HOMOLOGY OPERATIONS AND POWER SERIES

by RICHARD STEINER

(Received 2 February, 1982)

1. Introduction. Bullett and Macdonald [1] have used power series to simplify the statement and proof of the Adem relations for Steenrod cohomology operations. In this paper I give a similar treatment of May's generalized Adem relations [4, §4] and of the Nishida relations ([6], [2, I.1.1(9)], [5, 3.1(7)]). Both sets of relations apply to DyerLashof operations in E_{∞} spaces such as infinite loop spaces ([3], [2, I.1]) and in H_{∞} ring spectra ($[5, \S 3]$).

The results on the Adem relations are very similar to those of [1], and the proof mostly comes from [4]. The surprising result of this paper is that the Adem and Nishida relations can be expressed by virtually the same formulae ($(2 a)$ and (5a), (2c) and (5b) below). My proof of the Nishida relations is designed to explain this, and is a bit simpler than the original proof.

Throughout the paper we work modulo p, where p is a prime number.
2. Statement of the Adem relations. Recall that in [4] May constructs operations in the homology of certain modulo p chain complexes. There are operations P_{i} for all p and βP_{i} for odd p, where i is any integer. The degree of P_{i} is i if $p=2$ or $2 i(p-1)$ if p is odd, and the degree of βP_{i} is $2 i(p-1)-1$. The Dyer-Lashof operations denoted Q^{i} and βQ^{i} are special cases of the P_{i} and βP_{i}, and the Steenrod cohomology operations denoted P^{i} (or $S q^{i}$ if $p=2$) and βP^{i} are special cases of the P_{-i} and βP_{-i} (a q th cohomology group being regarded as a $(-q)$ th homology group).

We consider complexes for which all the operations are defined and the Adem relations hold: Adem objects of $\mathscr{C}(p, \infty)$ in the terminology of [4]. Let u and v be indeterminates commuting with each other and with anything else that occurs, and put

$$
\begin{equation*}
t=v\left(1-u^{-1} v\right)^{p-1}, \quad s=u\left(1-v^{-1} u\right)^{p-1}=u^{p} v^{-p} t=u^{p} v^{-(p-1)}\left(1-u^{-1} v\right)^{p-1} \tag{1}
\end{equation*}
$$

For any z, write

$$
P(z)=\sum_{i} z^{i} P_{i}, \quad \beta P(z)=\sum_{i} z^{i} \beta P_{i} ;
$$

(all summations are over the integers, and terms usually regarded as undefined are to be taken as zero). The Adem relations can then be written: for all p,

$$
\begin{equation*}
P(u) P(t)=P(v) P(s), \tag{2a}
\end{equation*}
$$

and for odd p,

$$
\begin{align*}
\beta P(u) P(t) & =\beta P(v) P(s) \tag{2b}\\
P(u) \beta P(t) & =\left(1-u^{-1} v\right) \beta P(v) P(s)+u^{-1} v P(v) \beta P(s), \tag{2c}\\
\beta P(u) \beta P(t) & =u^{-1} v \beta P(v) \beta P(s) . \tag{2d}
\end{align*}
$$

The usual Adem relations are derived in Section 5, and (2a)-(2d) are proved in Section 7.
Glasgow Math. J. 24 (1983) 161-168.

Remark 1. In the applications mentioned above, βP_{i} is the composite of P_{i} with a Bockstein β satisfying $\beta^{2}=0$, so that ($2 a$) implies ($2 b$) and ($2 c$) implies ($2 d$). But this is not true in general (despite the notation), which is why ($2 b$) and (2d) are stated separately.

Remark 2. To get formulae for cohomology operations, write $P^{*}(z)=\sum_{i} z^{i} P^{i}$, etc. $\left(P^{*}(z)\right.$ is denoted $P(z)$ in [1]). Since P^{i} is an example of P_{-i}, the relations (2a)-(2d) imply

$$
P^{*}\left(u^{-1}\right) P^{*}\left(t^{-1}\right)=P^{*}\left(v^{-1}\right) P^{*}\left(s^{-1}\right)
$$

etc. These relations are not the same as in [1], but are equivalent, as is shown in [1, §4] for $p=2$.
3. Statement of the Nishida relations. The Nishida relations apply to the homology of an E_{∞} space or H_{∞} ring spectrum. They link the Dyer-Lashof operations Q^{i}, the Bockstein β, and the duals P_{*}^{i} of the Steenrod cohomology operations. With u, v, s and t as in (1) and with the obvious meanings for $Q(z)$ and $P_{*}(z)$ they say: for all p,

$$
\begin{equation*}
P_{*}\left(u^{-1}\right) Q(v)=Q(t) P_{*}\left(s^{-1}\right) \tag{3a}
\end{equation*}
$$

and for odd p,

$$
\begin{equation*}
P_{*}\left(u^{-1}\right) \beta Q(v)=\left(1-u^{-1} v\right)^{-1}\left[\beta Q(t) P_{*}\left(s^{-1}\right)-u^{-1} v Q(t) P_{*}\left(s^{-1}\right) \beta\right] . \tag{3b}
\end{equation*}
$$

These can be rewritten to look like the Adem relations (2a) and (2c) if one uses the conjugate cohomology operations $c P^{i}$ defined by

$$
\begin{aligned}
\sum_{i+j=k}\left(c P^{i}\right) P^{j}=1 & \text { if } \\
0 & \text { if }
\end{aligned} \quad k \neq 0
$$

This definition can be written $c P^{*}(z) P^{*}(z)=1$ with the obvious notation, and dualization yields

$$
\begin{equation*}
c P_{*}(z)=P_{*}(z)^{-1} \tag{4}
\end{equation*}
$$

So (3a) is equivalent to: for all p,

$$
\begin{equation*}
c P_{*}\left(u^{-1}\right) Q(t)=Q(v) c P_{*}\left(s^{-1}\right) \tag{5a}
\end{equation*}
$$

Substitution of (3a) in (3b) yields

$$
P_{*}\left(u^{-1}\right) \beta Q(v)=\left(1-u^{-1} v\right)^{-1}\left[\beta Q(t) P_{*}\left(s^{-1}\right)-u^{-1} v P_{*}\left(u^{-1}\right) Q(v) \beta\right]
$$

which by (4) is similarly equivalent to: for odd p,

$$
\begin{equation*}
c P_{*}\left(u^{-1}\right) \beta Q(t)=\left(1-u^{-1} v\right) \beta Q(v) c P_{*}\left(s^{-1}\right)+u^{-1} v Q(v) \beta c P_{*}\left(s^{-1}\right) \tag{5b}
\end{equation*}
$$

The usual Nishida relations will be derived from (3a)-(3b) in Section 6 and (5a)-(5b) will be proved from ($2 a$) and ($2 c$) in Section 8.
4. The Cartan formulae. For completeness we note that the Cartan formulae

$$
P_{k}(x \otimes y)=\sum_{i+j=k} P_{i} x \otimes P_{i} y
$$

[4, 2.7] are obviously equivalent to

$$
P(z)(x \otimes y)=P(z) x \otimes P(z) y
$$

and similarly for other Cartan formulae. One, which will be used in Section 8 , is

$$
\begin{equation*}
c P_{*}(z)(x \otimes y)=c P_{*}(z) x \otimes c P_{*}(z) y \tag{6}
\end{equation*}
$$

5. Derivation of the usual Adem relations. The usual Adem relations [4, 4.7] are: for all p,

$$
P_{a} P_{b}=\sum_{i}(-1)^{a+i}\binom{(i-b)(p-1)-1}{i p-a} P_{a+b-i} P_{i},
$$

and for odd p,

$$
\begin{aligned}
\beta P_{a} P_{b} & =\sum_{i}(-1)^{a+i}\binom{(i-b)(p-1)-1}{i p-a} \beta P_{a+b-i} P_{i}, \\
P_{a} \beta P_{b} & =\sum_{i}(-1)^{a+i}\binom{(i-b)(p-1)}{i p-a} \beta P_{a+b-i} P_{i}-\sum_{i}(-1)^{a+i}\binom{(i-b)(p-1)-1}{i p-a-1} P_{a+b-i} \beta P_{i}, \\
\beta P_{a} \beta P_{b} & =-\sum_{i}(-1)^{a+i}\binom{(i-b)(p-1)-1}{i p-a-1} \beta P_{a+b-i} \beta P_{i} .
\end{aligned}
$$

Remark. The binomial coefficients are defined by

$$
\binom{n}{k}= \begin{cases}\frac{n(n-1) \ldots(n-k+1)}{k!} & \text { if } k>0 \\ 1 & \text { if } k=0 \\ 0 & \text { if } k<0\end{cases}
$$

regardless of the sign of n. With these conventions, the relations are true for all a and b.
The relations are derived from ($2 a$)-($2 d$) respectively by the method of [1, §3]: express the right hand sides of (2a)-(2d) as power series in u, v, t by putting $s=u^{\mathrm{p}} v^{-\mathrm{p}} t$ (see (1)), then express them as power series in u and t by putting

$$
\begin{equation*}
v^{r}=\sum_{k}(-1)^{k-r}\binom{-k(p-1)-1}{k-r} u^{r-k} t^{k} \tag{7}
\end{equation*}
$$

(which is true modulo p and will be proved below), and finally equate the coefficients of $u^{a} t^{b}$.

Proof of (7). Put $V=u^{-1} v, T=u^{-1} t$; then (7) is equivalent to

$$
V^{r}=\sum_{k}(-1)^{k-r}\binom{-k(p-1)-1}{k-r} T^{k} .
$$

But (1) gives

$$
T=V(1-V)^{p-1}
$$

which modulo p gives

$$
d T=(1-V)^{\mathrm{p}-2} d V
$$

so

$$
\begin{aligned}
V^{r}=\sum_{k}\left(\operatorname{res}_{T=0} V^{r} T^{-k-1} d T\right) T^{k} & =\sum_{k}\left(\operatorname{res}_{V=0} V^{r-k-1}(1-V)^{-k(p-1)-1} d V\right) T^{k} \\
& =\sum_{k}(-1)^{k-r}\binom{-k(p-1)-1}{k-r} T^{k},
\end{aligned}
$$

as required.
6. Derivation of the usual Nishida relations. The usual Nishida relations ([6], [2, I.1.1(9)], [5, 3.1(7)]) are: for all p,

$$
P_{*}^{m} Q^{n}=\sum_{i}(-1)^{m+i}\binom{(n-m)(p-1)}{m-i p} Q^{n-m+i} P_{*}^{i},
$$

and for odd p,

$$
\begin{aligned}
P_{*}^{m} \beta Q^{n} & =\sum_{i}(-1)^{m+i}\binom{(n-m)(p-1)-1}{m-i p} \beta Q^{n-m+i} P_{*}^{i} \\
& =+\sum_{i}(-1)^{m+i}\binom{(n-m)(p-1)-1}{m-i p-1} Q^{n-m+i} P_{*}^{i} \beta .
\end{aligned}
$$

They are easily derived from (3a)-(3b) respectively: express the right hand sides of (3a)-(3b) as power series in u, v and $\left(1-u^{-1} v\right)$ by (1), then express them as power series in u and v by the binomial theorem, and finally equate the coefficients of $u^{-m} v^{n}$.
7. Proof of the Adem relations (2a)-(2d). This is based on May's proof [4, §4]; we shall show that $(2 a)-(2 d)$ are linear combinations of equations derived in that proof. First we recall some notation and the definition of the operations. Throughout this section x is a homology class of degree q. If p is odd, then we write

$$
\begin{equation*}
m=\frac{1}{2}(p-1), \quad \nu(2 r)=(-1)^{r}, \quad \nu(2 r+1)=(-1)^{r} m! \tag{8a}
\end{equation*}
$$

where r is any integer. Modulo p we have $(p-1)!=-1$ (Wilson's theorem), so

$$
\begin{equation*}
(m!)^{2}=(-1)^{m+1} \tag{8b}
\end{equation*}
$$

For all p and for $i \geqslant 0$, let e_{i} be the standard generator of $H_{i}(\mathbf{Z} / p ; \mathbf{Z} / p) \cong \mathbf{Z} / p$ as in [4, 1.2]; for $i<0$, let e_{i} be 0 . Let θ be the structure map inducing the operations and put

$$
\begin{equation*}
D_{i} x=\theta_{*}\left(e_{i} \otimes x^{\mathrm{p}}\right) \tag{9}
\end{equation*}
$$

The definition $[4,2.2]$ of the operations then amounts to: for $p=2$,

$$
\begin{equation*}
D_{i \cdots q} x=P_{i} x \tag{10a}
\end{equation*}
$$

and for odd p,

$$
\begin{equation*}
D_{(2 i-q)(p-1)} x=(-1)^{i} v(q)^{-1} P_{i} x, \quad D_{(2 i-q)(p-1)-1} x=(-1)^{i} \nu(q)^{-1} \beta P_{i} x . \tag{10b}
\end{equation*}
$$

Next we quote the necessary equations from [4, 4]. They are equations $(e),(g)$ and (i) of the proof of $[4,4.7]$, and say: for $p=2$,

$$
\begin{equation*}
\sum_{k}\binom{s-k}{k} D_{r+2 k-s} D_{s-k} x=\sum_{l}\binom{r-l}{l} D_{s+2 l-r} D_{r-l} x ; \tag{11a}
\end{equation*}
$$

for odd p and for $\varepsilon=0$ or 1 ,

$$
\begin{align*}
\sum_{k}(-1)^{k} \nu(2 s) & \binom{s-k(p-1)}{k} D_{2 r+(2 k p-2 s)(p-1)-\varepsilon} D_{2 s-2 k(p-1)} x \\
& =\sum_{l}(-1)^{l+a m} \nu(2 r)\binom{r-l(p-1)}{l} D_{2 s+(2 l p-2 r)(p-1)-\varepsilon} D_{2 r-2 l(p-1)} x \tag{11b}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{k}(-1)^{k+a m} \nu(2 s-1)\binom{s-k(p-1)-1}{k} D_{2 r+(2 k p-2 s+1)(p-1)-\varepsilon} D_{2 s-2 k(p-1)-1} x \\
&=(1-\varepsilon) \sum_{1}(-1)^{l+a m} \nu(2 r)\binom{r-l(p-1)}{l} D_{2 s+(2 l p-2 r)(p-1)-1} D_{2 r-2 l(p-1)} x \\
&-\sum_{l}(-1)^{l} \nu(2 r-1)\binom{r-l(p-1)-1}{l} D_{2 s+(2 l p-2 r+1)(p-1)-\varepsilon} D_{2 r-2 l(p-1)-1} x . \tag{11c}
\end{align*}
$$

Finally we prove ($2 a$)-(2d) by forming linear combinations of (11a)-(11c). First take $p=2$. Put $r=a-q, s=b-q$ in (11a), multiply both sides by $u^{a} v^{b}$, and sum over a and b to get

$$
\begin{equation*}
\sum_{a, b, k}\binom{b-k-q}{k} u^{a} v^{b} D_{a-b+2 k} D_{b-k-q} x=\sum_{a, b, l}\binom{a-l-q}{l} u^{a} v^{b} D_{-a+b+2 l} D_{a-l-q} x . \tag{12}
\end{equation*}
$$

Change the summation variables on the left hand side to i, j, k, where $i=a+k+q$, $j=b-k$. The left hand side becomes

$$
\sum_{i, j, k}\binom{j-q}{k} u^{i-k-q} v^{i+k} D_{i-(q+i)} D_{i-q} x .
$$

By the binomial theorem and ($10 a$), this is

$$
\sum_{i, j} u^{i-q} v^{j}\left(1+u^{-1} v\right)^{j-a} P_{i} P_{j} x
$$

(note that $\operatorname{deg} D_{i-q} x=\operatorname{deg} P_{i} x=q+j$). By (1) therefore (since we are working modulo 2), the left hand side of (12) is $(u+v)^{-a} P(u) P(t) x$. Similarly the right hand side is $(u+v)^{-q} P(v) P(s) x$. So (12) implies (2a), for $p=2$, as required.

Next take p to be odd. The calculations are similar, but more complicated. First put $r=a(p-1)-q m, s=b(p-1)-q m$ in $(11 b)$ and (11c), multiply both sides by $(-1)^{a+b} u^{a} v^{b}$,
and sum over a and b to get equations analogous to (12). Transform the left hand sides as for $p=2$, using the change of variables $i=a+k+q m, j=b-k$, and eliminating the $\nu(d)$ by ($8 a$). Transform the right hand sides in a similar manner. After using ($8 b$) to eliminate $(m!)^{2}$ one obtains

$$
(-1)^{a}(v-u)^{-a m} \beta^{\varepsilon} P(u) P(t) x=(-1)^{q}(v-u)^{-a m} \beta^{\varepsilon} P(v) P(s) x
$$

and

$$
\begin{aligned}
& (-1)^{a}(v-u)^{-q m}\left(1-u^{-1} v\right)^{-1} \beta^{\varepsilon} P(u) \beta P(t) x \\
& \quad=(1-\varepsilon)(-1)^{a}(v-u)^{-q m} \beta P(v) P(s) x \\
& \quad-(-1)^{a}(v-u)^{-q m}\left(1-v^{-1} u\right)^{-1} \beta^{s} P(v) \beta P(s) x .
\end{aligned}
$$

Multiply these equations by $(-1)^{q}(v-u)^{q m}$ and $(-1)^{a}(v-u)^{q m}\left(1-u^{-1} v\right)$, respectively. The first equation gives (2a) for $\varepsilon=0$ and ($2 b$) for $\varepsilon=1$, and the second gives ($2 c$) for $\varepsilon=0$ and (2d) for $\varepsilon=1$. This completes the proof.
8. Proof of the Nishida relations (5a)-(5b). The proof uses the formally similar Adem relations ($2 a$) and ($2 c$). To be precise, it uses the Adem relations for cohomology operations (Section 2, Remark 2) dualized and conjugated. Since the dual of the Bockstein is the Bockstein (up to sign) and the conjugate $c \beta$ of the Bockstein is $-\beta$, these relations are: for all p,

$$
\begin{equation*}
c P_{*}\left(u^{-1}\right) c P_{*}\left(t^{-1}\right)=c P_{*}\left(v^{-1}\right) c P_{*}\left(s^{-1}\right) \tag{13a}
\end{equation*}
$$

and for odd p,

$$
\begin{equation*}
c P_{*}\left(u^{-1}\right) \beta c P_{*}\left(t^{-1}\right)=\left(1-u^{-1} v\right) \beta c P_{*}\left(v^{-1}\right) c P_{*}\left(s^{-1}\right)+u^{-1} v c P_{*}\left(v^{-1}\right) \beta c P_{*}\left(s^{-1}\right) . \tag{13b}
\end{equation*}
$$

The idea of the proof is to express the Q^{i} in terms of the $c P_{*}^{i}$, which is essentially done in $[4,9.1]$, and so reduce $(5 a)$ and $(5 b)$ to (13a) and (13b). To express the Q^{i} in terms of the $c P_{*}^{i}$, we proceed as follows. Let X be the E_{∞} space or H_{∞} ring spectrum we are considering. We have a composite map

$$
\theta d: B \mathbf{Z} / p \times X \rightarrow X
$$

where $B \mathbf{Z} / p$ is the classifying space of \mathbf{Z} / p (so that $H_{*}(B \mathbf{Z} / p ; \mathbf{Z} / p)=H_{*}(\mathbf{Z} / p ; \mathbf{Z} / p)$), θ is the structure map defining the operations $Q^{i}=P_{i}$ by (9), (10a), (10b) and d is the "diagonal" map whose effect in homology is described by [4, 9.1]. Let $x \in H_{s}(X ; \mathbf{Z} / p)$. From [4, 9.1] we obtain the equations: for $p=2$,

$$
\begin{equation*}
\theta_{*} d_{*}\left(e_{r} \otimes x\right)=\sum_{k} \theta_{*}\left(e_{r+2 k-s} \otimes\left(P_{*}^{k} x\right)^{2}\right) \tag{14a}
\end{equation*}
$$

and for odd p,

$$
\begin{equation*}
\theta_{*} d_{*}\left(e_{2 r(p-1)} \otimes x\right)=\nu(s) \sum_{k}(-1)^{k} \theta_{*}\left(e_{(2 r+2 k p-s)(p-1)} \otimes\left(P_{*}^{k} x\right)^{p}\right) \tag{14b}
\end{equation*}
$$

Write

$$
e(z)=\left\{\begin{array}{lll}
\sum_{i} z^{i} e_{i} & \text { if } & p=2 \tag{15}\\
\sum_{i} z^{i} e_{2 i(p-1)} & \text { if } & p \text { is odd }
\end{array}\right.
$$

We now claim that, for all p,

$$
\begin{equation*}
\theta_{*} d_{*}(e(-z) \otimes x)=Q(z) P_{*}\left(z^{-1}\right) x \tag{16}
\end{equation*}
$$

Indeed one can prove this by applying (15) to the left hand side, then (14a)-(14b), then (9), then (10a)-(10b) (note that P_{i} is Q^{i} in the present application, and that $\operatorname{deg} P_{*}^{i} x$ is $s-i$ if $p=2$ or $s-2 i(p-1)$ if p is odd), and finally ($8 a$). Since $c P_{*}\left(z^{-1}\right)=P_{*}\left(z^{-1}\right)^{-1}$ (by (4)), (16) gives: for all p

$$
\begin{equation*}
Q(z) x=\theta_{*} d_{*}\left(e(-z) \otimes c P_{*}\left(z^{-1}\right) x\right) \tag{17}
\end{equation*}
$$

Equation (17) expresses the Q^{i} in terms of the $c P_{*}^{i}$. To proceed further, we need the values of the Steenrod operations in $H_{*}(\mathbf{Z} / p ; \mathbf{Z} / p)$. These are well-known: from [4, proof of 4.6, equations (c) and $(d)]$ and from $[4,1.2(2)]$ we find: for $p=2$,

$$
P_{*}^{k} e_{r}=\binom{r-k}{k} e_{r-k}
$$

and for odd p,

$$
\begin{gathered}
\beta e_{2 r(p-1)}=e_{2 r(p-1)-1}, \\
P_{*}^{k} e_{2 r(p-1)}=\binom{(r-k)(p-1)}{k} e_{2(r-k)(p-1)}, \\
P_{*}^{k} e_{2 r(p-1)-1}=\binom{(r-k)(p-1)-1}{k} e_{2(r-k)(p-1)-1} .
\end{gathered}
$$

With $e(z)$ as in (15), these equations combined with the binomial theorem give: for all p,

$$
P_{*}\left(u^{-1}\right) e(-v)=e(-t),
$$

and for odd p,

$$
P_{*}\left(u^{-1}\right) \beta e(-v)=\left(1-u^{-1} v\right)^{-1} \beta e(-t)
$$

where $t=v\left(1-u^{-1} v\right)^{p-1}$ as in (1). Inverting $P_{*}\left(u^{-1}\right)$ by (4) gives: for all p,

$$
\begin{equation*}
c P_{*}\left(u^{-1}\right) e(-t)=e(-v) \tag{18a}
\end{equation*}
$$

and for odd p,

$$
\begin{equation*}
c P_{*}\left(u^{-1}\right) \beta e(-t)=\left(1-u^{-1} v\right) \beta e(-v) \tag{18b}
\end{equation*}
$$

We can now prove ($5 a$). For all p, (17) gives

$$
c P_{*}\left(u^{-1}\right) Q(t) x=c P_{*}\left(u^{-1}\right) \theta_{*} d_{*}\left(e(-t) \otimes c P_{*}\left(t^{-1}\right) x\right)
$$

But $\theta_{*} d_{*}$ commutes with $c P_{*}\left(u^{-1}\right)$, since it is induced by a map θd, so the right hand side is

$$
\theta_{*} d_{*} c P_{*}\left(u^{-1}\right)\left(e(-t) \otimes c P_{*}\left(t^{-1}\right) x\right)
$$

Apply the Cartan formula (6), then (18a) and the Adem relation (13a), to get

$$
\theta_{*} d_{*}\left(e(-v) \otimes c P_{*}\left(v^{-1}\right) c P_{*}\left(s^{-1}\right) x\right)
$$

By (17) this is $Q(v) c P_{*}\left(s^{-1}\right) x$, as required. This completes the proof of (5a).

Similarly we can prove (5b). Here p is odd. By (17)

$$
c P_{*}\left(u^{-1}\right) \beta Q(t) x=c P_{*}\left(u^{-1}\right) \beta \theta_{*} d_{*}\left(e(-t) \otimes c P_{*}\left(t^{-1}\right) x\right) .
$$

Now β commutes with $\theta_{*} d_{*}$ just as $c P_{*}\left(u^{-1}\right)$ does, and β is a derivation, so the right hand side is

$$
\theta_{*} d_{*} c P_{*}\left(u^{-1}\right)\left(\beta e(-t) \otimes c P_{*}\left(t^{-1}\right) x+e(-t) \otimes \beta c P_{*}\left(t^{-1}\right) x\right)
$$

Apply (6), then (18a)-(18b) and (13a)-(13b), to get

$$
\begin{aligned}
\left(1-u^{-1} v\right) \theta_{*} d_{*}\left(\beta e(-v) \otimes c P_{*}\left(v^{-1}\right) c P_{*}\left(s^{-1}\right) x\right. & \left.+e(-v) \otimes \beta c P_{*}\left(v^{-1}\right) c P_{*}\left(s^{-1}\right) x\right) \\
& +u^{-1} v \theta_{*} d_{*}\left(e(-v) \otimes c P_{*}\left(v^{-1}\right) \beta c P_{*}\left(s^{-1}\right) x\right)
\end{aligned}
$$

Since β is a derivation commuting with $\theta_{*} d_{*}$, this is

$$
\left(1-u^{-1} v\right) \beta \theta_{*} d_{*}\left(e(-v) \otimes c P_{*}\left(v^{-1}\right) c P_{*}\left(s^{-1}\right) x\right)+u^{-1} v \theta_{*} d_{*}\left(e(-v) \otimes c P_{*}\left(v^{-1}\right) \beta c P_{*}\left(s^{-1}\right) x\right),
$$

and by (17) this is

$$
\left(1-u^{-1} v\right) \beta Q(v) c P_{*}\left(s^{-1}\right) x+u^{-1} v Q(v) \beta c P_{*}\left(s^{-1}\right) x
$$

as required. This completes the proof.

REFERENCES

1. S. R. Bullett and I. G. Macdonald, On the Adem relations, Topology 21 (1982), 329-332.
2. F. R. Cohen, T. J. Lada and J. P. May, The homology of iterated loop spaces, Lecture Notes in Mathematics 533 (Springer-Verlag, 1976).
3. E. Dyer and R. K. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35-88.
4. J. P. May, A general algebraic approach to Steenrod operations, in F. P. Peterson, ed., The Steenrod algebra and its applications, Lecture Notes in Mathematics 168 (Springer-Verlag, 1970), 153-231.
5. J. P. May, H_{∞} ring spectra and their applications, in R. J. Milgram, ed., Algebraic and geometric topology, Proc. Symp. Pure Math. 32 (1978), part 2, 229-243.
6. G. Nishida, Cohomology operations in iterated loop spaces, Proc. Japan Acad. 44 (1968), 104-109.

Department of Mathematics

University of Glasgow
Glasgow G12 8QW

