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In recent years considerable progress has been made in the continuum modelling of
granular flows, in particular the µ(I)-rheology, which links the local viscosity in a flow
to the strain rate and pressure through the non-dimensional inertial number I. This
formulation greatly benefits from its similarity to the incompressible Navier–Stokes
equations as it allows many existing numerical methods to be used. Unfortunately,
this system of equations is ill posed when the inertial number is too high or too low.
The consequence of ill posedness is that the growth rate of small perturbations tends
to infinity in the high wavenumber limit. Due to this, numerical solutions are grid
dependent and cannot be taken as being physically realistic. In this paper changes
to the functional form of the µ(I) curve are considered, in order to maximise the
range of well-posed inertial numbers, while preserving the overall structure of the
equations. It is found that when the inertial number is low there exist curves for which
the equations are guaranteed to be well posed. However when the inertial number
is very large the equations are found to be ill posed regardless of the functional
dependence of µ on I. A new µ(I) curve, which is inspired by the analysis of the
governing equations and by experimental data, is proposed here. In order to test this
regularised rheology, transient granular flows on inclined planes are studied. It is
found that simulations of flows, which show signs of ill posedness with unregularised
models, are numerically stable and match key experimental observations when the
regularised model is used. This paper details two-dimensional transient computations
of decelerating flows where the inertial number tends to zero, high-speed flows that
have large inertial numbers, and flows which develop into granular rollwaves. This is
the first time that granular rollwaves have been simulated in two dimensions, which
represents a major step towards the simulation of other complex granular flows.

Key words: granular media, rheology, waves/free-surface flows

1. Introduction
Reliable and accurate constitutive modelling of granular flows is vital in both

industrial and natural settings. Large-scale flows in nature, such as debris flows, snow
avalanches and pyroclastic flows, are often sudden and destructive. Understanding

† Email address for correspondence: thomas.barker@manchester.ac.uk
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6 T. Barker and J. M. N. T. Gray

and modelling their characteristics is therefore of great importance. Conversely,
control of granular flows is sought after in industrial settings, such as the mining
and pharmaceutical industries, as it allows for efficient and safe handling of granular
materials. In all of these applications much of the flow behaviour can be described by
the so-called ‘liquid phase’ (Forterre & Pouliquen 2008). This regime occurs when
grains move quickly enough that their contacts with neighbours are not enduring and
slowly enough that they do not separate into a granular gas. Recently, continuum
mechanics has been used to create a particularly effective model for these flows. By
taking the ratio of the typical times of microscopic and macroscopic rearrangements
of grains, a non-dimensional inertial number I is formed that intuitively maps the
transition through the liquid regime. The significance of this number was demonstrated
by GDR MiDi (2004) who found that the ratio µ of the shear stress τ and pressure
p collapsed onto a single µ(I) curve for flows in a range of geometries. This
µ(I)-rheology was developed further by Jop, Forterre & Pouliquen (2005) who
derived a functional form based on inclined plane flow experiments.

Jop, Forterre & Pouliquen (2006) generalised the µ(I)-rheology into a full tensor
constitutive law which links the deviatoric stress to the strain rate via an effective
viscosity. This formulation is particularly nice, as the mass and momentum balance
equations have essentially the same structure as the Navier–Stokes equations, with
the only change being that the viscosity is pressure and strain-rate dependent. Many
existing numerical methods for fluid flow have since been adapted to allow for the
computation of granular flows with this non-Newtonian viscosity. The collapse of a
column of grains (Lagrée, Staron & Popinet 2011) and the flow between confining
sidewalls (Jop et al. 2006; Baker, Barker & Gray 2016) are two noteworthy examples.
However, the success of these computations is interesting given that Barker et al.
(2015) showed that the governing equations are ill posed when the inertial number is
too high or too low. When a system is ill posed, perturbations to the flow fields grow
exponentially with growth rates tending to infinity as the wavelength is reduced. This
means that numerical solutions will depend on the resolution of the grid being used
and so cannot be taken as being physically realistic. Existing computations of the
flow between sidewalls do not suffer from this issue as the flow has been assumed
to be steady and the transient terms in the governing equations have been omitted
in the numerical method. However, the highly transient granular column collapse
simulations of Lagrée et al. (2011) naturally include inertial numbers in the ill-posed
regions of parameter space, as static material with I = 0 is present. The lack of blow
up due to the ill posedness is thought to be due to the finite time and resolution
used, combined with a truncation of the granular viscosity. This truncation means
that the equations revert back to the Newtonian Navier–Stokes equations, which are
well posed, when the granular viscosity is too high or too low.

It is also possible that the inclusion of additional physical effects such as
compressibility (Boyer, Guazzelli & Pouliquen 2011; Barker et al. 2017), non-locality
(Pouliquen & Forterre 2009; Kamrin & Koval 2012; Bouzid et al. 2013) and frictional
hysteresis (Edwards & Gray 2015; Edwards et al. 2017) may lead to well-posed
systems of equations that provide a better match with certain experimental results.
In particular, Trulsson et al. (2013) showed that acoustic waves could be transmitted
through shear flows when compressibility was taken into account and Pouliquen
& Forterre (2009) and Kamrin & Henann (2015) were able to model the point of
transition between static and moving material on a frictional inclined plane. However,
these effects introduce additional complexity into the governing equations and require
new numerical schemes to be developed in order to solve them. It is therefore the
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Partial regularisation of the incompressible µ(I)-rheology 7

aim of this paper to assess whether it is possible to regularise the incompressible
µ(I)-rheology in such a way that maintains the existing structure and methods, but
avoids the ill posedness.

By applying the analysis of Barker et al. (2015) to general functional forms of the
µ(I) curve it is found that it is possible to extend the range of well-posed inertial
numbers, when compared to the form chosen by Jop et al. (2005). For flows with
low inertial numbers the analysis demonstrates that values of µ must be smaller in
order to remain well posed whereas for high inertial numbers the values of µ must
be larger than in the rheology of Jop et al. (2005). Interestingly, these trends have
been observed experimentally by Holyoake & McElwaine (2012) for high-speed flows
and by Kamrin & Koval (2014) for slowly sheared flows. The analysis also highlights
certain properties that the µ(I) curve must possess in order to be well posed. Firstly,
it is noted that only monotonically increasing functions are allowed and that in the
limit I→ 0 it is found that µ must tend to zero. In the opposite limit, when I→∞,
the analysis reveals that well-posed curves are not possible and instead there is a
maximum well-posed value of the inertial number. Inspired by these findings, a new
µ(I) curve is proposed in this paper. The formulation consists of a piecewise function
for µ(I) with an expression that decays logarithmically as I → 0 for small inertial
numbers. When the inertial number is in the intermediate range, where the µ(I) curve
of Jop et al. (2005) is well posed, the function approximates their expression, but
when the inertial number is very large, the curve approaches the form suggested by
Holyoake & McElwaine (2012) in which quadratic I2 dependence dominates. The
rheology resulting from this new form of µ(I) is found to lead to well-posed equations
for all inertial numbers below a maximum value.

To verify the well posedness of the resultant equations, and confirm their physical
basis, a range of transient flow simulations are performed. Decelerating inclined
plane flows are chosen to study the low inertial number limit. By instantaneously
changing the slope angle from one at which steady flow is observed down to an angle
where static layers are predicted, the transition from flowing to stationary material is
modelled. It is found that the rheology of Jop et al. (2006) exhibits grid-dependent
results, as predicted by the ill posedness analysis, but that the regularised rheology
is immune to these effects and matches well with the results of Parez, Aharonov &
Toussaint (2016) who studied a similar system. Large inertial numbers are studied
with simulations at high inclination angles. As was demonstrated previously by Barker
et al. (2015), the unregularised rheology exhibits blow up as the steady-state inertial
number is in the ill-posed range. With the newly proposed rheology an identical
simulation instead converges towards a constant inertial number that is predicted by
the theory.

Further justification of the proposed rheology comes from simulations of granular
rollwaves, which are achieved here for the first time in two dimensions. Rollwaves are
long surface waves which form on inclined plane flows when the Froude number is
above a critical value. Previously Forterre & Pouliquen (2003) performed experiments
to quantify the dispersion relation of these waves and Forterre (2006) showed that a
linear stability analysis of the µ(I)-rheology gave a good match with the experiments
for slope angles in the well-posed range. Here it is shown that implementation of the
regularised rheology, in an adaptation of the code of Lagrée et al. (2011), allows for
the two-dimensional flow fields and free-surface shapes to be computed. The waves
are found to have a range of inertial numbers with some regions of the flow being in
the previously ill-posed regime. As the dispersion relation and surface shape are found
to be in good agreement with the depth-averaged µ(I)-rheology of Gray & Edwards
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8 T. Barker and J. M. N. T. Gray

(2014) as well as experimental measurements, the well posedness and physical basis
of the proposed rheology are confirmed.

Previous methods of regularising the µ(I)-rheology have focused on removing the
two natural singularities from the governing equations. Both the inertial number and
granular viscosity may be singular or undefined when the pressure and strain rate
vanish. Approaching either of these limits is an issue for numerical schemes as the
viscosity will be either very large or very small. Lagrée et al. (2011) chose to truncate
the viscosity so that the equations reverted to the Newtonian Navier–Stokes equations
when the granular viscosity was too large or too small. Similarly, Chauchat & Médale
(2014) investigated alternative formulations for the granular viscosity which avoided
the singularities by shifting the strain rate by a small value. The regularisation method
presented in this paper is not concerned with removing the natural singularities from
the granular viscosity, but is instead an attempt at removing the unbounded growth of
noise from the computations. The regularisation techniques of Lagrée et al. (2011) and
Chauchat & Médale (2014) may therefore be complementary to the method presented
here although this requires further investigation.

2. The µ(I)-rheology
Granular material consisting of a collection of spherical grains of diameter d and

intrinsic density ρ∗ is modelled as a continuum occupying the spatial domain x =
(x, y, z). The flow of this material is described by a velocity vector u= (u, v,w) that
varies in space and time t. By assuming that the solids volume fraction φ is a constant,
the mass conservation equation reduces to the incompressibility condition

∇ · u= 0. (2.1)

The momentum balance equations are then

ρ∗φ

(
∂u
∂t
+∇ · (u⊗ u)

)
=∇ · σ + ρ∗φg, (2.2)

where g is the gravitational acceleration vector. The Cauchy stress tensor σ is
decomposed into the deviatoric stress tensor τ and scalar pressure p as

σ =−p1+ τ , (2.3)

where 1 is the identity matrix. GDR MiDi (2004) found that during deformation the
shear stress ‖τ‖ scales with the pressure p via the internal friction coefficient µ as

‖τ‖ =µp. (2.4)

The shear stress magnitude is

‖τ‖ =

√
1
2

tr
(
τ 2
)
, (2.5)

with identical notation for the second invariant of a tensor being used throughout
this paper. Assuming that the shear stresses and strain rates align, implies that the
deviatoric stress tensor is

τ =µp
D

‖D‖
, (2.6)

where the strain-rate tensor D is defined as

D = 1
2

(
∇u+ (∇u)T

)
. (2.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

42
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.428


Partial regularisation of the incompressible µ(I)-rheology 9

The µ(I)-rheology stems from the finding of GDR MiDi (2004) that µ depends on
the normalised strain rate

I =
2d‖D‖
√

p/ρ∗
, (2.8)

known as the inertial number. Combining equations (2.3)–(2.8) allows the mass and
momentum balance equations to be written as

∇ · u= 0, (2.9)

ρ∗φ

(
∂u
∂t
+∇ · (u⊗ u)

)
=∇ ·

(
2ηgD

)
−∇p+ ρ∗φg, (2.10)

where similarity with the Navier–Stokes equations is made clear through definition of
the granular viscosity

ηg =
µ(I)p
2‖D‖

. (2.11)

Equations (2.8)–(2.11) form a closed system once the functional form of µ(I) is
defined.

The established method of determining the functional dependence of the µ(I)
curve relies on a number of steps that have evolved over a period of time. The initial
breakthrough came from Pouliquen (1999) who discovered an empirical relationship
between the Froude number Fr of a steady uniform flow, the flow depth h and the
depth of deposit hstop left on a rough inclined chute when the supply was shut off, i.e.
Fr= βh/hstop(ζ ), where ζ is the angle of inclination and β is a constant. The deposit
thickness hstop tends to infinity at an angle ζs and is equal to zero at ζd. Originally
Pouliquen (1999) used an exponential function to parameterise hstop, but a reciprocal
form is now commonly used (Pouliquen & Forterre 2002). Since µ = tan ζ during
steady uniform flow, Pouliquen (1999) was able to combine these measurements to
infer the effective basal friction µ = µ(Fr/h) for depth-averaged avalanche models.
The final step was made by Jop et al. (2005) who depth averaged the Bagnold
velocity profile for steady uniform flow (Silbert et al. 2001; GDR MiDi 2004) to
show that Fr/h was linearly related to the inertial number I. Substituting this into
Pouliquen & Forterre’s (2002) reciprocal form of the friction law implies that

µJ(I)=µs +
µd −µs

I0/I + 1
, (2.12)

where I0 is a constant, the static friction coefficient µs= tan ζs and the dynamic friction
µd = tan ζd. The subscript ‘J’ indicates that this form was first introduced by Jop
et al. (2005). A summary of the entire argument, including corrections to the form of
the Froude number to account for inclined coordinates, is given in Gray & Edwards
(2014).

3. Generalised ill-posedness analysis of the µ(I)-rheology
Ill-posed equations amplify small perturbations at an unbounded rate when the

wavelength of the perturbations is infinitesimally small. To test if the µ(I)-rheology
leads to such behaviour, the system of equations (2.9)–(2.10) is first linearised about
a base state (u0, p0) and the perturbations (û, p̂) are taken to be initially small in
amplitude. For very small perturbation wavelengths, gradients of the base-state fields
are negligible at the scale over which the perturbations vary. This consideration
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10 T. Barker and J. M. N. T. Gray

localises the analysis and simplifies the treatment as some terms, for example the
convective terms ∇ · (u⊗ u), may be neglected to leading order in the infinitesimal
wavelength limit. As in Barker et al. (2015) this reduces the equations (2.9)–(2.10)
to

∇ · û= 0, (3.1)

ρ∗φ
∂ û
∂t
= η0

g

[
∇

2û− rA∇(A∇)Tû
]
+
[
qA∇−∇

]
p̂, (3.2)

where A= D0/‖D0
‖ is the normalised base-state strain-rate tensor, η0

g is the viscosity
(2.11) evaluated with the base-state fields and

r= 1− Iµ′/µ, q=µ− Iµ′/2, (3.3a,b)

with
µ′ =

dµ
dI
, (3.4)

are defined for brevity. This set of equations has normal mode solutions[
û
p̂

]
= exp (iξ · x+ λt)

[
ũ
p̃

]
, (3.5)

where ξ is the wavevector, λ is the growth rate and ũ and p̃ are constants.
Substitution of (3.5) into the linearised governing equations (3.1)–(3.2) leads to

an eigenvalue problem for the growth rate and velocity perturbation. Due to the
incompressibility condition the perpendicular wavevector ξ⊥ is an eigenvector of the
velocity in two dimensions so the problem can be solved exactly to give

λ=
η0

g

ρ∗φ

(
q|ξ |2(ξ · Aξ)− |ξ |4 + r(ξ⊥ · Aξ)2

|ξ |2 − q(ξ · Aξ)

)
. (3.6)

This expression for the growth rate is second order in wavenumber |ξ | as the terms in
the numerator are all of order |ξ |4 whereas the terms in the denominator are of order
|ξ |2. Therefore if λ is positive the equations are ill posed since the growth rate tends
to infinity quadratically in the high wavenumber limit. If the sign of the expression
is negative then the equations are well posed as all perturbations will decay. Due
to the symmetry of the strain-rate tensor (2.7), and thus A, it is possible to rotate
the coordinates used to evaluate (3.6), leaving its value unchanged. By choosing a
convenient axis Barker et al. (2015) derived the condition that

C> 0 : ill posed (3.7)
C 6 0 :well posed, (3.8)

where

C= 4
(

Iµ′

µ

)2

− 4
(

Iµ′

µ

)
+µ2

(
1−

Iµ′

2µ

)2

. (3.9)

It is noted that in order to derive the principal linearised momentum balance (3.2),
and thus the condition above, only the second-order spatial gradients of the velocity
perturbation and first-order gradients of the pressure perturbation have been included
as they will dominate in the high wavenumber limit. However when C= 0 these terms
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0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0 0.05 0.10 0.15 0.20 0.25 0.30

I

FIGURE 1. A stability diagram for the µ(I)-rheology of Jop et al. (2005) with the friction
coefficient values in blue for the parameters in table 1. The grey region is the range
of inertial numbers for which the equations are well posed whereas inertial numbers in
the white regions mean that the equations are ill posed. Vertical lines denote the neutral
stability inertial numbers IN

1,2.

µs = 0.342 µd = 0.557 I0 = 0.069 d= 1.43× 10−4 m φ = 0.6

TABLE 1. Parameter values measured for the spherical glass ballotini used for the
experiments in this paper. Unless specified otherwise these values are used throughout the
paper.

cancel and so do not contribute to the growth rate. In this special case, the first-order
spatial gradients of the velocity will dominate instead. Since the terms containing
these gradients are all complex valued, due to the form of the perturbations (3.5),
C= 0 corresponds to well-posed equations i.e. the real part of the growth rate remains
bounded in the high wavenumber limit.

Substituting the functional form (2.12) of the µ(I)-rheology proposed by Jop et al.
(2005) into the function (3.9) reveals that the equations are ill posed when the
inertial number is too high or too low. For the range IN

1 6 I 6 IN
2 the equations are

well posed, provided that the difference between friction constants 1µ = µd − µs
is sufficiently large. Here the values IN

1,2 are defined as the neutral inertial numbers
such that C(IN

1,2) = 0 and are specific to the chosen µ(I) curve. Figure 1 shows the
range of well-posed inertial numbers along with the µ(I) curve of Jop et al. (2005).
As discussed in § 1 additional physical effects become important in the high and low
inertial number limits. It is therefore interesting that the limited range of well-posed
inertial numbers is coincidental with the range of regimes expected to be physically
realistic. When 1µ = 0 the friction coefficient is a constant and so the result of
Schaeffer (1987), that the Drucker–Prager equations are always ill posed, is also
recovered.

Many flows of practical interest have regions for which the inertial number lies in
the ill-posed ranges. Purely static material when I=0 and regions of large deformation
are most likely to be ill posed. As shown in Barker et al. (2015), steady uniform flow

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

42
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.428


12 T. Barker and J. M. N. T. Gray

on an inclined frictional plane has a constant inertial number Iζ that is dependent on
the inclination angle ζ . For slope angles that give inertial numbers in the well-posed
range, numerical computations converge on the exact Bagnold solution of velocity and
pressure. Barker et al. (2015) also demonstrated that for angles in the ill-posed ranges
there is no convergence towards the steady state and instead pressure and velocity
perturbations appear spontaneously and dominate the numerical solution. When the
numerical grid is refined, the perturbations form more quickly and have a shorter
wavelength which is the hallmark of ill posedness.

Flows of higher complexity may have some regions in the well-posed and others in
the ill-posed regimes. For example, Lagrée et al. (2011) simulated the collapse of a
column of grains which has a central core that is approximately static and thin layers
close to the surface where the strain rate and thus the inertial number are very high.
It is thought that the success of their computation is due to the finite spatial resolution
used and a short computation time. Furthermore, the granular viscosity was truncated
such that it saturated to constant values when the expression (2.11) was too high or
too low. It is conceivable that in the regions of the flow with ill-posed inertial numbers,
the code reverted to solving the classical Navier–Stokes equations with a constant
Newtonian viscosity, which are well posed. Unfortunately this form of regularisation is
not guaranteed to avoid ill posedness as the magnitude of the viscosity is not a direct
indication of the inertial number and therefore is not able to determine if a region is
ill posed or well posed.

4. Theoretical well-posed µ(I) curves

The condition for ill posedness (3.7) depends on the value and gradient of µ(I). By
changing the shape of the µ(I) curve it is therefore possible to change the functional
dependence of C(I) and alter the range of well-posed inertial numbers. As the µ(I)
curve of Jop et al. (2005) has experimental validation in the intermediate inertial
number region, which has been found to be well posed, the analysis here will focus
on the high and low inertial number limits.

The structure of C(I) determines some important features that µ(I) curves must
have in order to remain well posed. Firstly, well-posed behaviour relies on the only
negative term in (3.9) being sufficiently large. Since this term scales with the gradient
of µ, only monotonically increasing (µ′ > 0) functions are possible. Secondly, small
inertial numbers are considered using the Taylor series µ(I)= A0 + A1I + A2I2

+ · · ·

with A0 6= 0 to reveal that
lim
I→0

C(I)→ A2
0. (4.1)

Well posedness is then only possible for µ = 0 at I = 0, however this contradicts
the form of the series as A0 = 0. Taking instead µ(I) =

∑
∞

k=n AkIk, the limit (4.1)
gives C→ 4n(n − 1) so µ(I) = A1I is the only well-posed curve in the low inertial
number limit. Interestingly this linear expression for µ(I) removes the singularity in
the granular viscosity (2.11) at ‖D‖ = 0 and gives instead ηg = A1d

√
ρ∗p. Finally,

in the high inertial number limit, the increasing nature of µ(I) ensures that there
exists a finite value of I above which the condition for ill posedness (3.7) is always
satisfied. Either C will be unbounded and scale with µ2 or, for the special case that
Iµ′/(2µ)= 1, the limit will give C= 8. It is therefore the case that any µ(I) curve is
guaranteed to lead to ill-posed equations for very large inertial numbers.

Given these limitations it is also useful to consider the regions for which well-posed
rheologies can be constructed. This is done by solving for the neutral stability curves
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Partial regularisation of the incompressible µ(I)-rheology 13

C = 0 and considering the sign of C in the enclosed regions. Setting C = 0 in (3.9)
gives the ordinary differential equation

dµ
dI
=

1
I

µ

16+µ2

(
8+ 2µ2

± 4
√

4− 2µ2
)
, (4.2)

which is a separable equation with two solutions. It is most convenient to write the
solutions as inverse functions for the neutral stability inertial number IN

= IN(µ). The
two branches then give

IN
±
= A± exp

[
f±(µ)

]
, (4.3)

where A± are constants and

f+ =

√
4− 2µ2

2µ2
+ ln(µ)−

1
2

ln
(√

4− 2µ2 + 2
)
−

1
µ2
, (4.4)

f− =−

√
4− 2µ2

2µ2
+

1
2

ln
(√

4− 2µ2 + 2
)
−

1
µ2
. (4.5)

The constants A± can be found by choosing an inertial number and corresponding
friction coefficient and substituting them into (4.3). Here it is assumed that the Jop
et al. (2005) rheology is correct in the well-posed range so the point IN

1 is used
to study the low inertial number range and IN

2 is used for high inertial numbers.
Interestingly f± become complex for µ >

√
2 so µ =

√
2 is the largest possible

friction coefficient and Imax =
√

2IN
2 exp(−f−(µ(IN

2 )) − 1/2) is the largest possible
inertial number. As shown in figure 2, well-posed regions exist for both the low and
high inertial number limits. For small inertial numbers it is found that lower values
of µ are required than those predicted by the rheology of Jop et al. (2005) and that
µ= 0 when I = 0, as was highlighted by analysis of (3.9). Conversely, larger values
are required for well-posed curves in the high inertial number limit. It should be noted
that not every curve passing through the grey regions in the figure is guaranteed to
remain well posed. As has been discussed, there are additional restrictions on the
choice of rheology, such as the condition that the µ(I) curve should be monotonically
increasing.

5. The low inertial number limit
5.1. Choice of µ(I) curve for low-I

The regions for which well-posed µ(I) curves exist are not unexpected, there are
examples in the literature of alternative forms for the curve which have similar
features. Kamrin & Koval (2014) performed discrete element method (DEM)
simulations for slowly sheared flows and found that a good fit to the local terms in
their equations was

µK(I)=µs + bI + (µ0 −µs) exp(−I/cK), (5.1)

where cK is a material parameter, b = 1µ/I0 and µ0 is the value of the friction
coefficient when I = 0. Their addition of a decaying exponential term to a linearised
form of the Jop et al. (2005) curve (2.12) means that when I is small the gradient
is larger and the value of µ is lower. Substitution of (5.1) into (3.9) reveals that this
rheology expands the range of well-posed inertial numbers, but still becomes ill posed
when I is very small. This is partly due to the fact that µK→µ0 in the limit I→ 0
where instead, as discussed in § 4, the friction coefficient must tend to zero in the low
inertial number limit to ensure well posedness.
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FIGURE 2. Stability diagrams for low (a) and high (b) inertial number ranges. The curves
IN
+

and IN
−

from (4.3) separate the grey regions for which well-posed µ(I) curves exist and
the white regions where all curves give ill-posed equations. Blue dot-dashed lines are the
µ(I) curve of Jop et al. (2005). The semi-logarithmic plot (b) of the high inertial number
range shows dashed lines at which the solutions become complex. These correspond to
the maximum values of the friction coefficient µ=

√
2 and inertial number I = Imax.

A well-posed µ(I) curve can be constructed that is inspired by the neutral stability
curves. As shown in figure 2(a), the IN

−
curve is as close as possible to the rheology

of Jop et al. (2005). In the limit µ→ 0 the neutral stability inertial number (4.3)
tends to A− exp(−2/µ2). Unlike the general forms of the neutral stability curves, this
expression can be inverted to give a µ(I) curve. As this curve is derived from the
neutral stability line, it will have C= 0 in the low inertial number limit by definition.
By scaling the function it is possible to ensure that C< 0 instead. Swapping the factor
of 2 for a constant α . 2 the form

µ(I)=


√√√√ α

ln
(

A−
I

) I 6 IN
1

µJ(I) I > IN
1 ,

(5.2)
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is found to give well posedness. The coefficient A− is then chosen to ensure a match
between the two branches at I = IN

1 i.e.

A− = IN
1 exp

(
α

µJ
(
IN

1

)2

)
. (5.3)

The strength of (5.2) is that the equations are guaranteed to remain well posed for
0< I < IN

2 provided that α (the only additional fitting parameter) is close to, and less
than, 2. Furthermore, the formulation is applicable to any intermediate rheology by
simply swapping µJ (and the related IN

1 ) in (5.2) and (5.3). For example the local
terms suggested by Kamrin & Koval (2014) can be incorporated by substituting (5.1)
for µJ . This would therefore mean that solutions of the resultant equations would
provide a better fit to the DEM data for the range of inertial numbers that Kamrin
& Koval (2014) found a local response, and a disagreement with the µ(I) curve of
Jop et al. (2005). Similarly, other future work could be incorporated in an analogous
way.

5.2. Decelerating chute flows
One issue that has plagued the continuum modelling of granular flow for a substantial
time is the treatment of static material. For the rheology of Jop et al. (2005) the
material is defined to be static at µ = µs and for µ < µs inversion of µJ(I) gives
negative inertial numbers. The regularised rheology (5.2) does not share these features
and instead forces I to be strictly positive. Due to the definition (2.11) of the granular
viscosity, the unregularised µ(I) curve has a singular viscosity in the limit I → 0.
Numerically this singular behaviour allows computations to mimic static material by
predicting velocities that are very small when I is low. Unfortunately the rheology of
Jop et al. (2005) is ill posed in these regimes. It is therefore important to demonstrate
the effects of this ill posedness and confirm that it is not present in calculations
performed with the regularised rheology.

Here computations of inclined plane flow are presented, where initially the material
is at steady state with inclination angle ζ0 where ζs < ζ0 < ζd. For slopes inclined at
angle ζ with no slip u = 0 at the base z = 0 of the flow and a vanishing stress at
the surface z= h0, the z component of the momentum balance equation (2.10) gives
a hydrostatic pressure

p(z)= ρ∗φg(h0 − z) cos ζ , (5.4)

and the downslope x component gives µ = tan ζ . As µ is a constant, the inertial
number must also be a constant Iζ = µ−1(tan ζ ). From the definition of the inertial
number (2.8) and the definition of the strain-rate tensor (2.7), the velocity is found to
be

u(z)=
2Iζ
3d

√
φg cos ζ

(
h3/2

0 − (h0 − z)3/2
)
, (5.5)

which is known as Bagnold’s velocity profile (see e.g. GDR MiDi 2004; Gray &
Edwards 2014). The simulation is therefore initialised with this exact solution with
ζ = ζ0.

By instantaneously changing the inclination angle to ζ <ζs at t=0 the granular flow
will decelerate and the behaviour as I→ 0 can be studied. This set-up was explored
previously by Parez et al. (2016) who compared DEM data with an approximate
transient solution derived from a linearised µ(I)-rheology. Here the numerical scheme
developed in Barker et al. (2015), which allows for the transient computation of
two-dimensional chute flows with a deformable surface, is adopted. These and all
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FIGURE 3. Downslope averages of the velocity (a) and the inertial number (b) at evenly
spaced times in 0< t<0.2 s. Here the computation is initialised with the Bagnold solution
(5.4) and (5.5) with ζ0 = 24◦ and the fields are computed with the Jop et al. (2005)
rheology (2.12). The slope angle during the computation is ζ = 10◦ and the numerical
grid is 256× 256 cells with a time step 1× 10−6 s.

other simulations in this paper use the same method which is coded in the Gerris
library (Popinet 2003). The scheme uses the finite volume method to compute the
flow fields and the volume of fluid method to track the free surface. Different
functional forms for the viscosity can be chosen that depend on the flow properties
which in turn allows different µ(I) curves to be tested with all other aspects of the
computation remaining identical. For the case of decelerating chute flow, the velocity
fields, computed with the rheology of Jop et al. (2005), are shown in figure 3(a) and
are found to be qualitatively similar to the approximate solution and DEM simulations
of Parez et al. (2016). However plots of the inertial number, as shown in figure 3(b),
reveal the spontaneous formation of perturbations.

Figure 4 demonstrates how these perturbations are indicative of the ill posedness
of the governing equations. Despite sharing qualitative similarity with shear bands
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FIGURE 4. Snapshots of the inertial number at t= 0.2 s across the domain occupied by
granular material. The top panel (a) is from the computation detailed in figure 3 whereas
the middle panel (b) is for the same parameters but with 512× 512 computational cells;
(c) is with the regularised rheology (5.2).

(Goddard 2002) and force chains (Majmudar & Behringer 2005), which are observed
in slowly sheared flows, the simulations demonstrate that the magnitude and typical
length scale of the localised strain-rate regions are dependent on the spatial resolution
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FIGURE 5. Downslope averages of the velocity (a) and the inertial number (b) at
evenly spaced times in 0 < t < 0.2 s. Here the computations are initialised with the
Bagnold solution (5.4) and (5.5) with ζ0 = 24◦ and the subsequent numerical solutions
are computed with the regularised rheology (5.2). The inclination angle is set to ζ = 10◦
and regularisation parameter α = 1.9. Lines show the numerical solution with 512× 512
computational cells and the points are with 256× 256 cells. The time step is 1× 10−6 s.

used. Furthermore, the magnitude of the inertial number perturbations are found to
increase as the typical wavelength of the patterns decreases. Unlike in the simulations
presented in Barker et al. (2015), that were performed at a large angle that gave a
constant ill-posed inertial number across the domain, the computations presented here
demonstrate that only the region of the flow for which C > 0 (when I < IN

1 in these
simulations) exhibits signs of ill posedness.

In order to validate the well posedness of the regularised rheology, the proposed
µ(I) curve (5.2) is implemented in the numerical procedure. The results of an
otherwise identical computation to that shown in figure 3 are shown in figures 4(c)
and 5. It is noted that the velocity fields are qualitatively very close and so the
match with the work of Parez et al. (2016) is maintained. However, the computed
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inertial numbers highlight the crucial difference between the computations. The initial
conditions ensure that the values of I in the two simulations are identical, but as time
progresses the difference between them grows. The calculation using the unregularised
rheology of Jop et al. (2005) quickly reaches low values of I, but then reverts to
higher non-uniform values. Conversely, in the simulation presented in figures 4(c)
and 5, using the regularised model, the inertial numbers decrease monotonically and
vary smoothly across the domain. By studying again two different spatial resolutions
it is found that computations with the regularised model are independent of the grid
scale. There is some mismatch close to the bottom boundary, but this is thought to
be due to the sensitivity of I on the no-slip condition applied here. These simulations
therefore provide strong support for the well posedness of the regularised rheology
in the low inertial number limit. However, certain physical effects, such as shear
banding (Goddard 2002), frictional hysteresis (Edwards et al. 2017) and non-local
behaviour (Kamrin & Koval 2014), are not observed in these flows. This suggests
that more complicated models, than the incompressible µ(I)-rheology, are required to
capture the true physics of flows at very low inertial numbers.

6. The high inertial number limit
6.1. Steady chute flow experiments

Holyoake & McElwaine (2012) performed experiments on high-speed chute flows
where I is large and found that the form

µH(I, h0)=

µsI0 +µdI + cI2

(
h0

d

)−1/3

I0 + I
, (6.1)

where h0 is the flow thickness and c is a constant, was a better fit to their data than
the curve of Jop et al. (2005). Due to the I2 term in the numerator, this expression
gives a greater value for µ when the inertial number is large, but approximates (2.12)
otherwise. The analysis in § 4 suggests that this type of curve is preferable in the
high-I limit and may lead to a greater range of well-posed values. However, the
explicit inclusion of the flow thickness in this rheology changes the structure of the
governing equations due to the dependence on a geometry specific non-local variable.

Here, new chute flow experiments are performed that allow for the shape of
the µ(I) curve to be inferred and are used to ascertain if a constant can be used
instead of h0 in (6.1). The set-up consists of an approximately 3 m long chute with
two vertical glass sidewalls separated by approximately 0.08 m. The base of the
chute consists of a flat metal plate onto which large spherical particles with a mean
diameter of approximately 1 × 10−3 m are attached with double-sided adhesive tape.
Particles with measured properties listed in table 1 are introduced at a constant rate
at the top of the chute from a vertical hopper with an adjustable height, rectangular
gate. By changing the inclination angle ζ , the inertial number Iζ is also varied as
in the Bagnold solution, (5.4) and (5.5). The inertial number is found experimentally
through measurement of the flow thickness and velocity. Particle image velocimetry
is used here to measure the velocity of particles at the surface of the flows us= u(h0)

by comparing successive images from a high-speed camera (Thielicke & Stamhuis
2014). At the same time, a laser profilometer is used to measure the thickness h0 of
the flow, as in Baker et al. (2016). The inertial number is then inferred from these
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FIGURE 6. Experimentally measured inertial numbers (points) for steady chute flows with
the theoretical µ(I) curves of Jop et al. (2005) shown in blue dot-dash and of Holyoake
& McElwaine (2012) in black. Inset is the slope angle ζ and the inertial numbers inferred
from (6.2). The vertical dashed line marks the points above which the rheology of Jop
et al. (2005) is ill posed and the vertical red line is the angle ζd above which steady flows
are not observed. Note that the equations are evaluated with the experimentally measured
values in table 1 and the rheology (6.1) is best fit with ch0/d=µ∞ = 0.05.

measurements through the expression

Iζ =
3dus

2h3/2
0
√
φg cos ζ

, (6.2)

which comes from rearranging (5.5) and setting z= h0. The steady nature of the flows
is confirmed by performing the measurements at two different downstream locations
and ensuring that the thickness and velocities are consistent over multiple runs.

As shown in figure 6, the results of the chute flow experiments that determine the
inertial number as a function of the inclination angle demonstrate a divergence from
the rheology of Jop et al. (2005) when the inertial number I > IN

2 . This is interesting
as it suggests that the range of I for which the equations are ill posed corresponds
to the range where matching with experiments also breaks down. The figure also
shows the curve of Holyoake & McElwaine (2012) with ch0/d ≡ µ∞ assumed to be
a fitting constant. This study supports the analysis of § 4 as the value of µ predicted
by (2.12) is too low for large inertial numbers and that a form for which µ increases
more rapidly with increasing I, such as the I2 term added in (6.1), is more physically
realistic. Therefore a combination of the rheology developed here with the extension
introduced for low inertial number flows in § 5 is proposed. Taking

µ(I)=



√√√√ α

ln
(

A−
I

) I 6 IN
1

µsI0 +µdI +µ∞I2

I0 + I
I > IN

1 ,

(6.3)
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FIGURE 7. The regularised µ(I) curve (6.3) in black compared with the curve (2.12)
of Jop et al. (2005) plotted as the blue dot-dashed curve. The vertical dashed lines are
the neutral inertial numbers for µJ and the vertical solid line is the maximum well-posed
inertial number for the regularised curve.

where

A− = IN
1 exp

(
α(I0 + IN

1 )
2

(µsI0 +µdIN
1 +µ∞(I

N
1 )

2)2

)
, (6.4)

ensures well posedness for low-I and allows the corrections in the high-I limit to be
incorporated. This function and the related range of well-posed inertial numbers is
shown in figure 7.

Another significant consequence of the addition of the term proportional to I2 in
the numerator of the µ(I)-expression (6.3) in the high inertial number limit is the
link with kinetic theories. Instead of µ→ µd, which was the case with the rheology
of Jop et al. (2005), it is now the case that µ→ µ∞I. This behaviour means that
for rapidly sheared flows, the dissipation is not rate independent and instead has a
granular viscosity ηg→ µ∞d

√
ρ∗p. The kinetic theories of Jenkins & Savage (1983),

Lun (1991) and Armanini et al. (2014) all share this structure for the collisional
dissipation whilst allowing the term equivalent to µ∞ to depend on the mean and
maximum volume fraction and the restitution coefficient of the grains, which here
are assumed to be constants. This analogy means that our proposed rheology is able
to smoothly transition between theories that have been shown to work well in the
intermediate and large shearing regimes, namely the µ(I)-rheology and kinetic theory.
With this viewpoint, the role of µ∞ is distinguished from that of µs and µd as it
characterises dissipation due to binary inelastic collisions rather than shearing friction,
which dominates in the intermediate inertial number range.

6.2. High inclination angle simulations
As demonstrated in Barker et al. (2015), above a certain inclination angle the
equations with the unregularised rheology (2.12) are ill posed and numerical
simulations exhibit grid-dependent oblique pressure waves that grow exponentially.
As a test of the regularised rheology (6.3) similar computations are carried out
here. For steady uniform flow, each µ(I) curve sets a different steady-state inertial
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FIGURE 8. Inertial numbers in computations of high-speed chute flows at ζ = 28.5◦.
Panels (a,b) show the results with the unregularised rheology (2.12) at t = 1.13 s, just
before fatal blow up, whereas (c,d) are with the regularised model (6.3) much later at
t = 5 s. Panels (a,c) show the inertial numbers across the domain below the constant
free surface h0 = 7× 10−4 m and panels (b,d) are the related downslope averages of the
inertial number on a semi-logarithmic scale. The vertical solid lines indicate the theoretical
steady-state inertial number Iζ for the regularised rheology whereas the vertical dashed
lines are the initial conditions and correspond to the theoretical value for the unregularised
model.

number Iζ (as shown in figure 6) with the regularised model predicting a lower
value. Figure 8 shows the results of two calculations, one with and one without the
regularisation. Initialising both simulations with the larger inertial number predicted
by the rheology of Jop et al. (2005) allows for direct comparison. As expected,
the unregularised model exhibits catastrophic internal waves as seen in Barker et al.
(2015) whereas the flow with the regularised rheology decelerates and the inertial
number converges uniformly on the lower inertial number predicted by inverting the
newly proposed µ(I) curve (6.3). This test therefore demonstrates the well posedness
of the regularised model for these high-speed flows.

7. Granular rollwaves
Whilst the proposed rheology (6.3) has been shown to extend the range of well-

posed inertial numbers, and has experimental justification, it is important to show that
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implementation of the resultant equations numerically results in a physically realistic
system capable of capturing the often subtle phenomenology of real granular flows.
For granular chute flows of thickness h0 the Froude number

Fr=
ū

√
gh0 cos ζ

=
2h0

5d
Iζ
√
φ, (7.1)

where ū is the depth-integrated downslope velocity, is found to control the stability
of the steady solution (5.4) and (5.5). For sufficiently large Froude numbers Fr>Frc,
where Frc is the critical Froude number, free-surface waves form, which are known as
granular rollwaves (Gray & Edwards 2014) or Kapitza waves (Forterre 2006). After a
period of transient growth, that may involve complex coarsening (Razis et al. 2014),
these perturbations reach a steady state consisting of travelling waves of constant
shape and wave speed.

These waves were studied experimentally by Forterre & Pouliquen (2003) who
found that when a flow is subjected to perturbations of a particular frequency ω,
there is a cutoff frequency ωc such that for ω < ωc the waves grow in amplitude
whereas for ω > ωc the waves decay. This long wavelength instability was analysed
further by Forterre (2006) who performed a linear stability analysis, to isolate the
critical Froude number, and solved the resulting equations numerically to recover
the dispersion relation and ωc. The linearised equations studied by Forterre (2006)
differ from those in § 3, that were used to derive the conditions for well posedness,
as the perturbations that cause rollwaves have a finite wavenumber so neglect of
the base-state gradients is not possible. A much simpler formulation, that allows the
dispersion relation to be derived exactly rather than numerically, comes from assuming
that the flow thickness h is much smaller than the wavelength of the waves. Gray
& Edwards (2014) used this approximation to derive a depth-averaged µ(I)-rheology
and related equations for the mass and momentum balance. Their formulation gives
Frc = 2/3 and allows for an exact dispersion relation to be derived that captures the
variation of the growth rate as the frequency is varied.

Here two-dimensional simulations of granular rollwaves are presented, for the first
time, in order to validate the regularisation method and resultant numerical scheme.
These are achieved by adapting the method used by Lagrée et al. (2011) to study
the collapse of a column of grains and by Barker et al. (2015) for chute flows. This
numerical scheme is well suited to the study of granular rollwaves as it allows for the
computation of the two velocity components, the pressure and the free-surface shape.
Boundary conditions consist of the no-slip velocity at the base of the flow (u= 0 at
z = 0) and a vanishing pressure at the top of the domain (p = 0 at z = 2h0). The
downslope edges (x= 0, Lx) of the domain are wrapped to create spatial periodicity
and the granular material is initialised with

h(x, t= 0)= h0 + a0 sin(2πx/Lx), (7.2)

which corresponds to a half-filled domain with average flow depth h0, perturbed
away from uniform thickness by a sine curve of amplitude a0 and wavelength Lx.
The pressure and velocity start from the steady solutions (5.4) and (5.5), respectively,
evaluated with the initial height (7.2) instead of the constant height h0. It is found that
the numerical scheme is stable for long times with the Neumann condition ∂zu= 0 at
the top of the domain. This ensures a low velocity for the passive Newtonian fluid,
that is used to track the free-surface shape, above the granular material. The results
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FIGURE 9. The downslope u (a) and vertical w (b) velocities and the inertial number
(c) at t= 5 s for rollwaves generated from the initial perturbation (7.2) with h0 = 4 mm,
a0=0.2 mm and ζ =28.5◦. The domain length and initial wavelength are set to Lx=8 cm.
The free surface h is drawn in black and only the values for the granular media are shown.
An animation of the inertial number is also provided in the supplementary movie available
at https://doi.org/10.1017/jfm.2017.428.

of a calculation with this set-up, making use of the regularised rheology (6.3), are
shown in figures 9 and 10.

As shown in figure 9(a), the downslope velocity field is monotonically increasing
in a manner similar to the Bagnold solution (5.5). The corresponding pressure field
is also very close to the exact solution for the steady, uniform system (5.4) evaluated
with the computed free-surface height h(x, t) instead of the constant h0. The vertical
velocity, shown in figure 9(b), is close to zero for the majority of the flow, as is
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FIGURE 10. The streamlines (blue) and free-surface height h (black) for the flow fields
detailed in figure 9. Here the downslope velocity has been shifted by the computed wave
speed uw = 0.1908 m s−1 so that the streamlines shown coincide with the particle paths.
Arrows have been added to indicate the direction of travel for particles in the flow relative
to the propagating front.

the case in the uniform thickness flow, but has a region of positive values localised
around the wave peak and a region of negative values forming a tail behind. The
region of upwelling at the peak of the wave also corresponds to a local maxima in the
inertial number surrounded by low values. This variation is shown in figure 9(c) and
demonstrates how the rollwave solution has a large range of inertial numbers, greater
than the well-posed range for the unregularised rheology.

By tracking the x position of the peak as the computation progresses, the wave
speed uw can be calculated. It is found that the wave speed is close to a constant
throughout the simulation and is always greater than the maximum downslope velocity.
By transforming into a frame moving with speed uw a shifted downslope velocity field
U= u− uw is defined. A plot of the streamlines for (U,w) is shown in figure 10. As
the particle paths are equivalent to the streamlines in this coordinate system, this plot
highlights that the waves move faster than the particles.

In order to provide a qualitative comparison to physical rollwaves, a chute flow
experiment was performed. Using the same chute and particles as in § 6.1, the Froude
number was changed by controlling the flux at the inflow. A steady flux was achieved
that was sufficient to give a thickness and surface velocity with Fr > Frc. For this
configuration rollwaves formed spontaneously and grew in height as they travelled
down the chute. Close to the bottom of the chute ('3 m from the inflow) the free-
surface height was measured using a thin glass slide attached to a section of chute
base and a high-speed camera (see figure 11a). The glass slide split the flow in half
along the cross-slope mid-point such that half of the material fell into a bin and the
other half continued along an identical base. This was done in order to avoid any
effects caused by the sidewalls of the main chute. The camera recorded a thin vertical
strip just after the split had occurred and by post-processing the resultant images,
the flow height was inferred. This method has a very good temporal accuracy due
to the high frame rate of the camera and the spatial accuracy was estimated to be
approximately 1× 10−4 m from the standard deviation of the data. Figure 11(b) shows
the results of this experiment and provides a comparison with a numerical simulation
similar to that detailed in figures 9 and 10. Here the length of the domain (12 cm) in
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FIGURE 11. A schematic diagram of the experimental set-up for measuring the rollwave
height (a) with the glass slide used to split the flow and for measurements with the
high-speed camera drawn in red. (b) Comparison of space–time plots for the blue
numerically computed free surface and black experimental points. Inset are the raw height
data acquired in the experiment. Simulation data are taken from the interval 8.5 s< 9.1 s
in figure 12(a). The error bar is reflective of the mean standard deviation in the data used
to acquire each experimental point.

the new calculation (see figure 12) has been chosen to approximately match with the
wavelength of the waves in the experiment. The shape of the numerically computed
wave is close to those seen experimentally and the magnitude is comparable, but
approximately 0.5 mm larger. This slight mismatch is thought to be due to the finite
length of the chute used and, as detailed in Razis et al. (2014) and seen in the inset of
figure 11, the real waves interact and compete in order to coarsen to the final steady
travelling wave whereas the numerical method used here isolates the behaviour of a
single wave in an infinite periodic box.

Due to a good qualitative match with experimental data, the regularisation method
presented in this paper has been shown to give physically realistic results. Similar
computations with the depth-averaged µ(I)-rheology of Gray & Edwards (2014),
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FIGURE 12. The transient evolution of the free surface h computed with the regularised
two-dimensional µ(I)-rheology. Starting from (7.2) with h0 = 4 mm, a0 = 0.2 mm and
Lx = 12 cm, h is plotted at a fixed downslope coordinate x = 1 cm (a). Also plotted is
the maximum height across the domain (b).

such as the simulation of erosion–deposition waves by Edwards & Gray (2015), also
provide a close match with experiments. However, the waves computed with the
depth-averaged rheology often have a flow front which is much steeper than those
observed experimentally whereas the two-dimensional computations detailed here have
a much rounder shape. It is therefore believed that the two-dimensional incompressible
µ(I)-rheology captures the key physical effects that set the free-surface shape. This is
important as it suggests that the computation of other flows with complex free-surface
shapes are also possible with the methods and model presented here. Furthermore,
truly two-dimensional flows, such as the collapse of a column of grains, do not
obviously allow for the same approximations which lead to the depth-averaged
equations and so the full system is only option for the simulation of these flows.

Along with the free-surface shape, another important feature of the granular
rollwaves is their dispersion relation. Here this relation between the wavelength and
growth rate of the waves is investigated numerically using the regularised rheology in
order to provide additional verification that the waves are indeed due to the rollwave
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instability detailed previously in the literature. Forterre (2006) found the dispersion
relation numerically using the linearised two-dimensional µ(I) equations and an
exact expression was derived by Gray & Edwards (2014) from the depth-averaged
µ(I)-rheology. Both of these approaches found the growth rate of perturbations as a
function of the frequency of an applied inflow perturbation. However the numerical
scheme detailed above allows for the transient behaviour of perturbations of a specific
wavelength to be computed rather than at specific frequencies. It is therefore necessary
to derive a temporal stability analysis here, rather than the spatial analyses of Forterre
(2006) and Gray & Edwards (2014). By making use of the depth-averaged equations
an exact functional form can be found.

For uni-directional flow down inclined planes the depth-averaged mass balance of
Gray & Edwards (2014) is

∂h
∂t
+
∂

∂x
(hū)= 0, (7.3)

and the momentum balance gives

h
(
∂ ū
∂t
+ ū

∂ ū
∂x
+ g cos ζ

∂h
∂x

)
= hg cos ζ (tan ζ −µ)+

∂

∂x

(
νh3/2 ∂ ū

∂x

)
, (7.4)

where

ν =
5d
9I0

√
g sin ζ
√
φ cos ζ

(
tan ζd − tan ζ
tan ζ − tan ζs

)
, (7.5)

and µ is the friction coefficient of Pouliquen & Forterre (2002). Scaling the flow depth
h and the downstream coordinate x by the steady depth h0, the velocity ū by the depth-
averaged Bagnold velocity ū0 = (2Iζ/5d)

√
φg cos ζh3/2

0 and the time by h0/ū0 allows
for the definition of a Reynolds-like number

R=
ū0
√

h0

ν
, (7.6)

and the base-state Froude number F = Fr(h0) from (7.1). It is found that small
perturbations (ĥ, û) away from the base-state fields (h0, ū0) satisfy the linearised
equations

∂ ĥ
∂t
+
∂ ĥ
∂x
+
∂ û
∂x
= 0, (7.7)

F2

(
∂ û
∂t
+
∂ û
∂x

)
+
∂ ĥ
∂x
= Γ

(
3
2

ĥ− û
)
+

F2

R
∂2û
∂x2

, (7.8)

where the constants

Γ = γ
tan ζd − tan ζs

(1+ γ )2
, γ =

2
√
φI0h0

5Fd
. (7.9a,b)

The system (7.7)–(7.13) has solutions[
ĥ
û

]
= exp

(
ik̂x+ λ̂t

) [
h̃
ũ

]
, (7.10)
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FIGURE 13. The dispersion relation (7.11) derived from the depth-averaged µ(I) equations
plotted as solid lines. Points are the growth rates computed with (7.12) from simulations
using the two-dimensional regularised µ(I)-rheology. Inset is the same curve and points
plotted with the non-dimensional variables (7.13).

where k̂ and λ̂ are the non-dimensional wavenumber and growth rate respectively and
h̃ and ũ are constants. As shown in figure 12, the two-dimensional simulations exhibit
this behaviour for early times as they grow exponentially. At later times nonlinearity is
observed as the waves saturate to a constant height. The dispersion relation, that links
the growth rate to wavenumber, is found by substitution of (7.10) into the leading-
order momentum balance (7.8) which gives

−iRλ̂2
+

(
2Rk̂− ik̂2

−
iRΓ
F2

)
λ̂+ k̂3

+

(
iR−

iR
F2

)
k̂2
+

5RΓ
2F2

k̂= 0. (7.11)

The growth rate of the waves in the two-dimensional simulations can be estimated
by assuming the form (7.10) is correct for early times. This gives

λ=
1

max(h)− h0

∂

∂t
(max(h)− h0), (7.12)

as the perturbation magnitude is the difference between the transient flow depth h and
the steady uniform depth h0. Averaging over the period for which the growth is linear
(e.g. 0.5 s< t< 3 s in figure 12) gives the numerical points shown in figure 13. Here
the wavenumber is changed by altering the domain length Lx. As the perturbations
are seeded with the initial height (7.2) it is possible to transform between the non-
dimensional dispersion relation (7.11) and the equivalent dimensional form with

λ̂=
h0

ū0
λ, k̂=

2πh0

Lx
. (7.13a,b)

The numerically estimated growth rates match the shape of the theoretical dispersion
relation well and crucially match the cutoff frequency accurately. Discrepancies in the
magnitude of the growth rates may be attributed to the fact that in order to seed
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the instability at a certain wavelength, the initial wave amplitude a0 is required to be
close to the final steady amplitude. This means that the simulation captures growth
that is naturally far from linear. Unfortunately, making the amplitude smaller would
cause complex coarsening dynamics to occur at early times (Razis et al. 2014) which
would also affect the calculation of the growth rate.

8. Conclusions and discussion
In this paper continuum equations have been developed that are an extension of

the µ(I)-rheology of Jop et al. (2006). Unlike the previous formulation, in which the
equations are ill posed for high and low inertial numbers, the equations proposed
here are well posed for all inertial numbers below an extreme maximum value. This
partial regularisation of the incompressible granular flow equations is achieved by
changing the functional form of the µ(I) curve. In the low inertial number limit the
functional form is derived directly from the well-posedness condition of Barker et al.
(2015). This µ(I) curve decays logarithmically such that µ→ 0 (rather than µ→µs)
as I → 0. For decelerating planar flow, where moving material comes to rest, this
curve is shown to give grid-independent, physically realistic numerical results. For
large inertial numbers the proposed curve is justified by experimental measurements
of chute flow, which suggest a quadratic dependence of µ on I. High inclination
angle numerical simulations are presented which show that this curve predicts a
uniform inertial number unlike the catastrophic pressure waves that form with the
unregularised model. Due to these favourable mathematical properties and the good
fit with experimental data, this form of regularisation is not simply a numerical trick,
but represents a clear and physically motivated improvement to the previous theory.

As well as flows which converge on uniform thickness constant inertial number
solutions, simulations of granular rollwaves are also detailed here. These waves are
due to a flow instability which occurs when the Froude number is above a critical
value and causes uniform thickness inclined flows to develop into travelling waves
with a steep front and elongated tail. Numerical computations with the regularised
rheology reveals that these waves have a range of inertial numbers with some regions
in the previously ill-posed regime. As the results of these calculations are a close
match with experimental measurements and the depth-averaged model of Gray &
Edwards (2014), the proposed equations are found to capture many of the important
physical features of real world liquid-like granular flows. It is therefore hoped that
in the future many other transient flows in complex geometries can be reliably and
accurately studied with this regularised rheology.

Future studies must also focus on the underlying physical basis of the proposed
extensions to the µ(I) curve. In the low inertial number limit, the lower values of µ
are similar to those predicted by non-local models yet our curve is uniquely defined
and not geometry dependent. Similarly in the large inertial number limit the trend that
µ is linear in I is similar to kinetic theory, but there is no explicit dependence on the
volume fraction or particle restitution coefficient. It is therefore of great interest if
this theory is in some sense a reflection of the physics captured by those models in
appropriate limits.
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Supplementary movie
Supplementary movie is available at https://doi.org/10.1017/jfm.2017.428.
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