
TPLP 23 (4): 848–864, 2023. c© The Author(s), 2023. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-

ShareAlike licence (http://creativecommons.org/licenses/by-sa/4.0/), which permits re-use, distri-

bution, and reproduction in any medium, provided the same Creative Commons licence is used to

distribute the re-used or adapted article and the original article is properly cited.

doi:10.1017/S147106842300025X First published online 21 July 2023

848

Logic-Based Benders Decomposition in Answer Set
Programming for Chronic Outpatients Scheduling

PAOLA CAPPANERA
DINFO, Università degli Studi di Firenze, Italy

(e-mail: paola.cappanera@unifi.it)

MARCO GAVANELLI and MADDALENA NONATO
DE, Università degli Studi di Ferrara, Italy

(e-mails: marco.gavanelli@unife.it, maddalena.nonato@unife.it)

MARCO ROMA
DINFO, Università degli Studi di Firenze, Italy

(e-mail: marco.roma@unifi.it)

submitted 30 May 2023; revised 21 June 2023; accepted 22 June 2023

Abstract

In answer set programming (ASP), the user can define declaratively a problem and solve it with
efficient solvers; practical applications of ASP are countless and several constraint problems
have been successfully solved with ASP. On the other hand, solution time usually grows in a
superlinear way (often, exponential) with respect to the size of the instance, which is impractical
for large instances. A widely used approach is to split the optimization problem into subproblems
(SPs) that are solved in sequence, some committing to the values assigned by others, and
reconstructing a valid assignment for the whole problem by juxtaposing the solutions of the
single SPs. On the one hand, this approach is much faster due to the superlinear behavior; on
the other hand, it does not provide any guarantee of optimality: committing to the assignment
of one SP can rule out the optimal solution from the search space. In other research areas, logic-
Based Benders decomposition (LBBD) proved effective; in LBBD, the problem is decomposed
into a master problem (MP) and one or several SPs. The solution of the MP is passed to the
SPs that can possibly fail. In case of failure, a no-good is returned to the MP that is solved
again with the addition of the new constraint. The solution process is iterated until a valid
solution is obtained for all the SPs or the MP is proven infeasible. The obtained solution is
provably optimal under very mild conditions. In this paper, we apply for the first time LBBD
to ASP, exploiting an application in health care as case study. Experimental results show the
effectiveness of the approach. We believe that the availability of LBBD can further increase the
practical applicability of ASP technologies.

KEYWORDS: answer set programming, logic-based Benders decomposition, outpatients
appointment scheduling, chronic patients with comorbidities

1 Introduction

Answer set programming (ASP) is recently gaining momentum not only in the logic

programming area but also in the constraint optimization and Operations Research

communities. ASP relies on the Stable Model Semantics Gelfond and Lifschitz (1988);

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1017/S147106842300025X
mailto:paola.cappanera@unifi.it
https://orcid.org/0000-0001-7433-5899
mailto:marco.gavanelli@unife.it
mailto:maddalena.nonato@unife.it
https://orcid.org/0000-0002-0925-212X
mailto:marco.roma@unifi.it
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S147106842300025X&domain=pdf
https://doi.org/10.1017/S147106842300025X

Logic-Based Benders Decomposition in ASP 849

in an ASP formulation of a combinatorial problem, the solution is encoded in such a

way that a stable model (or answer set) of the program corresponds to a solution of

the problem. Most ASP solvers divide the solution process into two steps: a grounding

phase, in which a ground program having the same stable models of the original pro-

gram is generated, followed by a solving phase in which the answer sets are computed.

The number of applications is impressive, deserving five surveys in a few years Erdem

et al. (2016); Dal Palù et al. (2018); Falkner et al. (2018); Kifer and Liu (2018); Schüller

(2018).

However, many problems coming from real-life applications cannot be solved in reason-

able time because their solution time is superlinear (often, exponential) with the instance

size and the instances are very large. As splitting large problems can simplify them, the

ASP literature reports many applications in which a difficult problem is split into two (or

more) subproblems (SPs) that are then solved in sequence (see e.g., the studies presented

by Guido et al. (2020), Cardellini et al. (2021), Caruso et al. (2023), and El-Kholany et al.

(2022) just to name a few). Such an approach could be described as follows. Consider

a problem P , in which a function f(x, y) is maximized subject to a set of conditions

C(x, y), Cx(x), Cy(y), where x and y are two vectors of variables, that range respectively

in the domains Dx and Dy:

P : max{f(x, y) | x ∈ Dx, y ∈ Dy, Cx(x), Cy(y), C(x, y)}. (1)

Suppose that solving P is too computationally demanding. The splitting approach would

split P into, for example, two SPs Px and Py (we simplify the exposition by considering

two SPs, although the approach could be extended to more levels and SPs), in which Px

might be responsible of assigning values to x variables, while Py to the y variables. One

could then find the optimal assignment x∗ for Px:

x∗ = argmax
x
{f(x, y) | x ∈ Dx, Cx(x)}, (2)

then solve the remaining SPs:

y∗ = argmax
y
{f(x∗, y) | y ∈ Dy, Cy(y), C(x∗, y)}, (3)

and finally provide the pair (x∗, y∗) as proposed solution of the whole problem (1).

This approach can be considerably faster than solving the whole problem (1) due to

the superlinear solving time; on the other hand, it also has a number of issues. First, the

optimal solution x∗ for the first SP might be impossible to extend to the y variables,

that is, there might be no assignment to the y variables such that C(x∗, y) is satisfied.

In some applications, one might be able to split the problem in such a way that for each

value of the x variables there always exists an assignment to the y variables (and, indeed,

in the aforementioned applications Guido et al. (2020); Cardellini et al. (2021); Caruso

et al. (2023); El-Kholany et al. (2022) the authors were able to find such an intelligent

splitting); nevertheless, this limits the applicability of the splitting approach only to some

specific applications. Second, even if for x∗ there exists an assignment y∗ that satisfies

all constraints C(x∗, y∗), the pair (x∗, y∗) might be not optimal for the global problem

P . In general, committing too early to the solution of one SP might prevent the optimal

solution to be found. This splitting approach could be thought of as a (very clever) greedy

algorithm, in which one solves to optimality the first SP, greedily commits to it, and then

solves the second SP.

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300025X

850 P. Cappanera et al.

Benders decomposition is a technique to decompose a problem into SPs while retaining

the ability to obtain the optimal solution and prove its optimality. It was born in the

realm of Operations Research and relies on the duality theory of Linear Programming.

It was later extended to approaches that cannot rely on a duality theory in the so-called

logic-based Benders decomposition (LBBD) Hooker and Ottosson (2003).

In LBBD, a master problem (MP) is solved first and provides tentative values that are

passed to the SPs. Consider the generic problem in equation (1); the optimal solution x∗

of the master problem (MP) is obtained as in equation (2), and it is provided to the SP.

Now, the SP (equation (3)) is solved using the suggested values x∗. Two situations

may occur: either the SP is proven infeasible or its optimal solution y∗ is found.

In case of infeasibility, clearly the assignment x∗ is not acceptable for the whole problem
(1), so a constraint that rules out x∗ is forwarded from SP to MP. Such a constraint is

named a feasibility cut, and it is added to the MP formulation.

In case SP is feasible, its optimal solution y∗ is obtained together with the correspond-

ing value of objective function v∗ = f(x∗, y∗); again a new constraint, called Benders

cut, is returned to the MP. Such constraint relates the MP variables x with v∗ through

a function Bx∗(x), imposing an upper bound on the value of the objective function:

Bx∗(x) ≤ v∗. (4)

How to formulate the function Bx∗(x) is left to the designer of the LBBD solution

process, and it is a challenge, as it can highly influence the efficiency of the decom-

position. In order to devise Benders cuts, the idea is that the SP solver proved that

v∗ was optimal for the SP, obtaining a proof of optimality that can be written as

(∀y) f(x∗, y) ≤ v∗; such a proof of optimality might also be extended to include val-

ues of x different from x∗. Delving into further details of this fascinating subject would

distract us from the main topic of this paper; the interested reader can refer to Hooker

(2019) for an introduction to LBBD and some examples of Bx∗(x) functions in practical

instances.

In both cases (SP feasible / infeasible), a new iteration is started: the MP with the

additional constraints is solved again, and the iteration continues until either the MP

is proven infeasible (and in such a case, the whole problem is infeasible) or the optimal

solution is found. In any iteration, the optimal solution of the MP is an upper bound of

the whole problem (1): since the MP contains a subset of the constraints of the whole

problem P , it is actually one of its relaxations, so its optimal value is optimistic with

respect to the real optimum of (1). Again, in each iteration, the pair (x∗, y∗), obtained
by juxtaposing the optimal solution y∗ of the SP (3) with the optimal solution x∗ of the

MP, is a valid solution, so its value f(x∗, y∗) is a lower bound of the whole problem P . If

at any iteration the lower bound is equal to the upper bound, then (x∗, y∗) is provably

optimal for problem P . A sufficient condition for the termination of the iteration is that

the bounds (4) are valid and the variables’ domains are finite Hooker and Ottosson

(2003).

In various interesting cases, this procedure can be simplified; in particular if the SPs

are feasibility problems, that is, in equation (1) the objective function f does not depend

on the y variables, the LBBD algorithm can be described as in Algorithm 1.

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300025X

Logic-Based Benders Decomposition in ASP 851

Algorithm 1 LBBD scheme in case the subproblem is a feasibility problem.

i← 0

repeat

i← i+ 1

x∗
i = Solve(MP)

if MP is infeasible then return infeasible

y∗i = Solve(SP, x∗
i)

if SP is infeasible then generate a feasibility cut ruling out x∗
i and add it to MP

until SP is feasible

return (x∗
i , y

∗
i)

In the rest of the paper, we will focus on decompositions in which the SPs are feasibility

problems, that is, the y variables do not explicitly occur in the objective function.

LBBD can provide strong speedups, in particular when there is a hierarchical relation

between the solution of the MP and that of the SP, so that, once the assignment is found

for the MP, the SP becomes easy in some sense (it could be a theoretically easy problem –

for example, a problem in P – or a problem that is experimentally found to be relatively

easy). Further speedups can be obtained when once a solution for the MP is found, the

rest of the problem P consists of independent SPs that can be solved independently (even

in parallel).

In this work, we use for the first time LBBD in an ASP-based solving scheme. We show

its application on a challenging real-life problem coming from the healthcare domain.

2 Case study

Cappanera et al. (2022) (2023) addressed a scheduling problem involving chronic pa-

tients with comorbidities. Many patients suffer from so-called non-communicable chronic

diseases (NCDs), such as diabetes, hypertension, cirrhosis, obesity, and so on. For most

NCDs, there exist well-assessed medical guidelines involving periodic health services to

be delivered at hospital premises – think of dialysis for patients with renal failure. Most

patients are not hospitalized but access hospital premises as outpatients; many of them

have more than one NCD (comorbidity). Patients are assigned personalized care plans,

that is, clinical pathways (CPs), that merge the medical guidelines of all diagnosed NCDs,

customized to the specific patient. A CP’s health services are known a priori over a mid

term horizon, which allows for well in advance planning. Scheduling the health services

of a CP means to assign a date, a time, and an operator to each service the patient must

receive at the hospital. Such process can be challenging because appointment dates must

comply as much as possible with the ideal frequency and other time constraints due to

interference (a treatment may alter the result of an exam taken after it) or precedence

(a consultancy requires recently taken exams). Finally, if there is not enough availabil-

ity within the public hospital, a service can be provided by private health services at a

higher cost for the National Health Service. The centralized management of the CPs of

all patients would optimize the usage of public resources and ensure fairness. This yields

a very challenging problem that we call NCD Agenda problem.

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300025X

852 P. Cappanera et al.

3 Related works

Several healthcare problems have been tackled with ASP (see the review by Alviano et al.

(2020)). We recall the most notable contributions highlighting decomposition, if any.

Caruso et al. (2023) schedule preoperative exams for outpatients by dividing the problem

in two steps: first, exam areas are staffed and patients are given an appointment day; then,

exams starting times are set, complying with first-level decisions, maximizing the served

patients and minimizing waiting time. Each phase is executed once, with no feedback; to

ensure feasibility in phase two, demand is overestimated in phase one.

A schedule for multiple appointments for rheumatic outpatients at a Hospital Day

Service is presented by Guido et al. (2020). Patients are partitioned into three classes

with decreasing priority; to reduce computing time the schedule is computed separately

for each priority class.

Nurse (re)scheduling was addressed by Alviano et al. (2018), improving on the rep-

resentation of hospital and work balance constraints presented by Dodaro and Maratea

(2017). Nurse scheduling consists of determining a shift assignment for each nurse for a

given planning horizon such that working hours, shift mix, and rest days comply with

hospital rules. Rescheduling is due in case of nurse temporary absences and consists of

feasibly scheduling vacant duties, while minimizing deviations from the original schedule.

Appointment scheduling for chemotherapy treatments must deal with the availability of

special equipment that is assigned to a patient for the whole session Dodaro et al. (2021).

A treatment encompasses up to four subsequent steps, some of which are optional, whose

duration is patient dependent and known. In case of multiple treatments, a treatment

frequency is given. A weekly problem is solved, as well as a rescheduling one.

Rehabilitation sessions for inpatients are scheduled by Cardellini et al. (2021). Two

types of resources are present: gyms and operators. Solution quality criteria and con-

straints include continuity of care and preferred time slots on the patient side, and work-

load balancing and abiding by working rules on the operator side. The daily problem

is decomposed into two subsequent decision phases. In the first, the board, patients are

assigned to operators; in the second, the agenda, a starting and ending time is set for

each session according to the board. As there is no feedback, there is no guarantee that

a feasible board-compatible agenda exists. To this aim, potential overlapping are admit-

ted: some sessions are partially turned from one-to-one care to supervision (one operator

supervises a few patients at a time).

Finally, ASP has been proved effective in the (re)scheduling of operating rooms (OR).

A planned surgery requires a free bed at the specialty ward or at intensive care units,

starting from surgery date for the predicted length of stay Dodaro et al. (2022), and

a bed at the post-anesthetic care unit for temporary post-surgery staying Galatà et al.

(2021). Since a surgical team is made of surgeons, anesthesiologists, and nurses, the whole

surgery slot must be fully contained into the current working shift of each team member.

Based on its specialty, priority, special needs, and expected duration, a request is assigned

a day and a time during the OR time blocks reserved to its specialty.

Out of the healthcare domain, El-Kholany et al. (2022) improve on a previous study

and present a decomposition scheme in ASP for Job Shop Scheduling, driven by a machine

learning algorithm. There is no feedback from the SPs to the MP, each SP is solved only

once, and thus the resulting algorithm cannot prove optimality of the found solution (it

is a heuristic algorithm).

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300025X

Logic-Based Benders Decomposition in ASP 853

In conclusion, we observe that ASP proved to be able to capture and easily repre-

sent the complex features of several challenging problems. Decomposition schemes are

often implemented, motivated by the need for solving large instances in a reasonable

time; however, they are implemented in such a way that the optimal solution could

be overlooked and optimality cannot be guaranteed. To the best of our knowledge, we

are the first to propose the use of LBBD in ASP. Out of the ASP area, LBBD has been

successfully applied in Integer Linear Programming Riise et al. (2016) and Constraint

Programming frameworks Zhu et al. (2023), often as an hybrid algorithm. Fazel-Zarandi

and Beck (2009) use a hybrid CP-MILP approach for facility location, Benini et al. (2011)

for resource allocation for multicore platforms, just to name a few. Two major problems

in manufacturing – usually solved in pipe, to the detriment of optimality – were han-

dled together by Zhu et al. (2023), exploiting LBBD and a clever CP-based formulation.

A comprehensive survey was published by Hooker (2019). LBBD was also applied to a

railway timetabling problem using Satisfiability Modulo Theory Leutwiler and Corman

(2022).

Finally, the splitting set theorem Lifschitz and Turner (1994) provides syntactic condi-

tions under which the stable models of a program can be obtained extending the stable

models of one subprogram. LBBD is applied on a different level: the level of modeling

an optimization problem and decomposing it into SPs, even if the splitting set theorem

could be exploited to have synergies with LBBD.

4 NCD agenda formalization

Let us consider a planning horizon (set of available days) H = {1, . . . , h}, a set of health

services S, and a set of patients P = {p1, . . . , pNP
}. For each patient p, a CP is known,

consisting of a set of packets. Each packet π is a set of services to be delivered on the

same date, even if they are provided by different care units.

The appointment dates of each CP should satisfy the following CP constraints :

Frequency: Often a pathway contains sets of packets corresponding to recurring ser-

vices; for each packet there is an ideal date (ensuring that the patient is serviced with the

correct frequency) and the packet should be scheduled within a tolerance from the ideal

date. The tolerance depends on the pathway, and it is such that the tolerance windows

of consecutive occurrences of the same packet are disjoint.

Interdiction: if si interdicts service sj for δ days and si is scheduled in τ(si), then τ(sj),

the appointment date of sj , is such that τ(sj) /∈ [τ(si), τ(si)+δ]. Interdiction constraints

are always satisfied if one of the two services is not scheduled.

Necessity : if si requires sj , an interval [δmin, δmax] is provided; service sj should be

scheduled on day τ(sj) ∈ [τ(si) + δmin, τ(si) + δmax] and cannot be scheduled in the

(right-open) interval [τ(si), τ(si) + δmin).

A second class of constraints concerns resource assignment: each service s has a service

type and a duration; each scheduled service should be assigned to an operator of the care

unit that provides that service type. Each operator at the care unit has a working shift

(start and end time, potentially empty) for each day in the horizon. The following daily

agendas constraints hold: (i) all services provided by an operator should be completed

within the operator shift and (ii) without overlaps (no patient overlapping), (iii) each

patient cannot receive two services in parallel (no service overlapping), (iv) a service

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300025X

854 P. Cappanera et al.

cannot be interrupted and resumed at a later time (no preemption), as well as (v) a

scheduled service is delivered by a single operator (no split-service).

A feasible schedule assigns an appointment date τ(π) to each scheduled packet π, as

well as a time and an operator to the services of π so that all constraints are satisfied. If

a packet is not scheduled, the patient will receive the same services from a private clinic

at a higher cost. The objective is to maximize the number of scheduled packets.

For example, in Figure 1, the set of patients is P = {p1, p2}; the pathway of p1 is

made of just one packet π1 which includes two services; the color (red or blue) represents

the service type and each service is associated with the care unit of the same color. Care

unit 1 (red) has four time slots of availability on day 1, three slots on day 2, and two

slots on day 3. Note also the different start times of the operators’ shifts: the operator of

care unit 1 on day 3 starts earlier than that of care unit 2.

5 ASP approaches

ASP relies on the Stable Model Semantics Gelfond and Lifschitz (1988). An ASP program

is a set of clauses h:-b1, . . . , bn, where h is an atom p(t1, . . . , tm) or a choice {p(t1, . . . , tm)}
and bi can either be literals of the form [not]p(t1, . . . , tk), possibly followed by a condi-

tion : c1, . . . , ck, or an aggregate #sum{t1, . . . , tm : c1, . . . , ck} ◦ n where ◦ is a comparison

operator <,=, >=, A clause without head is called an integrity constraint (IC), and

its body must evaluate to false in every Stable Model (or Answer Set) of the program.

Optimization components can be added by means of weak ICs, with syntax : ∼body; the
aim will be to find an answer set that satisfies all ICs while satisfying the maximum

number of weak ICs. For the full ASP syntax, see Calimeri et al. (2020).

We recap the ASP formalization of the agenda component of the NCD Agenda Cap-

panera et al. (2022) in Section 5.1, and the scheduling of services within the day in

Section 5.2. The LBBD approach is developed in Section 5.3.

5.1 Scheduling services – Date assignment

The input data are provided by the following predicates:

• occurrence to schedule(Patient,Packet) provides the packets that should ide-

ally be scheduled for each patient; the ideal date is ideal date(Patient, Packet,

IdealDate), but a tolerance is accepted; predicate within tol(Packet, Day,

IdealDate) checks if Day stands within the tolerance.

• The set of available days for the scheduling is provided by day(D);

• service in packet(Srv,Pck) means that service Srv belongs to packet Pck

• necessity(Service1,Service2,(Dmin,Dmax)) means that if Service1 is sched-

uled on day d1, Service2 should be scheduled in the interval [d1+Dmin, d1+Dmax].

• interdiction(Service1,Service2,Ndays) states that Service2 cannot be

scheduled for Ndays after Service1.

The ASP program for the scheduling of packets to the available days (Listing 1) follows

the classical generate and test methodology. The generation part (lines 1–6) tries to assign

a date Day to each Packet within the given tolerance from the ideal date.

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300025X

Logic-Based Benders Decomposition in ASP 855

Listing 1. Date assignment

1 0{ schedule(Pat ,Pck ,Day):day(Day), within_tol(Pck ,Day ,Ideal)}1

2 :- occurrence_to_schedule (Pat ,Pck),

3 ideal_date(Pat ,Pck ,Ideal).

5 sched service(Pat , Service , Day) :- schedule(Pat , Packet , Day),

6 service_in_packet(Service ,Packet).

7 : ∼ occurrence_to_schedule (Pat ,Pck), not schedule(Pat ,Pck ,_).

9 :- sched service(Pat ,Srv1 ,Day1), sched service(Pat ,Srv2 ,Day2),

10 interdiction(Srv1 ,Srv2 ,Ndays),

11 Day2 >= Day1 , Day2 <= Day1 + Ndays.

12 :- sched service(Patient ,Srv1 ,Day1), necessity(Srv1 ,Srv2 ,_),

13 not satisfied_necessity (Patient , Srv1 , Srv2).

15 satisfied_necessity (Pat , Srv1 , Srv2) :-

16 sched service(Pat ,Srv1 ,Day1), sched service(Pat ,Srv2 ,Day2),

17 necessity(Srv1 , Srv2 , (Dmin ,Dmax)),

18 Day2 >= Day1 + Dmin , Day2 <= Day1 + Dmax.

19 satisfied_necessity (Pat ,Srv1 ,Srv2) :-

20 sched service(Pat , Srv1 , Day1),

21 necessity(Srv1 , Srv2 , (Dmin ,Dmax)), Day1 + Dmax > horizon.

23 :- sched service(Pat ,Srv1 ,Day1), sched service(Pat ,Srv2 ,Day2),

24 necessity(Srv1 ,Srv2 ,(Dmin ,_)), Day1 <Day2 , Day2 <=Day1+Dmin.

As a packet could be not scheduled at all, the number of packets scheduled within

the horizon will be maximized by the weak constraint in line 7. The IC in line 9 deals

with interdiction constraints: Srv1 and Srv2 are two services for the same patient, and

the first interdicts the second for Ndays. The IC in line 12 ensures that each necessity

constraint is satisfied. Predicate satisfied necessity declares that the necessity must

be either satisfied within the horizon or assumed to be satisfied beyond it, while the

previous condition τ(sj) /∈ [τ(si), τ(si) + δmin) is dealt with by the IC in line 23.

5.2 Daily agendas

In the ASP formalization in Section 5.1, services are assigned a date, but daily agendas

are not handled, that is, neither a starting time is given nor services are assigned to

specific operators at the various care units. The program for the daily agendas, reported

in Listing 2, uses the following input predicates, in addition to those in Section 5.1:

• srvType(s, cu, dur): the list of services, together with the care unit cu that can

provide it and the duration dur;

• shift(D, CU, Op, St, Dur): for each operator Op, the start time St and the duration

Dur of the shift are provided in each day D, together with the care unit CU the

operator works in.

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300025X

856 P. Cappanera et al.

Listing 2. Daily agendas

1 1{ start_time(Pat, S, Day, Start) : time(Start)}1 :-

2 sched service(Pat, Day, S).

3 1{provides(Op, Pat, S, Day) : shift(Day, CU, Op,_,_), srvType(S, CU,_)}1 :-

4 sched service(Pat, S, Day).

6 precedes(P1,S1 ,P2 ,S2 ,Day) :- srvType(S1 ,_,D1),

7 Start1 + D1 <= Start2 ,

8 start_time(P1,S1,Day ,Start1),

9 start_time(P2,S2,Day ,Start2).

11 :- not precedes(P,S1 ,P,S2 ,Day), not precedes(P,S2 ,P,S1 ,Day),

12 sched service(P, S1 , Day), sched service(P, S2, Day),

13 S1 != S2.

14 :- not precedes(P1 ,S1,P2,S2 ,Day),

15 not precedes(P2 ,S2,P1,S1 ,Day),

16 provides(CU ,Op ,P1 ,S1 ,Day), provides(CU ,Op ,P2 ,S2,Day),

17 sched service(P1 ,S1 ,Day), sched service(P2 ,S2 ,Day), P1!=P2.

19 :- sched service(P,S,Day), srvType(S,CU ,Dur),

20 provides(Op ,P,S,Day), start_time(P,S,Day ,Start),

21 Start + Dur > StartShift + DurShift ,

22 shift(Day ,CU ,Op ,StartShift ,DurShift).

23 :- sched service(P,S,Day), provides(Op ,P,S,Day),

24 Start < StartShift , start_time(P,S,Day ,Start),

25 shift(Day ,CU ,Op ,StartShift ,DurShift).

In the generate part of the daily agenda program (Listing 2), each scheduled service

is assigned a start time (line 2) and an operator of the care unit that provides the

required service type (line 3), leveraging on the daily assignment defined by predicate

sched service (line 5 of Listing 1).

In order to avoid overlapping between services of the same patient (constraint iii of

the daily agenda problem) or delivered by the same operator (see ii), we define predicate

precedes (line 7), stating that service S1 of patient P1 precedes S2 of P2 if they are

scheduled on the same day and S1 terminates before or at the same time as S2 starts.

Now if two services S1 and S2 are for the same patient or are provided by the same

care unit operator Op in the same Day, one of the two services must precede the other

(ICs in lines 11 and 15). Finally, ICs in lines 19 and 23 state that each service should

be scheduled within the working shift of the operator who delivers it (constraint i of the

daily agenda).

5.3 LBB decomposition

The ASP formalization of Sections 5.1 and 5.2 correctly solves the NCD Agenda problem;

on the other hand, solving such a difficult problem in a monolithic approach does not

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300025X

Logic-Based Benders Decomposition in ASP 857

scale well with the size of the instance. To speed up the solving process while retaining

the completeness of the search, we apply LBBD Hooker and Ottosson (2003).

The NCD Agenda can be cast as in equation (1) in which the MP (based on the ASP

program in Section 5.1) maximizes the number of scheduled packets while assigning a day

to each scheduled packet, while a series of SPs (based on the program in Section 5.2), one

for each day, assign a time and an operator to each service. Decomposing the program

this way provides a strong improvement, since the SPs are independent problems, one

per day, and they could even be solved in parallel (although in our experiments we

do not exploit such parallelism in order to have a fair comparison with the monolithic

approach). On the other hand, some SPs could be infeasible, since the MP does not

contain all constraints of the NCD Agenda.

The MP is an optimization problem, while each SP is a satisfiability problem. In case

all SPs are satisfiable, the optimal solution of the MP is also the optimum of the whole

NCD Agenda problem. Otherwise, if one of the SPs is infeasible, a no-good is returned

to the MP conveying the information that the particular set of health services the MP

has assigned to that day cannot be feasibly served. Then, the MP is solved again, with

the additional no-good, which avoids looping. Convergence occurs when each SP admits

a feasible solution. Such solution is provably optimal.

In particular, the unfeasible SP returns to the MP the set of packets that could not

be scheduled on that day, as a set of facts of the form

unfeas_subproblem(patient ,packet ,day ,gid)

together with a fact nogood_id(gid), where gid is a unique identifier for the group of

packets. A new version of the MP is then generated, appending to the previous code the

new facts unfeas_subproblem and nogood_id, and together with the following IC, that

avoids generating schedules for the same day including all the packets in the no-good

:-schedule(Pat, Pck, Day) : unfeas subproblem(Pat, Pck, Day, Gid); nogood id(Gid).

(5)

Example 1

Consider the example in Figure 1, already introduced in Section 4. The MP may schedule

both patients on day 1, as depicted. In such a case, the SP for day 1 will detect infeasibility

and return a no-good to the MP, stating that both packets cannot fit together on that

day:

unfeas subproblem(p1, pck1, day1, gid1).

unfeas subproblem(p2, pck2, day1, gid1). nogood id(gid1).
(6)

The MP receives the no-good and, in the following iterations, it will contain the IC in

equation (5), which is grounded into

:-schedule(p1, pck1, day1), schedule(p2, pck2, day1).

so that, in the following iterations, at most one of the two packets can be assigned to

day 1. Since a limited number of options are present, after a certain number of iterations

yielding similar no-goods, the MP will schedule p1 on day 3 and p2 on any other day.

The process then stops and returns a feasible solution.

In LBBD, in order to speedup convergence, it is worth strengthening the MP by adding

a relaxed version of some of the SPs constraints. In our case, in the MP we avoid any

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300025X

858 P. Cappanera et al.

Fig. 1. Interaction scheme in LBBD.

reference to the timing within the day, but we state that, for each day and each care

unit, the total duration of the services assigned to that care unit cannot exceed the sum

of the shift duration of all the operators of that unit:

:-day(D), total time(D, CU, TotTime),

#sum{Dur, P, S : sched service(P, S, D), srvType(S, CU, Dur)} > TotTime.
(7)

total_time(D, CU, Time):- srvType(_,CU,_), day(D),

#sum{Dur ,D,CU:shift(D, CU, Op, _, Dur)} = Time.

Note that predicate total time is grounded into a set of facts by the grounder gringo.

The MP solution may violate the daily agenda constraints: as shown in Example 1,

the MP may schedule both packets on day 1 or on day 2. However, with the availabilities

depicted in Fig. 1, IC (7) forbids the MP to schedule both packets on day 3, as the red

care unit provides only two time units.

5.4 Multi-shot solving

The interaction scheme in Section 5.3 can be implemented by a script that iteratively

invokes the ASP solver on the MP, on the SPs and adds to the MP code the no-goods

generated by the SPs. However, in this way, the MP should be solved from scratch at

every iteration, losing information about the clauses learnt in the previous iteration.

Recent versions of Clingo Gebser et al. (2019) allow the customization of ASP solving

processes that deal with continuously changing logic programs, called multi-shot solving

(MS). The solving process can be controlled through commands written in Python. It is

possible to integrate non-ground input rules into subprograms having a name and a list of

parameters, and that are introduced by the #program directive. A dedicated subprogram

base gathers all the rules that are not included in a subprogram Kaminski et al. (2017).

By default, Clingo grounds and solves just the base program, but we can add control in

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300025X

Logic-Based Benders Decomposition in ASP 859

Python using a main routine taking as argument a control object representing the state

of Clingo.

In order to exploit MS in the devised LBBD, the following subprogram is added to the

ASP formulation of the MP:

#program nogood(pat ,pck ,day ,gid).

unfeas_subproblem(pat ,pck ,day ,gid). nogood_id(gid).

:- schedule(Pat ,Pck ,D) : unfeas_subproblem(Pat ,Pck ,D,Gid);

D=day , Gid=gid.

The parameters pat, pck, and day correspond to the arguments of the schedule pred-

icate, and gid identifies a group of schedules that produced an inconsistent SP, as in

equation (5).

The nogood program can be grounded incrementally from a Python script, passing a

list L of ground terms; each term contains the four parameters of nogood. In the LBBD,

the parameters will be the schedules that made unfeasible one of the SPs, provided as a

set of ground facts unfeas subproblem.

Algorithm 2 gives the pseudocode that controls the solving process, solving in sequence

the MP (“base”), then each SPs with an external call to Clingo for each day. Afterward,

from failing SPs the group of packets scheduled by the MP in the specific day is added

as a no-good. This information is added to the MP grounding the nogood program, and

the process loops until no new constraints are added, that is, all SPs are satisfiable.

Algorithm 2 LBBD with multi-shot solving

function LBBD(prg)

prg.ground([(”base”, [])]) � ground the base program (MP)

do

ASMP = prg.solve() � solve the ground program(s)

if MP has no solution then return Unsatisfiable

NGs = ∅
for day in horizon do

ASSPday=solve SP(day,ASMP) � solve a subproblem for each day

if SPday has no solution then

NGs = NGs ∪ compute nogoods(day,ASMP)

end for

prg.ground([“nogood”, NGs]) � ground nogood program with parameters

while NGs
= ∅
return ASMP ∪⋃

day AS
SPday

6 Experimental results

We implemented an instance generator based on well-assessed and publicly available

medical guidelines for the most common NCDs1. The generator allocates resources on a

1 https://salute.regione.emilia-romagna.it/cure-primarie/diabete/
gestione-integrata-del-diabete-mellito-di-tipo-2-2017/,
https://www.regione.toscana.it/documents/10180/23793180/ALL+A+23-2019+PDTA-Diabete.pdf/
f1e8ea87-145f-08c4-6c3d-16b69f5f43c2?t=1578658143393/

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://salute.regione.emilia-romagna.it/cure-primarie/diabete/gestione-integrata-del-diabete-mellito-di-tipo-2-2017/
https://salute.regione.emilia-romagna.it/cure-primarie/diabete/gestione-integrata-del-diabete-mellito-di-tipo-2-2017/
https://www.regione.toscana.it/documents/10180/23793180/ALL+A+23-2019+PDTA-Diabete.pdf/f1e8ea87-145f-08c4-6c3d-16b69f5f43c2?t=1578658143393/
https://www.regione.toscana.it/documents/10180/23793180/ALL+A+23-2019+PDTA-Diabete.pdf/f1e8ea87-145f-08c4-6c3d-16b69f5f43c2?t=1578658143393/
https://doi.org/10.1017/S147106842300025X

860 P. Cappanera et al.

Fig. 2. Number of solved instances vs running time.

weekly basis and replicates the allocation in each week of the given time horizon, then

it generates CPs. Specifically, we have: (i) five CUs, each of them with a daily capacity

(expressed in number of slots) drawn with uniform probability in the range [24, 60]; (ii)

a number of operators drawn with uniform probability in [1,4] on each day of the week

for each CU; (iii) services with a duration (expressed in number of slots) in [6,15] and

associated with a CU; (iv) packets made of four services at most; and (v) a given number

of patients with a number of CPs in [1,4]. The probability of assigning a number of CPs

to a given patient is inversely proportional to the number of CPs itself.

For each number of patients in {10, 20, 40} and length of the planning horizon in

{30,60} days, 20 instances are generated, summing up to 120 instances. Experiments

were run with Clingo 5.6.2 with a time limit of 1 h on a Ubuntu 22.04.1 LTS OS,

Intel(R) Xeon(R) CPU E5-2430 v2 @ 2.50GHz machine with a 32GB System Memory.

Figure 2 shows on the y-axis the number of instances solved by each of the three

approaches within a given computation time reported on the x-axis. The decomposition

approach lets one solve to optimality between 30% and 42% more instances.

To have a finer detail on how the running time varies with the size of the instance, we

plot in Figure 3 the runtime versus the number of services to be scheduled, comparing

the monolithic approach and the LBBD method equipped with MS. Solid lines represent

total time, while dotted lines show the time required by grounding. Instances running

into out of memory were counted as running for 3600s. For the LBBD-MS we also show

the time for the overall algorithm (orange series) as well as the time required by the MP

(green series). The time required by the SP can be easily evaluated by difference between

the orange and the green series.

We can observe the following facts: (i) as expected, the total time grows as the number

of services increases regardless of the method used; (ii) for the monolithic approach, the

running time is almost entirely spent in the grounding phase; (iii) for the LBBD with

MS the grounding time spent in the MP is stable across instances and negligible; the

grounding time of this approach is almost all due to the SPs.

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300025X

Logic-Based Benders Decomposition in ASP 861

Fig. 3. Run time vs number of services – all instances.

Fig. 4. Run time vs number of services – instances without timeout.

To show the exact speedup in the two phases, Figure 4 considers only those instances for

which the monolithic approach was able to terminate within the timeout; clearly, these are

the most favorable for the monolithic approach. In these instances, the average grounding

time for LBBD was 39.2% of that of the monolithic, while the average solving time was

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300025X

862 P. Cappanera et al.

12.05% of that of the monolithic, with almost an order of magnitude of improvement in

the solving time.

7 Conclusions

In this work, we adopted LBBD in a solving process based on ASP; to the best of our

knowledge, this is the first work adopting this methodology with ASP. LBBD is a widely

used solving technique in Operations Research and in Constraint Programming, and

it constitutes one of the most effective technologies for hybridization of Integer Linear

Programming and Constraint Programming technologies. With LBBD, the problem can

be decomposed without losing completeness, that is, maintaining the possibility to find

the optimal solution and prove its optimality. Even more interestingly, this opens a new

avenue of integration of ASP with other paradigms for solving constrained optimization

problems, for example, new hybrid algorithms involving ASP and Constraint Program-

ming or Integer Linear Programming.

The considered application is a scheduling problem for chronic outpatients with NCDs

needing recurrent services at the hospital. The experimental results show that LBBD

enlarges the applicability of ASP to larger instances without sacrificing optimality. Future

work includes strengthening the efficiency of the LBBD scheme by providing stronger no-

goods from the subproblems to the MP and to apply LBBD to other problems.

We believe that the LBBD approach could be applied to a number of applications al-

ready available for ASP (e.g., the applications presented by Guido et al. (2020), Cardellini

et al. (2021), and Caruso et al. (2023), just to name a few in the healthcare domain) in

which the global problem was greedily split into subparts; we hope that this work could

be of inspiration for the many ASP applications in which the authors forewent obtaining

optimality and widen even further the ASP applications in the real world.

Competing interests

The authors declare none.

Acknowledgments

This work was partially supported by GNCS-INdAM.

References

Alviano, M., Bertolucci, R., Cardellini, M., Dodaro, C., Galatà, G., Khan, M. K.,
Maratea, M., Mochi, M., Morozan, V., Porro, I. and Schouten, M. 2020. Answer set
programming in healthcare: Extended overview. Italian workshop on Planning and Schedul-
ing 2021 – International Workshop on Experimental Evaluation of Algorithms for Solving
Problems with Combinatorial Explosion 2021 @ AI*IA 2745.

Alviano, M., Dodaro, C. and Maratea, M. 2018. Nurse (re) scheduling via Answer Set
Programming. Intelligenza Artificiale 12, 2, 109–124.

Benini, L., Lombardi, M., Milano, M. and Ruggiero, M. 2011. Optimal resource allocation
and scheduling for the CELL BE platform. Annals of Operations Research 184, 1, 51–77.

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300025X

Logic-Based Benders Decomposition in ASP 863

Calimeri, F., Faber, W.,Gebser, M., Ianni, G.,Kaminski, R.,Krennwallner, T., Leone,
N., Maratea, M., Ricca, F. and Schaub, T. 2020. ASP-Core-2 input language format.
Theory and Practice of Logic Programming 20, 2, 294–309.

Cappanera, P., Gavanelli, M., Nonato, M. and Roma, M. 2022. A decomposition approach
to the clinical pathway deployment for chronic outpatients with comorbidities. In Optimization
in Artificial Intelligence and Data Sciences: ODS, First Hybrid Conference, Rome, Italy,
September 14-17, 2021, L. Amorosi, P. Dell’Olmo, and I. Lari, Eds. AIRO Springer Series.
Springer International Publishing, Cham, 213–226.

Cappanera, P., Gavanelli, M., Nonato, M. and Roma, M. 2023. Decomposition approaches
for scheduling chronic outpatients’ clinical pathways in answer set programming. Journal of
Logic and Computation. https://doi.org/10.1093/logcom/exad038.

Cardellini, M., De Nardi, P., Dodaro, C., Galatà, G., Giardini, A., Maratea, M. and

Porro, I. 2021. A two-phase ASP encoding for solving rehabilitation scheduling. In Rules
and Reasoning: 5th International Joint Conference, RuleML+ RR 2021, Leuven, Belgium,
September 13–15, 2021, Proceedings, S. Moschoyiannis, R. Peñaloza, J. Vanthienen, A. Soylu,
and D. Roman, Eds. Springer, Cham, 111–125.

Caruso, S., Galatà, G., Maratea, M., Mochi, M. and Porro, I. 2023. Scheduling pre-
operative assessment clinic with answer set programming. Journal of Logic and Computation.
https://doi.org/10.1093/logcom/exad017.

Dal Palù, A., Dovier, A., Formisano, A. and Pontelli, E. 2018. ASP applications in
bio-informatics: A short tour. Künstliche Intelligenz 32, 2–3, 157–164.

Dodaro, C., Galatà, G., Grioni, A., Maratea, M., Mochi, M. and Porro, I. 2021. An
ASP-based solution to the chemotherapy treatment scheduling problem. Theory and Practice
of Logic Programming 21, 6, 835–851.

Dodaro, C., Galatà, G., Khan, M. K., Maratea, M. and Porro, I. 2022. Operating
room (re)scheduling with bed management via ASP. Theory and Practice of Logic Program-
ming 22, 2, 229–253.

Dodaro, C. and Maratea, M. 2017. Nurse scheduling via answer set programming. In Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning. Springer, Springer
International Publishing, Cham, 301–307.

El-Kholany, M. M. S., Gebser, M. and Schekotihin, K. 2022. Problem decomposition
and multi-shot ASP solving for job-shop scheduling. Theory and Practice of Logic Program-
ming 22, 4, 623–639.

El-Kholany, M. M. S., Schekotihin, K. and Gebser, M. 2022. Decomposition-based job-
shop scheduling with constrained clustering. In Practical Aspects of Declarative Languages,
J. Cheney and S. Perri, Eds. LNCS, vol. 13165. Springer International Publishing, Cham,
165–180.

Erdem, E., Gelfond, M. and Leone, N. 2016. Applications of answer set programming. AI
Magazine 37, 3, 53–68.

Falkner, A. A., Friedrich, G., Schekotihin, K., Taupe, R. and Teppan, E. C.

2018. Industrial applications of answer set programming. Künstliche Intelligenz 32, 2–3,
165–176.

Fazel-Zarandi, M. M. and Beck, J. C. 2009. Solving a location-allocation problem with
logic-based Benders’ decomposition. In Principles and Practice of Constraint Programming
2009, I. P. Gent, Ed. LNCS, vol. 5732. Springer, Berlin, Heidelberg, 344–351.

Galatà, G., Maratea, M., Mochi, M., Morozan, V. and Porro, I. 2021. An ASP-based so-
lution to the operating room scheduling with care units. In Proc. Italian workshop on Planning
and Scheduling 2021 - International Workshop on Experimental Evaluation of Algorithms for
Solving Problems with Combinatorial Explosion 2021 @ AI*IA, R. D. Benedictis, M. Maratea,
A. Micheli, E. Scala, I. Serina, M. Vallati, and A. Umbrico, Eds. CEUR Workshop Proceed-
ings, vol. 3065. CEUR-WS.org.

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://doi.org/10.1093/logcom/exad038
https://doi.org/10.1017/S147106842300025X

864 P. Cappanera et al.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2019. Multi-shot ASP solving
with clingo. Theory and Practice of Logic Programming 19, 1, 27–82.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In
International Conference on Logic Programming, R. A. Kowalski and K. A. Bowen, Eds. MIT
Press, 1070–1080.

Guido, R., Ielpa, G. and Conforti, D. 2020. Scheduling outpatient day service operations
for rheumatology diseases. Flexible Services and Manufacturing Journal 32, 1, 102–128.

Hooker, J. and Ottosson, G. 2003. Logic-based Benders decomposition. Mathematical Pro-
gramming, Ser. A 96, 33–60.

Hooker, J. N. 2019. Logic-Based Benders Decomposition for Large-Scale Optimization.
Springer International Publishing, Cham, 1–26.

Kaminski, R., Schaub, T. and Wanko, P. 2017. A Tutorial on Hybrid Answer Set Solving
with clingo. Springer International Publishing, Cham, 167–203.

Kifer, M. and Liu, Y. A. 2018. Declarative logic programming: theory, systems, and applica-
tions. Vol. 20. Association for Computing Machinery and Morgan & Claypool.

Leutwiler, F. and Corman, F. 2022. A logic-based Benders decomposition for microscopic
railway timetable planning. European Journal of Operational Research 303, 2, 525–540.

Lifschitz, V. and Turner, H. 1994. Splitting a logic program. In International Conference
on Logic Programming, P. Van Hentenryck, Ed. MIT Press, 23–37.

Riise, A., Mannino, C. and Lamorgese, L. 2016. Recursive logic-based Benders’ decompo-
sition for multi-mode outpatient scheduling. European Journal of Operational Research 255,
719–728.

Schüller, P. 2018. Answer set programming in linguistics. Künstliche Intelligenz 32, 2-3,
151–155.

Zhu, X., Son, J., Zhang, X. and Wu, J. 2023. Constraint programming and logic-based Ben-
ders decomposition for the integrated process planning and scheduling problem. Omega 117,
102823.

https://doi.org/10.1017/S147106842300025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300025X

	Introduction
	Case study
	Related works
	NCD agenda formalization
	ASP approaches
	Scheduling services – Date assignment
	Daily agendas
	LBB decomposition
	Multi-shot solving

	Experimental results
	Conclusions
	References

