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Allen at el. introduced an iterative wave function reconstruction scheme a couple of years ago [1]. 
This method finds an atomic-resolution wave function at the specimen exit surface based on the 
Gerchberg-Saxton type iteration using not a diffraction and image intensity pair, but a set of 
through-focus image intensities. Using this method a set of five images is normally sufficient to get 
a reasonably good exit wave, contrary to other methods such as the maximum likelihood method [2] 
or the Wiener filter method [3], which usually requires about twenty images. This method was 
successfully implemented as a plug-in [4] called IWFR for DigitalMicrograph [5]. Allen et al. starts 
the iteration with a set of wave functions, which are constructed from image amplitudes at observed 
planes and constant (null) phases at all the planes [1]. Each wave function is back-propagated to the 
nominal exit plane, and an average for these back-propagated waves gives a new estimate of the 
exit wave function (EWF). Then, the estimated EWF is propagated to each observed plane, and a 
new set of wave functions is constructed by keeping the phases but replacing the amplitudes by an 
observed ones. These updated wave functions are next back-propagated to the exit plane, and the 
iteration will continue until an estimated EWF converges. Surprisingly an estimated phase 
distribution at the first cycle of iteration usually demonstrates all the features of the final result. This 
means that our initial guess to start the Gerchberg-Saxton iteration is extremely good.  
 
This is explained by extending the spectral analysis of in-line hologram given by Guigay [6]. We 
will write image amplitude downstream of the object by a distance z: 
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pz  a propagator for a distance z. Then, a Fourier transform of the 
intensity is given [6]: 
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The process of back-propagation in Fourier space corresponds to multiplying by 
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exp(+i"#zu2) , 
which is a well-known defocusing factor in electron microscopy. Then, Eq. (2) reduces to 

! 

R
z
(u) = I

z
(u) " exp(+i#$zu2)

= %(u) +&(u) + exp(+i2#$zu2) " & ('u) + exp(i2( #xu))(x)) (x ' $zu)dx
 (3) 

As you may note the second and third terms in this expression correspond to an object spectrum 
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"(u)  and its conjugate spectrum, respectively. An average for back-propagated intensities of a set 
of N focal series with a defocus step ε becomes  
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Thus, the object spectrum adds up coherently, while the conjugate term adds up destructively. The 
weighting factor for the conjugate term will be transformed to 
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Here, L(x) has the same form of the Laue function used in x-ray crystallography, which becomes 
unity for integral x. Although the conjugate term for integral
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"#u2  adds up coherently, its 
contribution is scrambled by the preceding phase term. The contribution from the forth term is small 
for a weak scattering object. Even for a strong scattering object, its contribution may be small, if a 
displacement 

! 

"zuis larger than an object detail.  
 
When there are wave aberrations, we can include them in the equations above. Here, we replace 

! 

"(x) in Eq. (1) with 
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" # (x)  that is affected by all the aberrations except defocusing. When we 
correct the aberrations on the back-propagated intensities, Eq. (4) becomes 
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Here, 

! 

" # (u) is a wave aberration function that includes all the aberrations except defocusing. Thus, 
the conjugate term suffers from doubled aberration, and its contribution to the estimated EWF will 
further decrease. In conclusion, we can estimate the object spectrum 

! 

"(u)  from an average for FT’s 
of back-propagated intensities without knowing any phase information. This verifies the first step of 
IWFR, where the EWF (the object spectrum) is estimated from an average for FT’s of back-
propagated amplitudes. However, Eq. (4) shows that the object spectrum may be estimated more 
reliably from observed intensities than from amplitudes. This is verified in Fig. 1 using five images 
from a set of Si3N4 through-focus images obtained with a Philips CM300-FEG at NCEM. 
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Fig. 1 Phase distributions at (left) the first cycle and (right) the last (fifth) cycle. 
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