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We consider a production–inventory control model with two reflecting boundaries, repre-
senting the finite storage capacity and the finite maximum backlog. Demands arrive at the
inventory according to a Poisson process, their i.i.d. sizes having a common phase-type
distribution. The inventory is filled by a production process, which alternates between
two prespecified production rates ρ1 and ρ2: as long as the content level is positive, ρ1

is applied while the production follows ρ2 during time intervals of backlog (i.e., negative
content). We derive in closed form the various cost functionals of this model for the dis-
counted case as well as under the long-run-average criterion. The analysis is based on
a martingale of the Kella–Whitt type and results for fluid flow models due to Ahn and
Ramaswami.

1. INTRODUCTION

An important problem in production planning is to select the production rates, the stor-
age capacity and the backlog possibilities in order to cope with random fluctuation in the
demands. Determining how fast the production should respond to the randomly incom-
ing demands and to what extent their variability should be absorbed by accumulating
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inventory depends on the relative importance of various associated costs. One has to take
into account the cost rates for production, holding of inventory, backlogging, lost sales and
lost productivity. Fixing the production rate at one constant high level avoids backlogs but
causes high production and inventory costs. On the other hand, fixing the production rate
at a constant low level may lead to severe backlogging and lost sale opportunities.

In this paper, we consider a production–inventory model that combines a standard
compound Poisson demand arrival process with the following special features:

(a) the storage capacity is finite;
(b) backlog is permitted up to a threshold;
(c) there are two different production rates for the periods of positive and of negative

inventory content levels.

Specifically, the production rate is low (say ρ1) when the inventory level is above zero (so that
the inventory is not filled too quickly) and high (say ρ2 with ρ2 > ρ1) when the inventory
level is below zero (to reduce backorders and lost sales). We assume that a switch from
one production rate to the other takes no time. The demands arrive according to a Poisson
process with rate λ, and their sizes are independent random variables with an arbitrary
common phase-type distribution. If the storage facility is filled to capacity, the production
is stopped until a new demand arrives. Any demand which cannot be satisfied immediately
is backlogged, provided the total backlog does not exceed a given level; otherwise the excess
demand is lost.

In order to manage such a production–inventory model, one needs information about
the holding cost for the stock, the cost of lost production due to the finite storage capacity,
the shortage cost for the backlogged demand and the cost due to unsatisfied demand. The
main objective of this paper is to develop techniques to determine explicit formulas for all
these costs under the discounted as well as under the long-run average cost criterion.

For background on production–inventory control models see Doshi, Schouten and Tal-
man [8], in particular with regard to the long-run average cost criterion. Perry et al. [13]
studied the behavior of a broker in a dealership market whose buffer content is governed
by stochastically dependent demand and supply. Another related model is the so-called
clearing system (see e.g. Boxma et al. [6], Kella et al. [10] and Perry et al. [14]), which can
be regarded as the dual stochastic Economic Order Quantity (EOQ) model. In a clearing
system, the content process jumps back to zero when it reaches a certain positive level.

Our analysis is based on a combination of a certain martingale technique and an appli-
cation of fluid flow theory. The martingale approach was introduced by Kella and Whitt
[9] and was frequently used in the study of inventory models, see e.g. Perry et al. [13] and
Kella et al. [10] and references given therein.

Fluid flows have been an active area of research in recent years; one of their main
applications is to the modeling the traffic evolution in communication channels. A standard
example of a fluid flow is given by an infinite capacity buffer with inflow and outflow
rates controlled by a Markov chain. The buffer level increases or decreases linearly at the
current rate. When it becomes empty, several strategies can be applied: it can remain
empty until the demand level reaches a certain barrier (see e.g. Baek et al. [5]) or it can
have positive jumps at the boundary. Kulkarni and Yan [11,12] and Yan and Kulkarni [16]
studied inventory models with instant stock replenishments. They derive a system of first-
order non-homogeneous linear differential equations for the limiting distribution and an
EOQ policy that minimizes the long-run average cost. They also expand the model to allow
backlogging and exponential leadtimes. Ramaswami [15] and Ahn and Ramaswami [4,15]
presented a unified methodology for studying a large class of insurance risk models via fluid
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Figure 1. A typical sample path of the inventory level process.

flows by making use of the connection between an insurer’s surplus process and a particular
fluid flow. To the best of our knowledge, fluid flow methods have not yet been applied to
production–inventory models and the associated cost-related quantities.

The paper is organized as follows. In Section 2, we present the mathematical descrip-
tion of the model and the cost functionals. The crucial tools of our analysis are introduced
in Section 3. In Section 4, we derive all the cost functionals in closed form. A numer-
ical example is given in Section 5. Finally, the long-run average case is considered in
Section 6.

2. MATHEMATICAL DESCRIPTION OF THE MODEL

The counting process of the demand arrival times is a Poisson process {N(t), t ≥ 0} with
rate λ. We assume that the demand amounts V1, V2, . . ., are i.i.d. and have a phase-type
distribution with representation (ε, π,G). This is the distribution of the time until absorption
for a continuous-time Markov chain with a finite set ε of transient states and one absorbing
state. π is the vector of the initial probabilities for the transient states and G is the transition
rate matrix among the transient states. We set ε = {1, . . . , n}. Note that Go = −Ge is
the vector of transition rates to the absorbing state (where e is the vector with all its n
components equal to 1) and that the Laplace transform and the mean of V = V1 are given
by MV (α) = π(αI − G)−1Go and E(V ) = −πG−1e.

The storage capacity b is assumed to be finite. If the inventory is filled to capacity the
production is stopped, until a new demand arrives. We also suppose that backordering up
to a certain level −a is allowed (a > 0). Any backlog that exceeds this level is lost, and the
replenishment of the inventory continues from level −a.

The inventory is filled, by production, at rate ρ1, while its level is nonnegative and at
rate ρ2, while its level is negative. Since the demand sizes have a continuous distribution,
the only way to get to level 0 is from below (with probability 1), and at that time the rate
changes from ρ2 to ρ1.
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Let Ĭ(t) be the (double reflected) inventory level process. A typical sample path of Ĭ(t)
is given in Figure 1. The process satisfies the equation

Ĭ(t) = max

⎡⎣−a, Ĭ(0) +
∫ t

0

ρ11{Ĭ(s)∈[0,b)} ds +
∫ t

0

ρ21{Ĭ(s)<0)}ds −
N(t)∑
i=1

Vi

⎤⎦ , t ≥ 0, (1)

where 1A is the indicator of the event A.
Clearly, if a < ∞ and b < ∞ the inventory level process is stable (its expected return

time to level 0 is finite). In the case a = ∞ and b = ∞, the inequalities

ρ1 < λE(V ) < ρ2 (2)

are necessary and sufficient for stability. If only one of a and b is infinite, stability is equiv-
alent to the validity of the corresponding one of the two inequalities. Thus, if (2) holds,
Ĭ(t) is stable for all values of a and b. The first inequality ensures that high holding cost is
avoided, while the second one is needed to avoid high shortage cost.

The process Ĭ(t) can be partitioned into the positive process Ĭ+(t) = max[Ĭ(t), 0] and the
negative process Ĭ−(t) = −min[0, Ĭ(t)] = Ĭ+(t) − Ĭ(t). During their respective continuous
segments, Ĭ+(t) and −Ĭ−(t) increase at rates ρ1 and ρ2, respectively.

Owing to the drift condition (2), after the inventory process becomes negative, it will
upcross level zero with probability 1 and then continue at rate ρ1. The time instants of
these rate switchings are called recovery points:

T0 = 0 and Tn = inf{t > Tn−1 : Ĭ(t) = 0}, n ≥ 1.

They form a renewal process, and the inventory level process is regenerative with i.i.d. cycles
during [Tn−1, Tn). In every cycle Ĭ(t) switches from rate ρ1 to rate ρ2 exactly once; between
Tn−1 and Tn this switching occurs at time

τn = inf{t > Tn−1 : Ĭ(t) < 0}. (3)

We call the times τn the zero points. We will mainly consider the first cycle and write
τ and T for τ1 and T1.

Let us now introduce the functionals indicating the expected discounted costs in our
model, using the discount factor β > 0.

(a) Holding cost. The expected total discounted holding cost can be expressed as

HC(β) = hE

∫ ∞

0

e−βtĬ+(t) dt, (4)

where h dt is the holding cost for a unit of stock during an infinitesimal time interval of
length dt. Let ĥ(β) = E

(∫ τ

0
e−βtĬ(t) dt

)
. Invoking the ergodic theorem for regenerative

processes, we can write HC(β) in terms of the first cycle as

HC(β) =
hĥ(β)

1 − E(e−βT )
.

(b) Idle time cost. Owing to the finite storage capacity b, the production is stopped at
this level. As a measure for the expected discounted loss due to idle times of the production
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facility one can use the functional

KC(β) = kE

∫ ∞

0

ρ1e
−βt1{Ĭ+(t)=b} dt, (5)

where k dt is the cost of production loss, due to limited capacity, during a time interval of
length dt. Let k̂(β) = E

(∫ τ

0
e−βt1{Ĭ(t)=b} dt

)
. In terms of the first cycle, we have

KC(β) =
kρ1k̂(β)

1 − E(e−βT )
. (6)

(c) Shortage cost. The expected total discounted shortage cost is

SC(β) = −wE

∫ ∞

0

e−βtĬ−(t) dt, (7)

where w dt is the penalty cost for a unit of shortage during a time interval of length dt. We
use E

(
e−βτ

)
as shorthand notation for the 1 × n vector whose i component is given by

Ei

(
e−βτ

)
= E

(
e−βτ1{level 0 hit at time τ in phase i}

)
,

which is the Laplace transform of the time until zero point restricted to the event that
the process hits level 0 with phase i ∈ ε. Moreover, let ŝ(β) be the n × 1 vector whose ith
component is

ŝi(β) = Ei

(
−
∫ T−τ

0

e−βtĬ(t + τ) dt

)
,

i.e., the expected discounted shortage level, given the initial phase at the zero point is i ∈ ε.
Then we have, in terms of scalar products,

SC(β) = w
E
(
e−βτ

)
E
[
− ∫ T−τ

0
e−βtĬ(t + τ) dt

]
1 − E(e−βT )

=
wE

(
e−βτ

)
ŝ(β)

1 − E(e−βT )
. (8)

(d) Cost of unsatisfied demands. In our model, the backlog that exceeds level (−a)
is lost. Let ϕ be the penalty cost per unsatisfied unit of demand. An unsatisfied demand
occurs whenever the process Ĭ−(t) is down-crossing level (−a). Denote the ith time that
this is happening by ξi and the corresponding unsatisfied demand size by Yi (i.e., Yi =
Ĭ−(ξi) − (−a), see Figure 1). The expected total discounted cost of the unsatisfied demand
can be expressed as

UC(β) = ϕE
∑

i

e−βξi |Yi|. (9)

Let NY (T ) be the number of times a demand is unsatisfied in the first cycle and

û(β) = E

⎡⎣NY (T )∑
i=1

e−βξi |Yi|
⎤⎦ .

Regenerative theory yields

UC(β) =
ϕû(β)

1 − E(e−βT )
. (10)

Note that the functionals in (a) and (b) can be defined in terms of the positive process
(Ĭ+(t)), while the two in (c) and (d) depend only on the negative process (Ĭ−(t)).
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A simple cost function for the system would be the sum, TC(β), of these four expected
discounted costs, i.e.,

TC(β) = HC(β) + KC(β) + SC(β) + UC(β).

The long-run average cost TC can be derived from TC(β) by a well-known procedure:

TC = lim
β−→∞

βTC(β) = hE(Hc) + kE(Kc) + wE(Sc) + ϕE(Uc). (11)

In (11), E(Hc), E(Kc), E(Sc) and E(Uc) denote the expected values, in steady state, of the
inventory level, the production loss due to idleness, the back-ordering level and the amount
of unsatisfied demands, respectively. The four long-run average costs are given in terms of
first-cycle functionals as follows:

E(Hc) = lim
β→0

E
(∫ τ

0
e−βtĬ(t) dt

)
E(T )

=
E
(∫ τ

0
Ĭ(t) dt

)
E(T )

=
ĥ(0)
E(T )

, (12)

E(Kc) = lim
β→0

ρ1E
(∫ τ

0
e−βt1{Ĭ(t)=b} dt

)
E(T )

=
ρ1E

(∫ τ

0
1{Ĭ(t)=b}dt

)
E(T )

=
ρ1k̂(0)
E(T )

, (13)

E(Sc) = lim
β→0

−E
(∫ T

τ
e−βtĬ(t) dt

)
E(T )

=
−E

(∫ T

τ
Ĭ(t) dt

)
E(T )

=
ŝ(0)
E(T )

, (14)

E(Uc) = lim
β→0

E
(∑NY (T )

i=1 e−βξi |Yi|
)

E(T )
=

E
(∑NY (T )

i=1 |Yi|
)

E(T )
=

û(0)
E(T )

. (15)

The explicit formulas derived below for all these quantities also cover the case of the unre-
flected (or partially reflected) level content process, i.e., b = ∞ or a = ∞, in which the
inventory level is unbounded or no demand portions are lost.

3. MATHEMATICAL PRELIMINARIES

For the determination of the cost functionals we use two tools: (a) the matrix-analytic
approach and the theory of Markov-modulated fluid flows (initiated in a series of papers by
Ahn and Ramaswami [1]– [3] and (b) an application of the optional sampling theorem to a
special Kella–Whitt martingale.

3.1. The Fluid Inventory Model

Consider first the inventory level process above with no backlog and with infinite capacity
(a = 0, b = ∞) and with only one rate ρ, i.e., ρ1 = ρ2. (note that, in this case, the process
is either transient or null recurrent). We transform this process pathwise into a fluid flow
by replacing each (instantaneous) demand of size x by a segment of length x/ρ of linear
decrease at rate ρ per unit time. We call F(t) the fluid inventory process generated this way.
It can be described as follows. Introduce a modulating continuous-time Markov chain J (t)
with state space S = S1 ∪ S2, where S1 = {0} and S2 = ε = {1, 2, . . . , n}. Its infinitesimal
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generator Q is given in a block form according to transitions between the sets Si (i = 1, 2)

Q =
(

Q11 Q12

Q21 Q22

)
.

Now let F(t) be the level of the fluid at time t that is modulated as follows: whenever the
Markov chain is in S1 = {0} the fluid flow increases at rate ρ, and whenever it is in S2, F(t)
decreases at rate ρ.

Three variants of the fluid flow F are particularly useful in the analysis of our inventory
level process:

Finite buffer fluid flow: We define the finite buffer fluid flow bF , which allows the fluid
level to decrease only when it is positive and to increase only when it is less than the buffer
level b > 0.

Reflected fluid flow : The reflected fluid flow Fr is obtained by reversing the roles of the
up and down environment states.

Reflected finite buffer fluid flow : In a similar manner, we define the reflected finite buffer
fluid flow bFr.

In order to apply the fluid inventory model to our original process Ĭ(t), we consider
the two fluid models F1 and F2 corresponding to the positive and the negative inventory
process, respectively. For i = 1, 2 the (1 + n) × (1 + n) generator matrix Qi is given by

Qi =
( −λ λπ

ρiG
o ρiG

)
.

All the matrices and the quantities below have to be evaluated for F1 and for F2. The
computation in both cases is similar, by changing ρ to ρ1 or ρ2, and b to a, respectively.

In order to apply results for fluid models to our original process Ĭ(t), we make appropri-
ate changes in the clock time. Let σ(0, 0) be the first passage time from level 0 to level 0 in
the fluid inventory model. The following observations are follow from the fact that that for
the fluid model, upward and downward rates are all equal in absolute value to a common
constant ρ :

(a) The first passage time from level 0 to level 0 in the jump inventory model, say υ(0, 0)
is just half of the corresponding time in the fluid inventory model F , so that we have

υ(0, 0) = σ(0, 0)/2.

(b) For the corresponding intervals of descent from (x, S1) to (y, S2) with 0 ≤ y < x, we
have

σ(x, y) = 2υ(x, y) +
x − y

ρ
.

Note that (x − y)/ρ is the time in the fluid process to descend form x to y. Thus,
we get υ(x, y) = σ(x,y)

2 − x−y
2ρ .

(c) For the corresponding intervals of ascent from (x, S1) to (y, S1) with 0 ≤ x < y, we
have

υ(x, y) =
σ(x, y)

2
+

y − x

2ρ
.

This again in a consequence of the fact that all rates for the fluid model are equal
in absolute value.
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Table 1. Transform matrices.

Quantity Matrix size

K(s) = ρ−1(Q11 − sI) + Ψ(s) Θ−1Q21 1 × 1

H(s) = Θ−1(Q22 − sI + Q21Ψ(s)) n × n

Ξ(s, x) = Ψ(s)
∫
(0,x) eH(s)y(Θ−1Q21)e

K(s)ydy 1 × 1

Table 2. Transform matrices for the rate-reversed pro-
cess.

Quantity Matrix size

Kr(s) = Θ−1(Q22 − sI) + Ψr(s)ρ−1Q12 n × n

Hr(s) = ρ−1(Q11 − sI + Q12Ψ
r(s)) 1 × 1

Ξr(s, x) = Ψr(s)
∫
(0,x) eHr(s)y(ρ−1Q12)e

Kr(s)ydy n × n

Let Ψ(s) be the (1 × n) vector whose jth component is

E(e−sσ(0,0)1{J (τ)=j} | F(0) = 0),

which is the Laplace–Stieltjes transform (LST) of σ(0, 0) restricted to the event that the
demand hits level 0 at phase j and given that F(0) = 0. Ramaswami ( [15], Appendix 1)
shows how to compute Ψ(s) and provides a good algorithm for this. Analogously, Ψr(s) is
the vector (of order n × 1) whose jth component is the LST of the time to reach level 0
for the process Fr, given that Fr(0) = 0, J r(0) = j, where J r(t) is the modulated state
process for Fr.

To apply Ψ(s) for the original process, we use Ψ( s
2 ). Notice that Ψ(0) is a 1 × n proba-

bility vector. We write Ψ1 or Ψ2 if we refer to F1 or F2, respectively. Owing to the different
drifts, it is obvious that Ψ1(0)1 = 1 and Ψr

2(0) = e.
Let Θ = diag(ρ) be the (n × n) matrix with diagonal element ρ. All other LST matri-

ces for the hitting times that we will use are straightforward to evaluate once we have
computed Ψ(s). We list these matrices and their dimensions in Tables 1–3. All matrices
have nice probabilistic interpretations. For more details see Ramaswami [15] and Ahn and
Ramaswami [4].

Analogously to the matrices considered above for F , we also introduce the matrices
Ψr(s), Kr(s), Hr(s), Ξr(s) associated to the rate-reversed flow Fr, by changing the index
from 1 to 2 and from 2 to 1.

3.2. The Basic Martingale

Let X(t) be a Lévy process with no negative jumps and Lévy exponent ϕ(α) = log Ee−αX(1).
Let {Y (t), t ≥ 0} be an adapted process with finite expected variation on finite intervals,
and let Z(t) = X(t) + Y (t). Kella and Whitt ( [9], Theorem 2) have shown that the process

M(t, α) = ϕ(α)
∫ t

0

e−αZ(s) ds + e−αY (0) − e−αZ(t) − α

∫ t

0

e−αZ(s) dY (s), t ≥ 0 (16)

is a martingale. Some of the relevant functionals in this paper will be obtained by applying
the martingale stopping theorem to appropriate special cases of (16). For our model we
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Table 3. LSTs of the first passage times.

LST First passage time Matrix size

0f̂ r
22(0, x, s) = eKr(s)x(I + Ξr(s, x))−1 from (0, S2) to (x, S2) avoiding 0 in F r n × n

0f̂11(0, x, s) = eK(s)x(I + Ξ(s, x))−1 from (0, S1) to (x, S1) avoiding 0 in F 1 × 1

xΨr(s) = Ψr(s) −0 f̂r
22(0, x, s)Ψr(s)eHr(s)x from (0, S2) to (0, S1) avoiding x in F r n × 1

0ĥ12(b, b, s) = (sI − Q11)
−1Q12×

[
I −b Ψr(s/2)(sI − Q11)

−1Q12

]−1
from (b, S1) to (b, S1) avoiding 0 in bF 1 × n

xf̂22(x, 0, s) =0 f̂r
22(0, x, s) from (x, S2) to (0, S2) avoiding x in F n × n

xΨ(s) = Ψ(s) −0 f̂11(0, x, s)Ψ(s)eH(s)x from (0, S1) to (0, S2) avoiding x in F 1 × n

0f̂11(u, b, s) =
[
I −b−u Ψ(s)uΨr(s)

]−1
×0 f̂11(0, b − u, s) from (u, S1) to (b, S1) avoiding 0 in F 1 × 1

bf̂22(u, 0, s) =
[
I −u Ψr(s)b−uΨ(s)

]−1
× uf̂22(u, 0, s) from (u, S2) to (0, S2) avoiding b in F n × n
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consider in particular the process

X(t) =
N(t)∑
i=1

Vi − ρt, t ≥ 0

with N(t) and the Vi as above. In this case, the exponent of X(t) is

ϕ(α) = αρ + λπ(αI − G)−1 − λ.

In the next section, we derive the cost functionals for the positive and for the negative
inventory process separately. Note that given the phase j ∈ S2 at the zero point of a cycle,
the two processes are independent in this cycle.

4. THE DISCOUNTED MODEL

4.1. The Positive Inventory Process

Recall that τ denotes the time until the first zero point. Let τ̂(s) be the 1 × n vector whose
jth component is the restricted LST

E(e−sτ1{level 0 is downcrossed at time τ with phase j}).

Ahn and Ramaswami ([4], Theorem 7) have derived an expression for τ̂(s) by applying the
fluid model and the appropriate changes in the clock time, which we state as Lemma 1.

Lemma 1:

τ̂(s) = bΨ(s/2) + e
−sb
2ρ1 0f̂11(0, b, s/2) 0ĥ12(b, b, s) e

sb
2ρ1

bf̂22(b, 0, s/2).

Now consider a Lévy process X1(t) with exponent ϕ1(α) = αρ1 + λπ(αI − G)−1 − λ
and X1(0) = 0. Let L(t) = − inf0≤s≤t min[0, b + X1(s)]. The process L(t) is known as the
local time; for t < τ , it represents the lost production due to the capacity restriction until
time t. Let Z(t) = X1(t) + L(t). It is not difficult to see that this latter process up to time
τ , i.e., (Z((t))0≤t≤τ , has the same distribution as (−Ĭ(t))0≤t≤τ . Note that L(t) increases at
t if and only if Z(t) = −b.

Finally, define Y (t) = L(t) + (β/α)t (for an arbitrary β ≥ 0) and W (t) = X1(t) +
Y (t) = Z(t) + (β/α)t. Since Y (t) is adapted and has paths of finite expected variation,
the process

M(t, α) = ϕ1(α)
∫ t

0

e−αW (s) ds + e−αY (0) − e−αW (t) − α

∫ t

0

e−αW (s)dY (s)

= (ϕ1(α) − β)
∫ t

0

e−αZ(s)−βs ds + 1 − e−αZ(t)−βt − α

∫ t

0

e−αZ(s)−βsdL(s) (17)

is a martingale of zero mean (as Z(0) = 0). The optional sampling theorem yields 0 =
EM(0, α) = EM(τ, α), i.e.,

E

∫ τ

0

e−αZ(s)−βs ds =
E(e−αZ(τ)−βτ ) − 1 + αeαbE

∫ τ

0
e−βs dL(s)

ϕ1(α) − β
. (18)

To apply this equation to our problem we have to find E(e−αZ(τ)−βτ ) and E
∫ τ

0
e−βs dL(s).

https://doi.org/10.1017/S0269964814000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964814000023


A JUMP-FLUID PRODUCTION–INVENTORY MODEL 323

Lemma 2: We have
E(e−αZ(τ)−βτ ) = τ̂(β)(αI − G)−1Go,

where the vector τ̂(β) is given by Lemma 1.

Proof: Given that at the zero point the process hits level 0 at the demand phase j ∈ S2,
Z(τ) and τ are independent random variables and Z(τ) has the phase-type distribution
with presentation (ε, ej , G), where ej is a unit vector of order n with 1 in the jth place and
0 elsewhere. Applying the fluid method and Lemma 1 we obtain

E(e−αZ(τ)−βτ ) =
n∑

j=1

E(e−αZ(τ)−βτ1{J (τ)=j})

=
n∑

j=1

E(e−βτ1{J (τ)=j})E(e−αεj ) = τ̂(β)(αI − G)−1Go.

The lemma is proved. �

Regarding the term E
∫ τ

0
e−βs dL(s), we note that

E

∫ τ

0

e−βsdL(s) = ρ1E

∫ τ

0

e−βs1{Z(s)=−b} ds = ρ1k̂(β),

where k̂(β) has been defined as the expected discounted idle time due to the storage maxi-
mum b. Let k̂ b(β) be the n-column vector whose jth component is the expected discounted
idle time until the zero point, given that Ĭ(0) = b,J (0) = j, i.e., given that at time 0 the
process exits level b due to a demand at phase j ∈ S2.

Lemma 3: The vector k̂ b(β) is given by

k̂ b(β) =
(

I − λ

β + λ
bΨr

1

(
β

2

)
π

)−1
bΨr

1

(
β

2

)
1

β + λ
. (19)

Proof: Once the storage level hits b, the production is stopped for a random time ζ until
the next demand arrival, where ζ is exponentially distributed with rate λ. We can write
k̂ b(β) as follows:

k̂ b(β) = bΨr
1

(
β

2

)
E

(∫ ζ

0

e−βtdt

)
+ bΨr

1

(
β

2

)
E(e−βζ)πk̂ b(β). (20)

The jth component of the n × 1 vector bΨr
1(

β
2 ) is the expected discounted time to reach level

b without touching level 0, given that at time 0 the process exits from b due to a demand at
phase j. The expected discounted duration of the idle period, given that the process reaches
level b, is E

(∫ ζ

0
e−βt dt

)
. The second term of (20) is the expected discounted time until

the second time that the process hits level b. Solving (20) for k̂ b(β) we obtain (19). �

Lemma 4:

k̂(β) = e−β/2ρ1
0f̂11

(
0, b,

β

2

)
1

β + λ
(1 + λπk̂ b(β)). (21)
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Proof: We can write k̂(β) as follows:

k̂(β) = e−β/2ρ1
0f̂11

(
0, b,

β

2

)[
E

(∫ ζ

0

e−βtdt

)
+ E(e−βζ)πk̂ b(β)

]
. (22)

According to Table 3 (with the appropriate changes in the clock time), e−βb/2ρ1
0f̂11(0, b, β

2 )
is the expected discounted time to hit level b first given that Ĭ(0) = 0. From that point the
production is stopped for a time ζ. By the proof of Lemma 3, the second term of (22) is the
expected discounted idle time after the first exit from level b. �

To determine −E
∫ τ

0
e−βsZ(s) ds = E

∫ τ

0
e−βsĬ(s) ds, take the derivative on both sides

of (18) with respect to α and let α tend to 0 in the resulting equation. This yields

ĥ(β) = E

∫ τ

0

e−βsĬ(s)ds =
−β(τ̂(β)G−1e + ρ1k̂(β)) − (τ̂ (β)e − 1) (ρ1 − λE(V ))

β2
. (23)

For b → ∞ we have τ̂(β) → Ψ1(β
2 ), k̂(β) → 0. Thus, we get for the limiting case of

infinite capacity

E

∫ τ

0

e−βsĬ(s) ds =
−β
(
Ψ1(β

2 )G−1e
)
−
(
Ψ1(β

2 )e − 1
)

(ρ1 − λE(V ))

β2
.

4.2. The Negative Inventory Process

The negative inventory process stays at level 0 up to time τ and then moves in [−a, 0) until
time T. We shift the time origin to τ . Recall that back-ordering up to level −a is allowed
and that any backlog that exceeds this level is lost so that the inventory level thereafter
restarts from level −a.

Let X2(t) be a Lévy process starting at X2(0) = 0 and having exponent

ϕ2(α) = αρ2 + λπ(αI − G)−1 − λ.

Assume that at the zero point the demand phase is i ∈ S2. Let εi ∼ PH(ε, ei, G). Let Yi(t) =
εi + (β/α)t (for an arbitrary β ≥ 0). Yi(t) is an adapted process and has paths of finite
expected variation. Let Zi(t) = X2(t) + εi and Wi(t) = X2(t) + Yi(t) = Zi(t) + (β/α)t.

Now define the stopping times

Li = inf{t ≥ 0 : Zi(t) = 0 or Zi(t) > a}, (24)

T̃i = inf{t ≥ 0 : Zi(t) = 0}. (25)

The distribution of the process (Zi(t))0≤t<Li
is the same as the conditional distribution of

(−Ĭ(τ + t))0≤t<Li
, given that at the zero point the demand phase is i ∈ S2 .

Similarly as above, we introduce Y a(t) = a + (β/α)t, Za(t) = X2(t) + a and W a(t) =
X2(t) + Y a(t) = Za(t) + (β/α)t. Moreover, we define the stopping times La, T̃ a associated
to the process Za(t). Clearly Za(t) describes the reflected negative process for the case of
initial inventory level a due to lost sales.
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Let

Ri(α) = Ei

∫ T̃i

0

e−αZi(s)−βs ds, (26)

Ra(α) = Ea

∫ T̃ a

0

e−αZa(s)−βs ds, (27)

where Ei (Ea) denotes conditional expectation given that the initial phase is i ∈ S2 (given
that Za(0) = a). For convenience, we will drop the index i and write L, T̃ , Z(t) instead of
Li, T̃i, Zi(t). Next, we compute the vector

R(α) = (R1(α), . . . , Rn(α))T .

Proposition 1:

Ri(α) = Ei

∫ L

0

e−αZ(s)−βsds + Ei[e−βL1{L<T̃}]R
a(α), (28)

Ra(α) = E

∫ La

0

e−αZa(s)−βsds + E
[
e−βLa

1{La<T̃ a}
]
Ra(α). (29)

Proof:

Ri(α) = Ei

∫ T̃

0

e−αZ(s)−βsds = Ei

∫ L

0

e−αZ(s)−βsds + Ei

∫ T̃

L

e−αZ(s)−βsds

= Ei

∫ L

0

e−αZ(s)−βsds + Ei

∫ T̃

L

e−αZ(s)−βs1{L<T̃}ds + Ei

∫ T̃

L

e−αZ(s)−βs1{L=T̃}ds

= Ei

∫ L

0

e−αZ(s)−βsds + Ei

∫ T̃−L

0

e−αZ(u+L)−β(u+L)1{L<T̃}du.

On the event {L < T̃} the process Z(s) exceeds level a before reaching level 0 and then
restarts from a. In this case, Z(L + u) is distributed as Za(u), T̃ − L is distributed as T̃ a,
and we obtain

Ri(α) = Ei

∫ L

0

e−αZ(s)−βsds + Ei(e−βL1{L<T̃})E
∫ T̃ a

0

e−αZa(s)−βsds

= Ei

∫ L

0

e−αZ(s)−βsds + Ei

[
e−βL1{L<T̃}

]
Ra(α). (30)

The proof of (29) is similar. �

Rearrange terms in (29) to obtain

Ra(α) =
E
∫ La

0
e−αZa(s)−βsds

1 − E
[
e−βLa1{La<T̃ a}

] . (31)

Regarding the denominator in (31), note that

E
[
e−βLa

1{La<T̃ a}
]

= aΨ2(
β

2
)1.
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Next, we have to determine the numerator in (31), i.e., E
∫ La

0
e−αZa(s)−βsds. We use the

Kella–Whitt martingale

Ma(α, t) = ϕ2(α)
∫ t

0

e−αW a(s)ds + e−αY a(0) − e−αW a(t) − α

∫ t

0

e−αW a(s)dY a(s) (32)

= (ϕ2(α) − β)
∫ t

0

e−αZa(s)−βsds + e−αa − e−αZa(t)−βt. (33)

Its mean is zero, as Za(0) = a. Applying the optional sampling theorem yields 0 =
EMa(α, 0) = EMa(α,La), which is tantamount to

(ϕ2(α) − β) E

∫ La

0

e−αZa(s)−βsds = E(e−αZa(La)−βLa

) − e−αa (34)

= E(e−αZa(La)−βLa

1{La=T̃ a}) + E(e−ααZa(La)−βLa

1{La<T̃ a}) − e−αa. (35)

If La = T̃ a then Za(La) = 0 while if La < T̃ a, conditional on the process hitting level a
at phase j, we have Za(La) = a + εj , and Za(La) is independent of the La and the past
before La. Now the fluid flow approach yields

E(e−αZa(La)−βLa

1{La=T̃ a}) = e−β/2ρ2
0f̂11

(
0, a,

β

2

)
, (36)

E(e−αZa(La)−βLa

1{La<T̃ a}) = e−αa aΨ2

(
β

2

)
(αI − G)−1Go. (37)

Substituting (36) and (37) into (34) we find that

E

∫ La

0

e−αZa(s)−βsds =
−e−αa + e−β/2ρ2

0f̂11(0, a, β
2 ) + e−αa aΨ2(β

2 )(αI − G)−1Go

ϕ2(α) − β
.

(38)
Substituting (38) into (31) leads to a formula for Ra(α).

Similarly, we can derive the terms Ei

∫ L

0
e−αZ(s)−βsds and Eie

−βL1{L<T̃}, relying on
the martingale

Mi(α, t) = (ϕ2(α) − β)
∫ t

0

e−αZi(s)−βsds + e−αYi(0) − e−αZi(t)−βt. (39)

The process Zi(t) starts from phase i ∈ S2. We first apply the fluid description of the process
and obtain the vector representations

E(e−αZ(L)−βL1{L=T̃}) = aΨr
2

(
β

2

)
, (40)

E(e−αZ(L)−βL1{L<T̃}) = e−αa e
βa
2ρ2 0f̂22

(
a, 0,

β

2

)
(αI − G)−1Go. (41)

Second, we use the optional sampling theorem for (39), and inserting (40) yields the (n × 1)
expectation vector

E
∫ L

0

e−αZ(s)−βsds =
−Ee−αε + aΨr

2(
β
2 ) + e−αa e

βa
2ρ2 0f̂22(a, 0, β

2 )(αI − G)−1Go

ϕ2(α) − β
. (42)

Here, Ee−αε is an (n × 1) vector. It is equal to (αI − G)−1Go.
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From (42) and (31) we obtain a formula for the vector R(α).

Finally, to determine ŝi(β) = −Ei

∫ T̃

0
e−βsĬ(s + τ) ds, we take the derivative of (26)

with respect to α and let α tend to 0.
Remark: For the limiting case a = ∞ (no backlog restriction), we get

Ri(α) = Ei

∫ T̃

0

e−αZ(s)−βsds =
Ei[e−αZ(T̃ )−βT̃ ] − Ei(e−αεi))

ϕ2(α) − β
. (43)

Note that Z(T̃ ) = 0, Ei(e−βT̃ ) = eiΨr
2(

β
2 ), Ei(e−αεi) = ei(αI − G)−1Go. Substituting in

(43), taking the derivative with respect to α and then letting α → 0, we obtain the Laplace
transform vector

ŝ(β) = −β−2

[
βG−1e −

(
Ψr

2

(
β

2

)
− e

)
(ρ2 − λE(V ))

]
. (44)

Next, we turn to the cost of unsatisfied demand. Recall that we denote the occurrence time
of the kth unsatisfied demand by ξk and the lost amount by Yk.

Let ûa(β) be the (n × 1) vector whose ith component is the conditional expected dis-
counted total value of the unsatisfied demands, given that the negative process starts at
phase i ∈ S2 and at time 0. Denote by u0(β), the conditional expected discounted total
value of unsatisfied demands, given the process starts at level −a (a scalar).

Proposition 2: The vector ûa(β) and the scalar û0(β) are given by

ûa(β) = eβa/2ρ2 af̂22

(
a, 0,

β

2

)[
(−G)−1e + e û0(β)

]
, (45)

û0(β) = aΨ2

(
β

2

)[
(−G)−1e + e û0(β)

]
. (46)

Proof: Let us change the Y -coordinate such that level 0 becomes level a, and level −a
becomes 0. Thus, the negative process starts at level a. If the process hits level 0 before
level a, say at phase j, an unsatisfied demand occurs. By applying the fluid model and
the appropriate changes in the clock time, the LST of that time is eβa/2ρ2ej

af̂22(a, 0, β
2 ).

The size of the associated unsatisfied demand, εj , has a PH(ε, ej , G) distribution. Then the
process restarts from level 0 and its expected discounted demand loss from then on is û0(β).
This yields (45) (in a vector form). From (45) we get û0(β) by setting a = 0. �

To derive û(β) we use Proposition 2 and the LST of τ . We obtain

û(β) = E(e−βτ )ûa(β) = τ̂(β)ûa(β). (47)

4.3. The LST of a Cycle Length

To complete the treatment of the discounted model, we finally need to determine the LST
of a cycle length. Clearly,

E(e−βT ) = E[e−β(τ+T−τ)] = E[e−βτe−βT̃ ].

Given that the phase at the zero point is j ∈ S2, we have that e−βτ and e−βT̃ are
independent. Thus,

E(e−βT ) = E[e−βτ ]E[e−βT̃ ] = τ̂(β)E[e−βT̃ ].
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To derive the LST of the negative process cycle, let the scalar E0(β) be the LST of the time
until the process exceeds level (−a) before level 0, given that the process starts at level −a.

Proposition 3: Ee−βT̃ and E0(β) are given by

E[e−βT̃ ] = e
βa
2ρ2

af̂22

(
a, 0,

β

2

)
eE0(β) +a Ψr

2

(
β

2

)
, (48)

E0(β) = aΨ2

(
β

2

)
eE0(β) + e

−βa
2ρ2 0f̂11

(
0, a,

β

2

)
. (49)

Proof: Assume that the negative process starts with phase i ∈ S2. We apply the fluid
model and the appropriate changes in the clock time. There are two possibilities: either the
process hits level (−a) before level 0; or the LST of this time is e

βa
2ρ2 ei

af̂22(a, 0, β
2 )e. The

second possibility is to reach the recovery point without exceed level (−a). The LST of this
time is ei

aΨr
2(

β
2 ). This yields the vector representation (48). The scalar E0(β) is obtained

similarly. �

Remark: For a → ∞ we get Ee−βT̃ → Ψr
2(

β
2 ) and Ee−βτ → Ψ1(β

2 ).

5. NUMERICAL EXAMPLE

Example 1: We consider an underlying Poisson process with intensity λ = 2. The demand
size has a phase-type distribution with initial probability vector π = (0.5614, 0.4386) and a
transition rate matrix

G =
(−8.64 1.997

0.101 −1.095

)
.

We fix the discount factor, the storage capacity and the threshold level as follows:

β = 0.01, b = 5, a = 7.

Let ρ1 vary in {0.2, 0.3, 0.4, 0.5, 0.6} and ρ2 vary in {1, 1.25, 1.5, 1.75, 2}. We determine
the expected discounted holding cost, shortage cost and unsatisfied cost components. We
do not reproduce lengthy tables of calculated values (which are not very illuminating)
but instead present our results in terms of graphical displays. Figures 2, 3 and 4 show
HC(β)/h, SC(β)/w and UC(β)/ϕ as functions of ρ1 and ρ2, respectively. (We could also
have simply set h,w and ϕ equal to 1.)

In Figure 2, we see that the holding cost increases as a function of ρ2 and appears to
be a concave function of ρ1. Moreover, we can conclude that for each value of ρ2 there is a
maximum holding cost, which increases as ρ2 increases.

Figures 3 and 4 look similar, showing SC(β)/w and UC(β)/ϕ as decreasing functions
of ρ1 and ρ2. They are convex in ρ2 for fixed ρ1.

6. THE LONG-RUN AVERAGE COST

Let us finally deal with the various long-run average cost criterion. For the positive inventory
process, we derive the holding cost ĥ(0) and the idle cost due to the finite storage capacity b.
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Figure 2. The holding cost component, HC(β)/h.

Figure 3. The shortage cost component, SC(β)/w.

Setting β = 0 in (18) yields

E

∫ τ

0

e−αZ(s) ds =
τ̂(0)(αI − G)−1Go − 1 + αeαbEL(τ)

ϕ1(α)
. (50)

τ̂(0) is an 1 × n probability row vector, where τ̂(0)j is the probability that the phase at
the zero point is j ∈ S2. Take the derivative with respect to α, let α tend to 0 and use
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Figure 4. The unsatisfied cost component, UC(β)/ϕ.

l’Hôpital’s rule. One finds that

ĥ(0) = E

∫ τ

0

Ĭ(s) ds =

[
E(V 2

τ ) + 2bEL(τ)
]
(ρ1 − λE(V )) + λE(V 2) [E(Vτ ) − EL(τ)]

2(ρ1 − λE(V ))2
,

(51)
where Vτ has a phase type-distribution with representation PH(ε, τ̂(0), G).

To complete the derivation of ĥ(0) we have to find EL(τ); note that EL(τ) = ρ1k̂(0).
Dickson and Waters [7] derived the moment-generating function of L(τ) as a function

of q0 and qb, where q0 (qb) is the probability of hitting level b before the zero point, given
that the initial inventory is 0 (b). They showed that

EL(τ) =
ρ1qu

λ(1 − qb))
.

Thus, the total amount of production loss until the zero point is 0 with probability 1 − q0,
and with probability q0 it is exponentially distributed with parameter (1 − qb)λ/ρ1. In our
case, q0 = 0f̂11(0, b, 0) and qb = π bΨr

1(0). Hence, we obtain

k̂(0) = 0f̂11(0, b, 0)
λ(1 − πbΨr

1(0)
. (52)

Remark: For b → ∞ we have τ̂(0) → Ψ1(0). From (51) and EL(τ) = 0, it follows that in
the case of infinite storage capacity

ĥ(0) =
E(V 2

Ψ) (ρ1 − λE(V )) + E(VΨ)λE(V 2)
2 (ρ1 − λE(V ))2

,

where VΨ has a phase-type distribution with representation PH(ε,Ψ1(0), G).
For the negative inventory process, we derive two costs: ŝ(0), the shortage cost for

backlogged orders, and û(0), the lost sales cost due to the minimum level −a.
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Figure 5. The expected value of the inventory level.

Assume that the process starts at phase i ∈ S2. Inserting β = 0 in (26) and (27) yields

Ri(α) = Ei

∫ L

0

e−αZ(s)ds + Pi(L < T̃ )Ra(α),

Ra(α) =
Ea

∫ La

0
e−αZa(s)ds

1 − Pa(La < T̃ a)
=

−e−αa + (1 − aΨ2(0)e) + (e−αa) aΨ2(0)(αI − G)−1Go

ϕ2(α)[1 − aΨ2(0)e]
.

(53)

Using the fluid method, we obtain the (n × 1) probability vector Pi(L < T̃ ) = af̂22(a, 0, 0)e.
Inserting β = 0 in (42) leads to the (n × 1) vector

R(α) =
−(αI − G)−1Go + aΨr

2(0) + e−αa
0f̂22(a, 0, 0)(αI − G)−1Go

ϕ2(α)
+ af̂22(a, 0, 0)Ra(α).

(54)
Now take the derivative with respect to α, let α tend to 0 and use l’Hôpital’s rule twice to
get ŝ(0).

Remark: Consider the case a = ∞. Note that τ̂(0) is the row vector of the probabilities of
the phases at time τ . Now inserting β = 0 in (43), taking the derivative with respect to α,
letting α tend to 0 and using l’Hô pital’s rule, we arrive at

ŝ(0) =
E(V 2

τ ) (ρ2 − λE(V )) + E(Vτ )λE(V 2)
2 (ρ2 − λE(V ))2

.

Of course, as a = ∞ is the case of arbitrary backlog, we have û(0) = 0.
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For the long-average cost analysis, we also need to know the expected cycle time E(T ).
Recall that E(T ) = E(τ) + E(T̃ ).

Take (50), set α = 0, use l’Hôpital’s rule and obtain

E(τ) =
EL(τ) − E(Vτ )

ρ1 − λE(V )
. (55)

EL(τ) can be found in (52). For b → ∞ we obtain E(τ) = Ψ1(0)G−1e/ (ρ1 − λE(V )).
Regarding E(T̃ ), let α tend to 0 in (53), use l’Hôpital’s rule to get a formula for the

vector R(0):

R(0) =
−a af̂22(a, 0, 0)e − af̂22(a, 0, 0)(−G−1)e − G−1e

ρ2 − λE(V )
.

Thus,
E(T̃ ) = τ̂(0)R(0). (56)

In the case a = ∞, we obtain E(T̃ ) = −τ̂(0)G−1e/ (ρ2 − λE(V )) .

Example 2: We consider the same data as in the Example section above. Figure 5 displays
the expected values of the inventory level in steady state. As expected, E(Hc) increases as
a function of ρ1 and ρ2.

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft (grant no. 306/13-2).

References

1. Ahn, S. & Ramaswami, V. (2004). Transient analysis of fluid flow Models via stochastic coupling to a
queue. Stochastic Models 20: 71–101.

2. Ahn, S. & Ramaswami, V. (2005). Efficient algorithms for transient analysis of stochastic fluid flow
models. Journal of Applied Probability 42: 531–549.

3. Ahn, S. & Ramaswami, V. (2006). Transient analysis of fluid models via elementary level-crossing
arguments. Stochastic Models 22: 129–147.

4. Ahn, S., Badescu, A.L. & Ramaswami, V. (2007). Time dependent analysis of finite buffer fluid flows
and risk models with a dividend barrier. Queueing Systems 55: 207–222.

5. Baek, J.W., Lee, H.W., Lee, S.W. & Ahn, S. (2011). A Markov modulated fluid flow queueing model
under D-policy. Numerical Linear Algebra with Applications 18: 993–1010.

6. Boxma, O.J., Perry, D. & Stadje, W. (2001). Clearing models for M/G/1 queues. Queueing Systems
38: 287–306.

7. Dickson, D.C.M. & Waters, H.R. (2004). Some optimal dividends problems. ASTIN Bulletin 34:
49–74.

8. Doshi, B.T., Van Der Duyn Schouten, F.A. & Talman, J.J. (1978). A Production inventory control
model with a mixture of back-orders and lost-sales. Management Science 24: 1078–1087.

9. Kella, O. & Whitt, W. (1992). Useful martingales for stochastic storage processes with Lévy input.
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