
JFP 14 (6): 697–713, 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796804005180 Printed in the United Kingdom

697

FUNCTIONAL PEARL

Derivation of a logarithmic time carry
lookahead addition circuit

JOHN T. O’DONNELL

Computing Science Department, University of Glasgow, Glasgow G12 8QQ, UK

(e-mail: jtod@dcs.gla.ac.uk)

GUDULA RÜNGER

Department of Computer Science, Chemnitz University of Technology,

09107 Chemnitz, Germany

(e-mail: ruenger@informatik.tu-chemnitz.de)

Abstract

Using Haskell as a digital circuit description language, we transform a ripple carry adder

that requires O(n) time to add two n-bit words into a parallel carry lookahead adder that

requires O(log n) time. The ripple carry adder uses a scan function to calculate carry bits,

but this scan cannot be parallelized directly since it is applied to a non-associative function.

Several techniques are applied in order to introduce parallelism, including partial evaluation

and symbolic function representation. The derivation given here constitutes a semi-formal

correctness proof, and it also brings out explicitly each of the ideas underlying the algorithm.

1 Introduction

In this paper we use Haskell as a digital circuit description language in order to

perform the transformation of a ripple carry adder that requires O(n) time to add

two n-bit words into a parallel carry lookahead adder that needs only O(log n) time.

Efficient binary adders have practical importance, since an adder lies on the critical

path in processor datapath architectures and the clock speed of synchronous digital

circuits is determined by the critical path depth. Thus by speeding up an adder,

which accounts for a few hundred logic gates, the speed of an entire chip with

millions of gates may be improved.

The contribution of this paper lies in the derivation of the circuit through a

sequence of correctness preserving transformations, using a hardware description

language based on pure functional programming that allows formal equational

reasoning. Addition circuits are usually presented as intricate schematic diagrams

that hide the principles behind their operation. In contrast, we derive the circuit by

transforming a sequential adder into a parallel one. The transformation is organized

as a sequence of stages; each stage encapsulates a specific technical problem, which

is addressed by an appropriate transformation theorem. The main techniques include

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

698 O’Donnell and Rünger

partial evaluation and symbolic function representation. The final result is a precise

specification of the parallel carry lookahead adder circuit that works on word size n

for every natural number n. The specification contains all details needed to simulate

and fabricate a circuit. Our circuit is similar to other fast adders based on a divide

and conquer approach, including those presented by Guibas & Vuillemin (1982),

Karp & Ramachandran (1990) and, Cormen et al. (1990).

The techniques we use are general and have wide application. For example,

the partial evaluation technique can also be applied in an imperative language,

and Fisher & Ghuloum (1994) use a similar technique for parallelizing loops

in a compiler on a shared memory model. Fisher and Ghuloum use imperative

programming notation, although some of the examples given are restricted to

“single assignment”, making them equivalent to functional specifications. Their

transformations are presented as heuristics, and the notation used does not allow

a derivation by equational reasoning. No correctness proofs are given. In contrast,

this paper shows how the parallelization of an algorithm can be performed with a

correctness proof inherent in the transformation.

We use Hydra (O’Donnell, 2002), a digital circuit description language embedded

in Haskell. A Haskell 98 program containing all the definitions in this paper, as well

as auxiliary definitions and executable examples, is available at:

www.dcs.gla.ac.uk/∼jtod/papers/parallel-adder/

2 Circuit specification with Hydra

A signal is a bit in a digital circuit. For our purposes, a signal can be thought of

as a value of type Bool. However, many distinct types can be used to represent a

signal, so Hydra treats a signal as a type class rather than a particular type. The

values of signals are written as 0 and 1, although their internal representations may

be different (e.g. False and True). The following values, which are defined for any

instance of the Signal class, are used in this paper:

zero, one :: Signal a ⇒ a constant 0, 1

inv :: Signal a ⇒ a → a inverter

and2, or2, xor2 :: Signal a ⇒ a → a → a two-input logic gates

and3, or3, xor3 :: Signal a ⇒ a → a → a → a three-input logic gates

is0, is1 :: Signal a ⇒ a → Bool comparison with constant

A binary number is represented by a list of signals, where the length of the list

is the word size and the leftmost element of the list is the most significant bit. The

following functions give the natural number denoted by a bit and a word:

bit :: Signal a ⇒ a → Integer

bin :: Signal a ⇒ [a] → Integer

bin = foldl (λ a x → 2 × a + bit x) 0

A binary adder takes two words and a carry input bit, and produces their sum

represented as a carry output bit and a sum word. Instead of giving the adder two

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

Functional pearl 699

separate words xs and ys, it receives a word zs :: Signal a ⇒ [(a, a)] of pairs. The

binary input words are then map fst zs and map snd zs. This organization avoids

the need for a side condition that xs and ys have the same length, it simplifies the

circuits we define later, and it is a standard technique in hardware design (called

“bit slice” organization). An adder is defined to be any circuit of the appropriate

type that produces the correct answer for arbitrary inputs.

Definition 1

An adder is a function add :: Signal a ⇒ a → [(a, a)] → (a, [a]), where

(c′, ss) = add c zs, such that length ss = length zs and

bin (c′ : ss) = bin (map fst zs) + bin (map snd zs) + bit c

Components are wired together by applying a circuit to its input signals. The

following majority and parity circuits provide examples of Hydra specifications,

which are used later for computing sums and carries. The majority3 circuit takes

three input signals, and returns 1 if two or more of the inputs are 1. The parity3

circuit returns 1 if an odd number of the inputs are 1:

majority3 , parity3 :: Signal a ⇒ a → a → a → a

majority3 a b c = or3 (and2 a b) (and2 a c) (and2 b c)

parity3 = xor3

Another standard circuit is the multiplexor, which takes a control (or address) bit

a, and uses it to select one of its data inputs, which is then delivered as the output.

The behavior can be specified as

mux1 a x y = if a == zero then x else y

This specification does not describe a circuit, since conditional expressions are

not logic gates. Thus we use the following function, which satisfies the behavioral

specification of the multiplexor and has the form of a circuit:

mux1 :: Signal a ⇒ a → a → a → a

mux1 a x y = or2 (and2 (inv a) x) (and2 a y)

Two mux1 circuits can be used to define mux2, which uses two address bits to select

one of four data inputs. This is a typical example of the hierarchical design style

used in Hydra. The mux2 circuit is needed in section 7:

mux2 :: Signal a ⇒ (a, a) → a → a → a → a → a

mux2 (a, b) w x y z = mux1 a (mux1 b w x) (mux1 b y z)

3 Ripple carry addition

For a full derivation, it is possible to start with Definition 1 and derive an addition

circuit from first principles. We skip that step here, and begin with a specification of

the standard and well known ripple carry adder, which is sequential and takes O(n)

time to add two n-bit words.

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

700 O’Donnell and Rünger

A ripple carry adder contains a building block for each bit position, which is

traditionally called a ‘full adder’:

fullAdd :: Signal a ⇒ (a, a) → a → (a, a)

The crux of the derivation lies in handling the carry propagation. We simplify the

notation slightly to separate the calculations of the sum and carry bits into two

functions, bsum and bcarry:

bsum , bcarry :: Signal a ⇒ (a, a) → a → a

bcarry (x, y) c = majority3 x y c

bsum (x, y) c = parity3 x y c

These definitions satisfy the property that

fulladd (x, y) c = (bcarry (x, y) c, bsum (x, y) c)

Within each bit position, the adder receives a pair of data bits (x, y) and a carry

input c; it then calculates the local sum bit s = bsum (x, y) c and the local carry

output c′ = bcarry (x, y) c. The carry input to the least significant bit is defined to

be the carry input c to the entire word adder, and the carry output c′ from the most

significant bit becomes the carry output of the entire adder.

The building blocks can be connected in a row, producing a binary word adder.

This could be done by mentioning each component explicitly, but that would restrict

the design to a fixed word size. In order to produce a generic adder specification

valid for all word sizes, we use the family of map, fold, and scan combinators to

describe the structure of the circuit. Thus the carry propagation across a sequence

of bit positions is expressed by the standard foldr function:

foldr :: (b → a → a) → a → [b] → a

foldr f a [] = a

foldr f a (x : xs) = f x (foldr f a xs)

However, it is not enough just to compute the carry output from one bit position:

in order to compute the sum bits, we need the carry inputs to all the positions.

The scanr combinator, which computes a list of all the partial folds as well as

the complete fold, serves the purpose. Although written in a point-free style, the

following definition is equivalent to the function given in the Haskell standard

prelude.

scanr :: (b → a → a) → a → [b] → [a]

scanr f a = map (foldr f a) ◦ tails

The tails function gives a list of sublists starting at successive positions in the

original list; thus tails [1, 2, 3] = [[1, 2, 3], [2, 3], [3], []].

tails :: [a] → [[a]]

tails [] = [[]]

tails (x : xs) = (x : xs) : tails xs

The ripple carry adder add1 (see Figure 1) uses scanr to calculate all the carry

bits, followed by a map (in the form of zipWith) that calculates the sum bits. The

circuit contains O(n) logic gates and requires O(n) time to add two n-bit words.

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

Functional pearl 701

z0 z1 z2 z3

c

�

�
full
add

�

�

�
full
add

�

�

�
full
add

�

�

�
full
add

�

�
c′ s0 s1 s2 s3

Fig. 1. Circuit diagram of add1.

add1 :: Signal a ⇒ a → [(a, a)] → (a, [a])

add1 c zs =

let c′ : cs = scanr bcarry c zs

ss = zipWith bsum zs cs

in (c′, ss)

4 Associative scan

The time required by the ripple carry adder is dominated by the scanr. There is a

well known method called parallel scan or parallel prefix for reducing the time of a

scan from O(n) to O(log n) (Ladner & Fischer, 1980), and our strategy for improving

the adder is to use this to calculate the carries in logarithmic time. However, the

parallel scan algorithm requires f to be associative in order to compute scanr f a xs

in logarithmic time, but the ripple carry adder applies scanr to the bcarry circuit,

which is not associative. Indeed, an associative function must have type a → a → a,

so bcarry :: (a, a) → a → a does not even have a suitable type. The next subsection

shows how to solve this problem using partial evaluation.

4.1 Partial evaluation of scan

A useful principle in program derivation is to transform a specification to bring

it as close as possible to the goal, even if the goal itself is not directly reachable.

The reason is that the intermediate transformation might cause a different approach

to become applicable. Partial evaluation is a systematic method for applying this

principle. The arguments to a function are partitioned into static arguments that

are known in advance and dynamic arguments that will become known later. This

technique is typically used in compilers: the usual idea is to have the compiler apply

the functions in a program just to the static arguments that are known at compile

time. If some of the resulting partial applications can be simplified at compile time,

the object code will run faster. In this section, we apply the same idea to the problem

of carry propagation in hardware design.

Ideally, the circuit would compute the carry output c′ = bcarry (x, y) c for each

bit position in parallel, so the entire addition would be performed in unit time. This

is impossible, since the value of the carry input c must itself be computed, and it

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

702 O’Donnell and Rünger

takes time for the carry propagation to ripple across the adder. However, the word

of partial applications can be calculated in parallel by defining

ps = map bcarry zs

Each element of ps is a function with type Signal a ⇒ a → a that can be used

to produce the carry output in the bit position once the carry input is known.

Meanwhile, we can exploit the knowledge each of these functions has of its data

inputs, even before the carry inputs are available. At this stage there is nothing useful

to which the propagation functions can be applied, but another idea is instead to

compose them, which is useful for expressing the carry propagation across a portion

of the word. Just as each bit position has a carry propagation function, so does a

sequence of adjacent bits from the least significant position to an arbitrary location

in the word. The adder circuit requires the carry input to each bit position in order

to compute the corresponding sum bit, and it also needs the carry output from

position 0 since this is an output of the entire circuit. Although we do not yet know

the values of these carry bits, we can calculate their carry propagation functions as

scanr (◦) id ps

This conclusion can be expressed formally as two partial evaluation theorems, one

each for foldr and scanr. In order to develop the theorems and their proofs, two

application functions are needed: apply applies its first (function) argument to its

second argument, while post provides a reverse application:

apply :: (a → b) → a → b

apply f x = f x

post :: a → (a → b) → b

post x f = f x

The proof of the first partial evaluation theorem requires fusion properties for map

and foldr, stated in Lemmas 1 and 2.

Lemma 1

foldr g a ◦ map f = foldr (g ◦ f) a

Lemma 2

post a ◦ foldr ((◦) ◦ f) id = foldr f a

Theorem 1 states the crucial property of the partial evaluation of foldr: it shows

how a foldr can be calculated by computing a list of partial applications using map,

followed by an application of foldr with the composition function.

Theorem 1

foldr f a = post a ◦ foldr (◦) id ◦ map f

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

Functional pearl 703

Proof

The right hand side is transformed into the left hand side by equational reasoning.

post a ◦ foldr (◦) id ◦ map f

= {Lemma 1}
post a ◦ foldr ((◦) ◦ f) id

= {Lemma 2}
foldr f a

�

Theorem 1 has been stated by Harrison (1991), and Maessen (1994) has given a

weaker version of it.

The theorem can be generalized to handle scanr. This uses the naturality property

of tails (Lemma 3), which states the relationship between mapping another function

f over a list, with the corresponding mapping over its list of tails.

Lemma 3

tails ◦ map f = map (map f) ◦ tails

Theorem 2

scanr f a = map (post a) ◦ scanr (◦) id ◦ map f

Proof
scanr f a

= {def. scanr}
map (foldr f a) ◦ tails

= {Theorem 1}
map (post a ◦ foldr (◦) id ◦ map f) ◦ tails

= {functor law}
map (post a) ◦ map (foldr (◦) id) ◦ map (map f) ◦ tails

= {Lemma 3}
map (post a) ◦ map (foldr (◦) id) ◦ tails ◦ map f

= {def. scanr}
map (post a) ◦ scanr (◦) id ◦ map f

�

In section 4.2, Theorem 2 is used to remove the non-associative scan from the adder

specification.

4.2 Associative scan adder

According to the partial evaluation theorems, the entire set of carry propagations can

potentially be calculated in logarithmic time using parallelism because the argument

to scanr is the associative operator (◦). Furthermore, once the carry propagation

functions have been calculated, all of the carry bits can be calculated in O(1) time

by applying the propagation functions to the carry input for the entire word. This

is the one carry bit that we already have, since it is an input to the adder circuit.

Using Theorem 2, we transform the ripple carry adder into add2 (Figure 2).

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

704 O’Donnell and Rünger

�
•
�

apply

�

�
•

bcarry

�
�(◦)

�
•
�

apply

��

bsum

�

�
•

bcarry

�
�(◦)

�
•
�

apply

��

bsum

�

�
•

bcarry

�
�(◦)

�
•
�

apply

��

bsum

�

�
•

bcarry

�
�(◦)

�
•
�

apply

��

bsum

�

id

c

z0 z1 z2 z3

c′ s0 s1 s2 s3

Fig. 2. Circuit diagram of add2.

add2 :: Signal a ⇒ a → [(a, a)] → (a, [a])

add2 c zs =

let ps = map bcarry zs

cf : cfs = scanr (◦) id ps

cs = zipWith apply cfs (repeat c)

c′ = cf c

ss = zipWith bsum zs cs

in (c′, ss)

5 Symbolic function representation

The circuit add2 applies scan to an associative function, so the parallel scan method

is applicable. However, the adder now contains signals that are carry propagation

functions, not carry bits. This means that add2 is not a real circuit, because a digital

circuit must be constructed from primitive logic components, which operate only on

bits. Before proceeding to the parallel scan, we address this problem by introducing

bit representations of the functions.

A partial application bcarry (x, y) has four possible values, since x and y are

both signals restricted to 0 or 1. The complete set of partial applications can be

enumerated as follows, introducing f1, . . . , f4 as names for the resulting functions:

bcarry (0, 0) = f1

bcarry (0, 1) = f2

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

Functional pearl 705

bcarry (1, 0) = f3

bcarry (1, 1) = f4

It is straightforward to check that f2 = f3, because

∀c ∈ {0, 1}. bcarry (0, 1) c = bcarry (1, 0) c.

There are traditional names for these functions (Mead & Conway, 1980): f1 is called

K because it “kills” the carry (returning 0 regardless of its carry argument); f2 and

f3 are called P because they are the identity function, “propagating” the carry input

to the output; f4 is called G because it “generates” a carry output of 1 regardless

of its argument. An arbitrary partial application of bcarry is representable using a

finite alphabet of symbols:

data Sym = K | P | G

The following bcarrySym produces the symbolic representation of a propagation

function for a bit position, given the (x, y) input bits to that position.

bcarrySym :: Signal a ⇒ (a, a) → Sym

bcarrySym (x, y)

| is0 x ∧ is0 y = K

| is0 x ∧ is1 y = P

| is1 x ∧ is0 y = P

| is1 x ∧ is1 y = G

Each partial application of bcarry can be replaced by a full application of

bcarrySym, which achieves the goal of replacing higher order functions with signals

in the circuit. The definition of bcarrySym is unusual, since it has a mixed type with

signal arguments but a symbolic output. Because of this, a multiplexor cannot be

used to define it, and we must resort instead to explicit testing of the input signal

values. Thus bcarrySym is an intermediate measure: it operates on first order values,

but its outputs are not digital circuit signals. A new function applySym is needed to

apply a symbolic carry propagation function to a bit signal, returning a bit signal.

applySym :: Signal a ⇒ Sym → a → a

applySym K x = zero

applySym P x = x

applySym G x = one

Lemma 4 states the relationship between the symbolic function representation

and the actual carry function.

Lemma 4

For all signal bits x and y, bcarry (x, y) = applySym ◦ bcarrySym (x, y)

Proof

Apply both sides of the equation to an arbitrary signal bit c; the proof is a

straightforward case analysis on the four possible values of (x, y). �

After replacing the higher order functions inside the adder with symbolic signals,

the composition of carry propagation functions can no longer be defined with

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

706 O’Donnell and Rünger

�
•
�

apply
rep

�

�
•

prop

�
�compose

rep

�
•
�

apply
rep

��

bsum

�

�
•

prop

�
�compose

rep

�
•
�

apply
rep

��

bsum

�

�
•

prop

�
�compose

rep

�
•
�

apply
rep

��

bsum

�

�
•

prop

�
�compose

rep

�
•
�

apply
rep

��

bsum

�

P

c

z0 z1 z2 z3

c′ s0 s1 s2 s3

Fig. 3. Circuit diagram of add3.

(◦) and id. Therefore an explicit composition function that operates on Sym-

represented functions is needed. It is straightforward to calculate the value of

this new composition operator, by considering all nine possible cases. A shortcut

results from the observation that K (or G) will kill (or generate) its carry output

regardless of the value of its input, while P is just the identity function. The result

of this calculation is captured by the definition of composeSym.

composeSym :: Sym → Sym → Sym

composeSym K f = K

composeSym P f = f

composeSym G f = G

Symbolic composition can be used in place of mathematical composition of propaga-

tion functions, as shown by Lemma 5.

Lemma 5

Let s1, s2 :: Sym be arbitrary symbolic propagation functions. Then

applySym s1 ◦ applySym s2 = applySym (composeSym s1 s2)

Proof

The proof is a straightforward case analysis. �

Replacing the partial applications with the Sym representation leads to the

definition of add3. The Haskell definition and the circuit diagram (Figure 3) have

exactly the same structure as add2.

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

Functional pearl 707

add3 :: Signal a ⇒ a → [(a, a)] → (a, [a])

add3 c zs =

let ps = map bcarrySym zs

cf : cfs = scanr composeSym P ps

cs = zipWith applySym cfs (repeat c)

c′ = applySym cf c

ss = zipWith bsum zs cs

in (c′, ss)

6 Parallel scan

The parallel scan algorithm uses a divide and conquer strategy to perform a scan

in logarithmic time on a tree circuit, assuming that the function being scanned

is associative. The time is actually proportional to the height of the tree, and

the algorithm works correctly even if the tree is not balanced. The details of the

algorithm and its correctness proof are given in O’Donnell (1994). In this section we

show how the algorithm is implemented as a Hydra circuit.

The algebraic data type Tree is used to represent the structure of the circuit:

data Tree a = Leaf a | Node (Tree a) (Tree a)

The mkTree function builds a tree with n nodes which is balanced as closely as

possible. The conversion functions treeWord and wordTree convert between a list of

bits and a set of leaf bits.

mkTree :: Nat → Tree ()

treeWord :: Tree a → [a]

wordTree :: Tree b → [a] → Tree a

The general tree circuit comprises two building blocks: a node circuit and a leaf

circuit. The behavior of the entire tree is expressed by the sweep combinator.

sweep

:: (a → d → (b, u)) — leaf

→ (d → u → u → (u, d, d)) — node

→ d

→ Tree a

→ (u, Tree b)

The leaf circuits receive an input of type a, which they may use to calculate upward-

moving values of type u which are passed up the tree. Eventually, the leaves receive

a downward-moving value of type d, which they can then output.

sweep leaf node a (Leaf x) =

let (x′, a′) = leaf x a

in (a′, Leaf x′)

Each node (see Figure 4) receives two upward messages from its subtrees and a

downward message from its parent, and it uses these values to calculate outputs for

all three of its ports.

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

708 O’Donnell and Rünger

x y

�
�

��

p′

�
�

��
p

�
�

��
q

�
�

��

q′

node

�
a 	a′

Fig. 4. Inductive case of sweep definition.

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

��

	

g

�
g

•

�

•

�
�

��
Fig. 5. Node circuit for tscanr.

sweep leaf node a (Node x y) =

let (a′, p′, q′) = node a p q

(p, x′) = sweep leaf node p′ x

(q, y′) = sweep leaf node q′ y

in (a′, Node x′ y′)

Thus the sweep combinator specifies a general tree circuit, where each component

sends and receives on each of its ports. Naturally, it is possible to deadlock such a

general tree if the leaf and node circuits are not defined properly. However, most

algorithms implemented with tree circuits execute an upsweep phase followed by a

downsweep phase, thereby avoiding deadlock, and the parallel scan algorithm has

this behavior.

The tscanr circuit implements the parallel scan algorithm; it is essentially the

same definition that appears in O’Donnell (1994), except that paper implemented

scanl rather than scanr. Figure 5 shows the structure of a node in the tscanr circuit.

tscanr :: (a → a → a) → a → Tree a → (a, Tree a)

tscanr f a =

let leaf x a = (a, x)

node a p q = (f p q, f q a, a)

in sweep leaf node a

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

Functional pearl 709

	

�
�

�
���

�
�

�
���

�
�

��

f

�
f

•

�

•

�
�

�
�

�

�
�

�
���

�
�

�
���

�
�

��

f

�
f

•

�

•

�
�

�
�

�

�
�

�
�

�

�
�

��

�
�

�
���

�
�

�
���

�
�

��

f

�
f

•

�

•

��

�

��

�� �x0 x1 x2 x3

f x1
(f (f x2 x3) a)

f (f x2 x3) a f x3 a a

f (f x2 x3) a f x0 x1 a f x2 x3

a f (f x0 x1) (f x2 x3)

Fig. 6. Example: calculation of tscanr f a [x0, x1, x2, x3].

Theorem 3 says that tscanr performs a scanr computation in parallel, provided that

the function f is associative.

Theorem 3

Let (a′, t′) = tscanr f a t. If f is associative, then

a′ : treeWord t′ = scanr f a (treeWord t)

The proof is similar to the proof of the tscanl theorem given in O’Donnell (1994),

and Figure 6 gives an example execution of tscanr. The tscanr circuit is perfectly

well defined for any function f of the required type, but it computes the same result

as scanr only if f is associative.

Circuit add3 is now transformed to use the logarithmic time tscanr in place of

the linear time scanr. This is possible because the function scanned is the associative

composeSym. Some additional wiring rearrangements need to be introduced. The

word ps of carry propagation functions needs to be converted by wordTree from

a list representation to a set of tree leaves, and the result of the tree scan is cft, a

tree-structured word that is converted by treeWord back to a list. These “impedance

matching” conversions are only required to make the types match, but they have

absolutely no impact on the circuit – they introduce no extra components or wires.

The result is add4 (Figure 7).

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

710 O’Donnell and Rünger

Fig. 7. Circuit diagram of add4.

add4 :: Signal a ⇒ a → [(a, a)] → (a, [a])

add4 c zs =

let ps = map bcarrySym zs

ps ′ = wordTree (mkTree (length zs)) ps

(cf , cft) = tscanr composeSym P ps ′

cfs = treeWord cft

cs = zipWith applySym cfs (repeat c)

c′ = applySym cf c

ss = zipWith bsum zs cs

in (c′, ss)

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

Functional pearl 711

7 Back into hardware

The remaining tasks in the derivation are to replace the symbolic propagation

function representations with actual digital signals, and to make the corresponding

changes to the circuit components. These steps are straightforward, and could in

principle be automated.

The circuits we are about to define contain many signals, and the readability

of the definitions is improved by replacing Sym with a type alias BSym a, where

a is the hardware signal type. Since the Bsym type has three possible values,

two bits are required to represent it. The signal representations of K , P and G

are defined as constant bit pairs. The actual values chosen to represent them

are arbitrary, subject only to the constraint that we keep the values of the three

symbols distinct. It simplifies the hardware slightly to allow both (zero, one) and

(one, zero) to represent P , so that the data bits (x, y) may be used directly as the

representation.

type BSym a = (a, a)

repK , repP , repG :: Signal a ⇒ BSym a

repK = (zero, zero)

repP = (zero, one)

repG = (one, one)

The symbolic circuits are now transformed into digital circuit implementations.

The bcarryBSym circuit takes a pair of (x, y) of bits from the words being added

and outputs the corresponding two-bit representation of the carry propagation

function. In general, a circuit that implements partial applications might have to

do something substantive: for example, if the number of bits in the symbolic

representation is smaller than the number of input bits. In this case, however, we

can choose to represent bcarry (x, y) by the pair (x, y). Thus K is represented by

(0, 0), P is represented by both (0, 1) and (1, 0), and G is represented by (1, 1). This

leads to a particularly simple definition.

bcarryBSym :: Signal a ⇒ (a, a) → BSym a

bcarryBSym = id

The remaining circuits are defined so as to work for both representations of P :

composeBSym :: Signal a ⇒ BSym a → BSym a → BSym a

composeBSym f g =

let (g0, g1) = g

in (mux2 f zero g0 g0 one,

mux2 f zero g1 g1 one)

applyBSym :: Signal a ⇒ BSym a → a → a

applyBSym f x = mux2 f zero x x one

The goal has been attained: add5 is a digital circuit that contains O(n) logic gates

and requires O(log n) time to add two n-bit words.

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

712 O’Donnell and Rünger

add5 :: Signal a ⇒ a → [(a, a)] → (a, [a])

add5 c zs =

let ps = map bcarryBSym zs

ps ′ = wordTree (mkTree (length zs)) ps

(cf , cft) = tscanr composeBSym repP ps ′

cfs = treeWord cft

cs = zipWith applyBSym cfs (repeat c)

c′ = applyBSym cf c

ss = zipWith bsum zs cs

in (c′, ss)

8 Conclusion

We have transformed a linear time ripple carry adder into a logarithmic time parallel

adder. The transformation proceeded in a sequence of steps, introducing the essential

techniques one by one, with each change to the circuit enabling the next step to

be made. Partial evaluation was used to convert an inherently sequential scan into

a scan over the associative composition function; a symbolic representation was

introduced in order to make all the signal values first order; the tree combinator

was used to implement a parallel scan; the symbolic functions were replaced by

digital components.

The approach developed in this paper has wide applicability. Any application of

sequential scan to a non-associative function can be transformed into a parallel scan

applied to the associative composition operator. In order for this parallelization

to be useful, however, it may also be necessary to find a compact representation

for the higher order functions produced by the partial applications; this is always

necessary for digital circuit design but may not be necessary for parallel functional

programming. Theorem 2 provides a general tool for parallelizing algorithms.

Acknowledgements

This work was supported in part by the British Council and the Deutsche Akademis-

che Austauschdienst under the Academic Research Collaboration program. We

would like to thank the anonymous referees and the editor of this issue, whose

comments have helped us to improve the paper.

References

Cormen, T., Leiserson, C. and Rivest, R. (1990) Introduction to Algorithms. MIT Press.

Fisher, A. L. and Ghuloum, A. M. (1994) Parallelizing complex scans and reductions.

Conference on Programming Language Design and Implementation, pp. 135–146. ACM.

Guibas, L. and Vuillemin, J. (1982) On fast binary addition in nMOS technologies. Proc. of

IEEE Conference, ICCC, pp. 147–151.

Harrison, P. G. (1991) Towards the synthesis of static parallel algorithms: a categorical

approach. Proc. Working Conf. on Constructing Programs from Specifications. IFIP.

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

Functional pearl 713

Karp, R. M. and Ramachandran, F. (1990) Parallel Algorithms for Shared-Memory Machines.

In: van Leeuwen, J. (editor), Handbook of theoretical computer science: Vol. A: Algorithms

and Complexity, pp. 869–941. MIT Press/Elsevier.

Ladner, R. and Fischer, M. (1980) Parallel prefix computation. J. ACM, 4(October).

Maessen, J.-W. (1994) Eliminating intermediate lists in pH using local transformations. MEng

thesis, Massachusetts Institute of Technology.

Mead, C. and Conway, L. (1980) Introduction to VLSI Systems. Addison-Wesley.

O’Donnell, J. (1994) A correctness proof of parallel scan. Parallel Process. Lett. 4(3), 329–338.

O’Donnell, J. (2002) Overview of Hydra: A concurrent language for synchronous digital circuit

design. In: Proceedings 16th International Parallel & Distributed Processing Symposium

(IPDPS): Workshop on Parallel and Distribued Scientific and Engineering Computing with

Applications – PDSECA, p. 234 and CD. IEEE Computer Society.

https://doi.org/10.1017/S0956796804005180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005180

