NES(<5), respectively.
(ii) A space Y is an approximate neighbourhood extension space for Q if for a given
covering a G Cov (Y) and for any pair (X, K) in Q with K C X closed and any con-
tinuous function fo:K—*Y there is a neighbourhood Ua of K in X and a continuous
function fa: Ua —» Y such that fa/K

 a nd /o are a-close. The class of approximate
neighbourhood extension spaces for Q will be denoted by ANES(Q).

Clearly ES(Q) C NES(Q) C ANES(<?) and if Q C Q' then NES(Q') C
NES(Q) and ANES(Q') C ANES(Q). Some basic properties of extension spaces
are listed below:

PROPOSITION 3.2.

(i) A retract of a member of ES(Q) belongs to ES(Q); the same is true of
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ANES(<3) if Q is compact;
(ii) a neighbourhood retract of an NES(Q) is an NES(<2);

(iii) an open subset of a member of NES(Q) belongs to NES(Q);
(iv) the product of any subclass (respectively any finite subclass) of ES(Q)

(respectively NES(Q)>) belongs to ES(Q) (respectively NES(<2));
(v) if Q is the class of paracompact spaces, then any local member of NES(Q)

is an NES(Q);
n

(vi) let Y = |J Yi with Yi open and Q be a class of normal spaces; then if

Yt G NES(Q) for all i, it follows that Y G NES(Q).
We give now some examples of extension spaces (for a more detailed list see [15]).

PROPOSITION 3.3.

(i) Let Q be a class of normal spaces, and AR(Q) (respectively ANR(Q))
be the class of absolute retracts (respectively absolute neighourhood re-
tracts) for Q, then AR(Q) = Q n ES(Q) (respectively ANR(Q) =
QnNES(Q)j;

(ii) the unit interval [0,1] and the real line R belong to ES (normal) (Tietze-
Urysohn) and therefore every Tychonoff cube is in ES (normal);

(iii) every convex subset of a locally convex t.v.s(or of a vector space with the
finite topology) is in ES (metric) (Dugundji [9]);

(iv) any normed space E is an ES (compact); every complete metric linear
space admissible in the sense of Klee [22] is in ES (compact J (in partic-
ular, Lp for p ^ 1, and the space M of measurable functions are in
ES (compact));

(v) ANR - ANR (metric) C NES (compact) (therefore any CW-complex
n

is in NES (compact); and if E is a locally convex t.v.s., C = |J Ci

with Ci closed in E is metrisable, then C, being in ANR is in
NES (compact);

(vi) every open subset and every convex subset of a locally convex t.v.sare in
ANES (compact).

4. FIXED POINTS FOR COMPOSITIONS OF MAPS

We give in this section several fixed point theorems for compositions of maps which
will be used in the next section to derive our basic coincidence theorems. Our main goal
here is to give an elementary proof of fixed point theorems for a compact A G K.C(X),
where X is some extension space.
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The initial idea is contained in the following result, proved in [4]. Its proof relies
on the existence of an approximate selection.

PROPOSITION 4 . 1 . Given X compact is a t.v.s. E, Y a. subset of a t.v.s. F,

A G K{X,Y) and f £ C(Y,X). If X £ Fc then Fix (fA) £ 0.

In fact, a simple adaption of the proof leads to

PROPOSITION 4 . 2 . Given X compact in a t.v.s. E,Y a subset of a t.v.s. F,
A G K(X,Y) and B:Y-*X a use map with closed values. If for any f G C(X,Y)
the composition Bf has a fixed point, then BA has a fixed point.

PROOF: Let U E I?F(0), V e I?F(0) be symmetric. Since A is use, for any
x e X, there exists Vx G I?E(0) such that x' 6 x + Vx => A{x') C A{x) + U. One
can assume with no loss of generality that Vx C V for all x G X. By compactness,

I C (J Xi + 1/2K.. and if W = f| 1/2 V,; then X C [ J « i + ^ Now, for any k

and any i such that uj £ i ; + VZi choose j/i(*) G -Afc,-). Let i E l be arbitrary
and i G { l , . . . , n} be such that x G «i + l/2Va!i. If {A^} is a partition of unity
subordinated to {uk + W} and if k G ATa; = {ifc | At(z) ^ 0} then uk G z,- + VXi

and /(z) = j/j = 5Z Afc(x)j/j(t) G A(a;i). Since / is continuous, the composition Bf

has a fixed point XQ G Bf(xo); and since / ( zo ) G A(XQ) for some z0 G xo + 1/2V,
xo G Bi4(zo) + ^ - Since 5>1 is use with closed values and V is arbitrary, Lemma 1.2
ends the proof. 0

Using this result, we give a different proof of a result of Lassonde [24].

LEMMA 4 . 3 . Given a non-empty compact X of a t.v.s. E, an arbitrary subset

Y of a t.v.s. F and a closed subset T of X Y.Y, the following statements are equivalent:

(i) for each f G C(X,Y),Tf HT ^ <b;

(ii) for each A G K C (X, Y), TA n T £ 0.

PROOF: (ii) => (i) is trivial. We prove (i) => (ii) by induction. First, notice that,
since X is compact, F can be viewed as the graph of an use map B: Y —* X tha t is
TB = F . Let A G K(X,Y); by (4.2), the composition BA: X -> X has a fixed point.
Assume now that (ii) holds for every composition of n — 1 K-maps and let us prove
that it is true for the composition

A — AnAn..i... A\: X —» X^ —> Xi... Xn-\ — »̂ Xn = Y of n K-maps.

Let / G C(Jf ,Xi) be arbitrary. A2 - A2f G K ( X , X X ) and by hypothesis, if A -

AnAn-X ...A2 then T - D F ^ 0 that is BA has a fixed point. If R = BAnAn_i ...A2,

then, Rf has a fixed point, that is, F / fl F ^ ^ 0. Now applying Proposition 4.2 again,

we obtain that RA\ has a fixed point, so TA H F ^ 0. D
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This induction argument is due to Lassonde. However, his proof, valid for X a

simplex, is based on an approximation by simplicial maps technique.

If Y = X and F = {(x,z) | x £ X} is the diagonal and if E is locally convex, it

follows from the Schauder-Tychonoff fixed point theorem that:

THEOREM 4 . 4 . Let X be a convex compact subset of a locally convex t.v.s. E

and A G KC(X) (the intermediate spaces being arbitrary t.v.s.), then Fix(j4) ^ 0.

REMARKS. (1) If all the intermediate spaces are locally convex (Pasicki [27]), the con-
clusion follows at once from the regularity of the class K (Lemma 2.1) and from Lemma
1.1.

(2) Theorem 4.4 remains valid if the compactness is placed on the map. Actually,
Lassonde's result extends to a wider class of spaces by using a standard procedure (see
for example Gorniewicz [13], Granas [16]). Since by Theorem 4.4 every TychonofFcube
T £ ^Kc

 a n <i since every compact space is homeomorphic to a closed subset of the
Tychonoff cube, we are able to prove the following:

THEOREM 4 . 5 . If X e ES(compact) and A € KC(X) is compact, then

PROOF: Let X G ES(compact) and A € KC(X) be a compact map that is A(X) C
K which is compact in X. Let K be a closed subset of the TychonofF cube T, and
s: K <-> K a homeomorphism. Then we have the commutative diagram

where {, j are the inclusions and h a continuous extension of is 1. A fixed point for

jsAh leads to a fixed point for A and the proof is complete. U

Before proving the fixed point theorem for Kc-maps defined on a member of
NES(compact) , let us formulate some preparatory results. We start with:

LEMMA 4 . 6 . (see [15]). Let K be a compact subset of a t.v.s. E. Then the

linear envelope Span(K) of K is Lindelof (and hence paracompact).

LEMMA 4 . 7 . Let T be a TychonofF cube contained in a t.v.s. E. Then T is a

retract of Span(T).

PROOF: Since T € ES (normal) (Proposition 3.3 (ii)) and Span(T), being para-
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compact, is normal, there exists a function r such that the following diagram

T

Id T

Span(T)

commutes. D

Given a finite subset N = {ci, c 2 , . . . , c n } of a locally convex t.v.s. E, the Schauder
n

projection associated with an open set U G I?E(0) is the function iru '• \J (c« + U) —» E

given by
n

E V-i\x)ci
7T[/(x) = ^ j for all x

where f*i(x) = max{0,1 — pu(x — Cj)}> Vu being a semi-norm associated with U.

It is easily seen that iru{x) — x 6 U and that 7rt/(x) 6 C — conv{JV} for all x. The
next results are immediate:

LEMMA 4 . 8 . Let V be an open subset of a locally convex t.v.s. E and K be a
compact subset of V. Then, for each covering a G Covv(K), there exists a function
TTQ : K -f V such that

(i) 7ra and t: K «-* V are ct-close;

(ii) 7ra(A") is contained in a finite polyhedron C C V.

LEMMA 4 . 9 . Let V̂  be an open subset of a locally convex t.v.s. E and A G
KC(V) compact; then A has a fixed point.

PROOF: Since A(V) C K is compact, then for each a G Covv( i f ) , there exist a

function 7ra: K -» V and a finite polyhedron C C V such that AQ(V) = TTQA(V) C C.

Hence, by Theorem 4.5, the restriction Aa\c: C —> K -^» (7 has a fixed point which

in turn is a a-fixed point for A; the conclusion follows from Lemma 1.2. U

We are now ready to prove:

THEOREM 4 . 1 0 . If X G N E S (compact) and A G K e ( X ) is compact then A

has a fixed point.

PROOF: Let A(X) C K, it be & closed subset of the Tychonoff cube T and

s: K *-* K be a homeomorphism. Now X G N E S (compact). Let U be an open

neighbourhood of K in T and h: U —> X be a continuous extension of i s " 1 : K —* X
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on U; then if K <—> U is the natural embedding, hj = is'1. Now consider Span(T) in
a locally convex t.v.siontaining T, then Lemma 4.7 ensures the existence of a retraction
r: Span(T) —> T. We can now build the following commutative diagram

where A, A are the appropriate maps, A* = i'Ar — i'jsAhr £ Kc(r 1(U)) is compact

and has a fixed point by Theorem 4.10. Lemma 1.3 ends the proof. D

We now extend this theorem to the larger class of ANES (compact).

THEOREM 4 . 1 1 . If X e ANES (compact j and A e KC(X) is compact then A
has a fixed point.

PROOF: Let A(X) C K, K a closed subset of the Tychonoff cube T and s: K <->

K a homeomorphism. We have the following commutative diagram with A = iA' and

A — sA \K S~X

X

Let a € Cov(X) and consider is 1: K —* X; since X 6 ANES (compact), there

exist an open neighbourhood Ua of K in T and fa: Ua —* X a continuous function

such that fa and i s" 1 are a-close on K; let K c—> Ua be the natural imbedding and

consider the following commutative diagram

Ua

W/aJ
K

fai

Since Ua e NES(compact), then by Theorem 4.10 Fix(jsA'fa) / 0 and therefore
Fix(Aa) jt: 0. But faj and is'1 are a-close, that is, Aa and A are a-close and
therefore A has an a-fixed point. Since a is arbitrary, Lemma 1.2 ends the proof. D

This theorem contains the results of Lassonde [23], the Fan-Glicksberg-
Himmelberg fixed point theorem and holds for some not necessarily locally convex
spaces. It was recently formulated using homological methods for an abstract class of
maps determined by morphisms and containing Vc by Gorniewicz and Granas.
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5. COINCIDENCE RESULTS

Our first coincidence result follows from the analogue of Theorem 4.10 with Kc

replaced by V c (Founder and Gomiewicz [10]) and contains Theorem 0 as a particular
case. It was formulated in [6].

THEOREM 5 . 1 . (Coincidence (Vc, JA~)). Given a convex subset X of a
t.v.s. E, a subset Y of a t.v.s. F and two maps A E VC(X,Y) and B E M~(X,Y); if
Y is compact or A is compact, then TA H TB ^ 0 •

PROOF: Let A" be a compact subset of Y satisfying A(X) C K; by regularity,
the restriction B'1 \KE MC(K,X) = M(K,X). Therefore there exists a finite subset
{aj1,x2,---,*n} Q X and a function / E C(K,X) such that f{y) E £"*(!/) for all
y 6 K and f(K) C. C — conv(xi,s;2)- • -ix

n). Since C is compact convex in a
finite dimensional subspace of E then C E NES (compact) and is acyclic; hence the
composition fA \cE VC(C) and has a fixed point, that is, there exists (xo,yo) E C x K
with x0 — f{yo) £ B~1(y0) and y0 G A(x0). This concludes the proof. D

If Vc is replaced by Kc (convex case), the result is a direct consequence of Theorem

4.10.

THEOREM 5 . 2 . Given a convex subset X of a t.v.s. E, a subset Y of a t.v.s. F

and two maps A E KC(X,Y) and B G M~(X,Y); if A is compact, then TAnTB ^ to-

la the case where X = Y is convex compact and A is the identity, we obtain:

COROLLARY 5 . 3 . If X is convex compact then X £ ^"M •

THEOREM 5 . 4 . Let X be a convex subset of a t.v.s. E,Y a subset of a t.v.s. F,

A € M{X,Y) compact and B £ M~(X,Y). Then TA n T B ^ 0.

PROOF: Let K be compact such that A{X) C K C Y. The restriction B~x \K£

M(if, X). Thus, there exist a polytope C C X and a continuous selection s E C(K, C)

of B'1 \K. Since A \CE M(C,K), it admits a selection / G C(C,K). By the Brouwer
fixed point theorem, the composition sf:C—>C has a fixed point xo — sf(xo) and
therefore f(x0) E A(x0) D B(x0). D

REMARKS. In the case where F is a locally convex t.v.s., Kc = K in Theorem 5.2,

the conclusion follows directly from the regularity of the class K and Lemma 1.1 and

we obtain an extension of a result of Browder [8]. In the case where M = F or • , we

obtain results of Deguire and Gran as and the author [6], and of Tarafdar [29, 30].

Finally, the following is a direct consequense of Theorem 4.10:

THEOREM 5 . 6 . Let X be an ANR(compact^ and Y be an arbitrary subset of
a t.v.s. F, AES(X,Y) and B£K~(X,Y). Then r A n r B ^ 0 .
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REMARK. If X = Y is a convex compact subset of a Banach space, B = Idjf, and
S = L w , we obtain, as a particular case, a result of Ricceri [28]. Moreover, since
d im;cxy(£ x Z') ^ dim* (Z) + dimy (Z1) if one of the sets Z, Z' is non-empty,
and since the class S satisfies Lemma 1.1, TA H VB ^ 0 for any A G LW(X,Y) and
B G h~(X,Y) where X, Y are convex compact subsets of Banach spaces [28].

6. SPECIAL CASES

In some of the theorems of Section 5, the compactness conditions can be weakened
by a coercivity condition on the map.

We say that a map A: X —> Y satisfies the condition (/C) if and only if there
exist a compact K C X and a compact convex C Q Y such that A[x) D C ^ 0 for
any x G X \ K. This coercivity condition was first introduced in this form by Deguire,
Granas and the author [5] and generalises a condition of Allen [l]. Related or equivalent
conditions were considered by various authors to relax the compactness conditions on
the domains. The reader is referred to [3, 12, 23] and [29, 30].

In the case where M = • , we formulate the following generalisations:

THEOREM 6 . 1 . Let X be a convex subset of a t.v.s.E, A G K(X,Y) and

B e &~(X,Y). If B has an admissible selection B such that B'1 satisfies (/C) then

r A nr B ^0 .
PROOF: Let K C Y be compact and C C X be convex compact such that

B-^V) n C £ 0 for any y £ Y \ K. Since B'1 G *(X,Y) C M{X,Y), there ex-

ist a polytope C" C X and a selection s € C(K,C) of B~x \K . Consider now the

compact convex C = conv (C, C") and apply Theorem 5.2 to the maps A \Q£ K (C, Y J

and B'1: Y -» 6 E * ( ^ , ^ ) defined by B-^y) = B~x(y) n C to get a coincidence

which is in turn a coincidence between A and B. D

As an immediate consequence, one gets the following fixed point theorem:

COROLLARY 6 . 2 . Let X be convex in a t.v.sand A G &(X). If A has an
admissible selection satisfying (/C) then Fix (.A) ^ 0.

COROLLARY 6 . 3 . Let Y be convex in a t.v.s., A e$(X,Y) and B £*~{X,Y).

If A has an admissible selection satisfying (K) then F A H Tg ^ 0.

It is easy to see that Corollary 6.2 is equivalent to the generalised KKM maps
principle formulated by Fan in [12] which was expressed by the same author as a
matching theorem for open coverings of convex sets. We use this matching theorem to
prove a fixed point theorem for the class • without convexity on the domain [4].

THEOREM 6 . 4 . If Z is a compact and star-shaped subset of a t.v.s.E, then
Z eT* (and therefore Z
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The following problem is open: in the case where M = F , can we extend Corollary

5.3 to

Given a convex subset X of a t.v.s. E and A G F(X) compact then Fix(j4) ^ 0 ?

The following partial answer is due to Deguire and Granas and the author [5]. Let
K be a compact subset of X containing A(X). Since F C S , and since the linear
envelope L of K is paracompact then (if X is closed) L D X being paracompact,
there exists a continuous selection s of A\LHX &nd a fixed point for s follows from the
Schauder-Tychonoff fixed point theorem, provided E is locally convex.

Without local convexity, it is an easy matter to prove that all the iterates Ak,

k ^ 2, have a fixed point.
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