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Abstract
Coherent beam combining (CBC) of laser arrays is increasingly attracting attention for generating free-space structured
light, unlocking greater potential in aspects such as power scaling, editing flexibility and high-quality light field creation.
However, achieving stable phase locking in a CBC system with massive laser channels still remains a great challenge,
especially in the presence of heavy phase noise. Here, we propose an efficient phase-locking method for a laser array
with more than 1000 channels by leveraging a deep convolutional neural network for the first time. The key insight is
that, by elegantly designing the generation strategy of training samples, the learning burden can be dramatically relieved
from the structured data, which enables accurate prediction of the phase distribution. We demonstrate our method in a
simulated tiled aperture CBC system with dynamic phase noise and extend it to simultaneously generate orbital angular
momentum (OAM) beams with a substantial number of OAM modes.
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1. Introduction

Coherent beam combining (CBC) has been employed as a
powerful technique to surpass the inherent limitations of a
single conventional laser, which has generated significant
interest in industrial manufacturing, medical treatments, sci-
entific explorations and other fields in the past decades[1].
More recently, the spotlight has increasingly turned towards
the utilization of CBC systems in the generation of structured
light[2–9], particularly in scenarios that require higher power
and open-environment light manipulation, such as free-space
optical communication[10–13]. Significantly, as the scale of
the laser array expands, it unlocks greater potential in several
key aspects, including enhanced output power, increased
editing flexibility and the ability to generate complex struc-
tured light with high quality, which paves the way for
exploring new frontiers in related optical applications.

In a typical CBC system, sub-beams are combined coher-
ently by synchronizing the phase of each individual chan-
nel in the laser array, thereby enhancing the combined
power[14–16]. Hindered by pernicious random phase noise in

Correspondence to: J. Li and P. Zhou, College of Advanced
Interdisciplinary Studies, National University of Defense Technol-
ogy, Changsha 410073, China. Emails: lijun_gfkd@nudt.edu.cn (J. Li);
zhoupu203@163.com (P. Zhou)

CBC systems, particularly exacerbated within high-power
configurations, the primary hurdle becomes the rapid and
precise detection of phases, which is essential to achieve
effective phase locking when the number of channels esca-
lates. With increasing combining scales and output power,
conventional phase control methods, such as stochastic par-
allel gradient descent (SPGD)[17–19], encounter significant
challenges in achieving effective phase control, since the
speed of phase locking cannot keep pace with phase varia-
tion. Chang et al.[20] designed a phase-locking module based
on the interferometric technique for a CBC system. However,
a reference beam must be integrated and perfectly aligned
with the overall setup to ensure proper functionality, thereby
adding extra complexity to the system. In recent advances,
deep learning (DL) approaches have demonstrated substan-
tial potential in phase prediction and control, attributed to
their exceptional capabilities in fast non-iterative forward
reasoning, straightforward implementation and potential for
scaling up laser arrays[21]. By learning the nonlinear mapping
relations between combined far-field intensity patterns and
the corresponding phase distributions through a prepared
dataset, the network can provide accurate phase predictions
from various intensity images. In the last 5 years, many
investigations of DL methods have been presented to realize
tiled aperture CBC systems[22–31]. In 2019, Hou et al.[22]

introduced the supervised learning-based DL method to
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CBC for the first time. A well-trained convolutional neural
network (CNN) VGG-16 was utilized to predict the phase
error of the 7-channel and 19-channel CBC systems. Subse-
quently in 2020, a 12-channel phase-locked system based on
two-stage phase control was demonstrated for the generation
of vortex beams with orbital angular momentum (OAM),
integrating the DL and SPGD methods[6]. In 2021, Wang
et al.[27] implemented an 81-channel CBC based on a 9×9
beam diffractive optical element (DOE) combiner with a
fully connected (FC) network. In 2022, Zuo et al.[28] used
residual networks to perform CBC on different scales (7–61
channels) based on spiral phase modulation.

Although there have been a significant number of studies
on DL-based CBC, which is regarded as a potent method
for scalability[22], the combined scale is still limited to the
order of tens of channels. The upper limit of the number
of channels in a laser array that DL-based methods can
effectively support is still an open question, on which no
consensus has been reached yet. The primary challenge lies
in the fact that as the count increases to hundreds or even
thousands of channels, accurately learning phase prediction
from a single complex pattern image becomes exceedingly
difficult[21,22]. The training strategy in previous works would
struggle to learn the mapping in such high-dimensional
spaces and fail to reach convergence. In addition, there has
been limited evaluation of performance under significant
dynamic noise, which is critical for performance evaluation
on CBC systems.

In this study, we demonstrate the achievement of stable
phase locking in a simulated tiled aperture CBC system
with more than 1000 channels using DL for the first time,
to the best of our knowledge. The key observation is that
with the random sampling used to generate training data
in previous work it is highly difficult for neural networks
to learn the inherent mapping between far-field intensity
profiles and near-field phase distributions. Instead, we intro-
duce a novel sampling strategy called ‘ladder sampling’,
which can create structured training data and dramatically
alleviate the learning burden for phase prediction in large-
scale laser arrays. We train a ResNet-50 network to estimate
the phase distribution from the structured data, and thus to
guide the phase control of each beam unit under dynamic
noise and make them synchronized. Furthermore, we employ
our phase-locking method in a 1000-channel array to simul-
taneously generate OAM beams with a substantial number of
modes (18), highlighting the great potential of our approach
for multi-channel OAM multiplexing in free-space optical
communications.

2. Methods

Figure 1 illustrates the optical configuration for executing
CNN-based phase locking in a 1000-level CBC system,
forming the basis for the simulated experiments discussed

Figure 1. Experimental setup for implementing the phase control for CBC
based on our deep learning method.

in this paper. The linearly polarized seed laser (SL) with a
wavelength of 1064 nm is amplified by a pre-amplifier (PA)
and split into N components via a 1×N fiber splitter (FS).
Each sub-beam then passes through a phase modulator (PM)
and a series of fiber amplifiers (AMPs). After power scaling,
the N beamlets are emitted from a hexagonally structured
collimator (CO) array with an adjacent aperture spacing of
25 mm, and divided into two parts by a highly reflective
mirror (HRM1), where one part is used for detection, while
the other serves as the output. Then, after being reflected by
HRM2, the transmitted portion passes through a focusing
lens (FL) with a 20 m focal length and is subsequently
sampled by a beam splitter (BS). The upper path of the
light is utilized to observe the far-field pattern at the focal
plane to verify if efficient CBC is achieved, while the lower
path functions at a position 0.3 m behind the focal plane to
provide inputs to the phase control system, thus breaking
the data collision of the far-field intensity profile at the
focal plane. A charge-coupled device (CCD2) captures the
intensity of the combined beams, and the central 224 ×
224 pixels of the recorded pattern are input into the field-
programmable gate array (FPGA) controller, which employs
our well-trained CNN and provides an accurate prediction
of the current phase distributions, continuously guiding the
PMs to correct the phase errors.

2.1. Design of the CNN

The proposed CNN structure (Figure 2(a)) is based on
the ResNet[32] architecture with modifications: the input
channels of the initial convolutional layer are reduced from
three to one since the input far-field patterns are grayscale
intensity profiles. Furthermore, the output layer uses a Tanh
activation function to map the outputs within the range of
[–1, 1], which limits the output prediction to a particular
phase range. The CNN takes a 224×224 intensity pattern
observed at a non-focal plane as input. In addition, the
features utilized for phase prediction are effectively extracted

Downloaded from https://www.cambridge.org/core. 30 Sep 2025 at 01:14:40, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Efficient phase locking in massive laser arrays 3

Figure 2. Details of the constructed CNN. (a) Overview architectures of ResNet-18 and ResNet-50. (b) Bottleneck structure of ResNet-50. (c) Basic block
structure of ResNet-18.

by various convolutional layers at different stages of the
model. In detail, the pattern image is first processed by a
convolutional layer with a 7×7×64 kernel, followed by batch
normalization (BN), rectified linear unit (ReLU) nonlinear
activation and maxpooling. Subsequently, the feature map
undergoes four stages comprising multiple residual blocks.

In ResNet-50, each stage consists of residual blocks
designed as ‘bottlenecks’. A bottleneck (Figure 2(b))
is structured with three layers: a 1×1 convolution for
dimensionality reduction, a 3×3 convolution serving as
the core processing unit and another 1×1 convolution
for dimensionality restoration, all of which are followed
by activation of BN and the ReLU. In particular, the
input to each block is combined with its output through
a skip connection, which aids in the direct propagation of
gradients and helps prevent the vanishing gradient issue. The
number of bottlenecks in the four stages is three, four, six
and three, respectively, progressively increasing the depth
from 64 to 2048 while reducing the spatial dimensions.
In contrast, the lightweight ResNet-18 architecture features
two residual blocks per stage, referred to as ‘basic blocks’,
which incorporate skip connections as well. Each basic block
comprises two 3×3 convolution layers followed by BN and
the ReLU, as illustrated in Figure 2(c). In addition, the depths
of these blocks progressively grow from 64 to 512 over the
four stages.

Finally, a global average pooling layer (avgpool) is utilized
to condense each unit of the feature map into a single value,
followed by an FC layer with Tanh activation to provide the
prediction for the current relative phase distribution.

The cost function for our CNN is characterized by the
mean-square error (MSE) between the predicted output and
the actual label. The MSE for a set of samples is given by the
following:

MSE = 1
N

N∑
j=1

∥∥∥y(j)
output − y(j)

label

∥∥∥2

2
, (1)

where N denotes the batch size and youtput and ylabel represent
the network output and the labeled phases for the jth input
pattern, respectively. Furthermore, labels are normalized
within [−1,1] by dividing by π to match the CNN out-
puts. By optimizing the network parameters based on the
MSE of the network outputs and the corresponding ground-
truth labels via gradient backpropagation, the network could
directly establish a nonlinear mapping between far-field
intensities and sub-beam phases.

2.2. Training data collection based on ladder sampling

In a tiled aperture CBC system, the emission unit of the array
is typically a linearly polarized fundamental Gaussian beam,
and the complex amplitude of the beam array at the source
plane is described by the following:
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where
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)
, A0, w0, circ(·), φj and d represent the position

of the source, the amplitude, the width of the beam waist, the
circular function, the piston phase and the aperture diameter
of the jth beam, respectively. Moreover, (x,y) indicates the
coordinates of the source plane. In accordance with Kirch-
hoff diffraction theory, the complex amplitude at z = L can
be described by the Fourier transform under the paraxial
approximation as follows:
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The coordinates of the observation plane are represented
by (u,v), whereas λ, k, f , L and F (·) correspond to the
wavelength, wave vector, focal length, propagation distance
and Fourier transform operation, respectively. Consequently,
the intensity profile captured by the CCD is written as
follows:

I (u,v,z = L;�) = |E (u,v,z = L;�)|2. (4)

The above CBC model is utilized to acquire a sufficient
number of training samples. In addition, the parameter
settings of our 1027-channel hexagonal CBC system are
λ = 1064 nm, w0 = 10.24 mm, d = 23 mm and f = 20 m. In
CBC systems, the power in the bucket (PIB) metric evaluates
the combined results by calculating the energy encircled in
the Airy disk with a solid angle of 1.22λ/D, where D is the
diameter of the array. The normalized PIB, or combining
efficiency, is derived by comparing the current PIB to the
ideal PIB.

Driven by the intrinsic characteristics of the Fourier trans-
form, diverse phase distributions, such as global phase shift
and conjugate inversion, can result in identical far-field inten-
sity profiles at the focal plane. This attribute complicates
the inverse problem into a one-to-many mapping, which
is not appropriate for network training. Consequently, we
utilize the phases relative to the central beam, to annotate
our dataset, thus removing the influence of global phase
shift. In addition, all our far-field patterns are generated at
the non-focal plane, situated 0.3 m behind the focal plane,
to eliminate the data collision associated with conjugate
inversion.

In previous DL-based CBC work, the training data is com-
monly generated by randomly sampling a phase distribution
for the laser arrays. That means the phase of each laser
channel is a random value independently sampled from a
2π period. However, we observed that this strategy suffers
from two major problems. Firstly, the variation in PIB of the
training samples is limited to a very narrow range, usually

between 0 and 0.2. For instance, in a 1027-channel CBC
system, the normalized PIB at the focal plane is even worse
with random sampling, and the PIB consistently falls below
0.02. Consequently, there is a noticeable scarcity of intensity
pattern data within the normalized PIB interval from 0.02
to 1.0, which hinders the network in learning how to work
under these scenarios when the system encounters them, as
the network never ‘sees’ such intensity patterns. Secondly,
we found that even random sampling could work for CBC
systems with fewer than 100 channels, as it relies on ‘luckily
seeing’ similar local patterns of higher PIB from a vast
quantity of data generated by random sampling. However,
when the scale increases to hundreds and thousands of
channels, the learning burden becomes extremely difficult as
a similar local pattern is rarely seen and is much smaller,
leading to scarcely possible detection and recognition.

To guarantee a training dataset with adequate diversity
for training purposes, we introduce a ‘ladder sampling’
strategy designed to arrange phase distributions into multiple
designated interval ranges. The patterns generated with our
ladder sampling strategy comprehensively span the entire
normalized PIB range from 0 to 1, greatly improving the
diversity in the dataset. Specifically, by evenly dividing the
2π phase range into 20 uniform incremental intervals, we
create 20 subsets to form the complete dataset (Figure 3(a)).
For example, the far-field patterns in the first subset are
generated within the phase range of [–π /20, π /20], and
those in the second subset are within [–π /10, π /10]. The
phase distribution range of the sub-beams between each
subset increases uniformly until it spans the entire [−π , π ].
By restricting the phase distribution within a certain range
(Figures 3(d1)–3(d3)), far-field patterns in various states are
effectively obtained (Figures 3(b1)–3(b3) and 3(c1)–3(c3)).
In addition, the size of the dataset varies on the combining
scale as training at a larger scale typically requires more
samples due to the increased complexity of the combined
patterns. In this study, for a 1027-channel CBC system,
we generated a total of 350,000 samples for the dataset,

Figure 3. (a) Phase distributions of the 20 subsets generated through ladder sampling. Each arc represents a subset. (b)–(d) Non-focal-plane, focal-plane and
source-plane visualization in different phase distributions in a 1027-channel laser array. (b1)–(b3) Non-focal plane patterns in the phase ranges of ±0.3π ,
±0.7π and ±π , respectively. (c1)–(c3) The corresponding intensity profiles at the focal plane. (d1)–(d3) The corresponding near-field phase distributions to
the above far-field patterns. (e) Comparison of ladder sampling and random sampling strategies.
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which means that each subset contains 17,500 samples. The
comparison of random and ladder sampling is shown in
Figure 3(e). Detailed analysis is discussed in the next section.

3. Results and discussion

3.1. Phase locking of a 1000-channel laser array

We train ResNet-50 with 350,000 samples for phase pre-
diction, and generate another 3500 samples for validation.
During training, with a batch size of 32, the parameters of
our CNN are iteratively updated by backpropagation using
the Adam optimizer, which merges the advantages of Ada-
Grad and RMSProp to ensure rapid convergence and robust
generalization. In addition, a learning rate decay strategy is
employed, based on the loss of the validation set, to guide
network convergence. In detail, the initial learning rate of
0.0001 will be reduced to 1/10 of itself if the loss of the
validation dataset does not decrease over the past five epochs.
Our CNN is built using the PyTorch 3.11 library, and the
training is executed on a single NVIDIA GeForce RTX 3090
GPU.

After training, we evaluate our phase prediction by
employing the dynamic simulation of a 1027-channel CBC
system, capable of generating phase noise at extremely
high frequencies and dynamically demonstrating the phase-
locking mechanism. Starting with a random initial phase dis-
tribution, perturbative phase noise is constantly introduced
to each beam, characterized by user-specified parameters for
frequency and amplitude intervals. The implementation of
phase locking is achieved by compensating for the relative
phase discrepancies perpetually disrupted by stochastic
noise, which requires both precise phase prediction and rapid
corrective action. If the response time of phase compensation
significantly falls behind the change of dynamic noise,
aligning the phase of each component becomes impossible.
To improve the speed of forward reasoning of our trained

ResNet-50, we adopt cuDNN, a GPU-accelerated library,
and TensorRT for FP16 half-precision calculation, which
improves the inference of networks on NVIDIA GPUs
and significantly reduces the cost of a single-time phase
prediction from 6.80 to 0.62 ms.

For systems suffering from dynamic phase noise interfer-
ence with a frequency of 5000 Hz and a random amplitude
range of ±0.2 rad, the variation of normalized PIB and
four typical corresponding focal-plane patterns are shown
in Figure 4(a) in both open- and closed-loop configurations.
During the open loop, the normalized PIB remains low and
fluctuates with the drifting far-field patterns. Conversely,
in the closed loop, the normalized PIB exhibits significant
enhancement, sustaining an average value of 0.94, with
negligible changes observed in the far-field intensity profile.

In addition, we evaluate the performances of our CNN at
varying levels of phase noise to demonstrate the robustness
of our network. The corresponding results of the average PIB
values are shown in Table 1. It can be observed that the ideal
CBC is almost attained, with a PIB value approaching 1.0
in the low-level phase noise scenario. With an increase in
both frequency and amplitude of the noise, the efficiency
of the combination gradually diminishes. However, it still
upholds a relatively efficient coherent state compared to the
open-loop configuration. Furthermore, Table 2 provides the
root mean square (RMS) values that illustrate the intensity
stability at different levels of phase noise. Specifically, the
RMS stability is obtained by calculating the ratio of the
RMS of the set of PIB deviations to the average PIB value.
PIB deviations refer to the differences between individual
observed PIB values and the mean. The results demonstrate
that our phase-locking network has outstanding performance
in intensity stability even under heavy phase noise.

To demonstrate the necessity of employing cuDNN and
TensorRT for network acceleration, we evaluate the phase-
locking performance under various conditions. As shown
in Figure 4(b), without the application of acceleration tech-

Figure 4. Phase-locking results of the 1027-channel CBC system. (a) Normalized PIB variation of the system with dynamic phase noise in open and closed
loops. (b) Phase-locking performances of networks with and without cuDNN and TensorRT accelerations (phase noise: 5000 Hz, ±0.2 rad).
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Table 1. Average normalized PIB of the 1027-channel CBC
system with dynamic phase noise of different levels.

PIB
±0.1 ±0.2 ±0.3 ±0.4 ±0.5

Frequency (Hz) rad rad rad rad rad

1000 0.997 0.990 0.979 0.963 0.943
2000 0.994 0.979 0.954 0.920 0.878
5000 0.983 0.942 0.870 0.783 0.678

Table 2. RMS values for the intensity stability of the 1027-
channel CBC system with dynamic phase noise of different
levels.

RMS for intensity stability
±0.1 ±0.2 ±0.3 ±0.4 ±0.5

Frequency (Hz) rad rad rad rad rad

1000 0.15% 0.61% 1.39% 2.49% 3.92%
2000 0.17% 0.67% 1.51% 2.70% 4.22%
5000 0.38% 1.51% 3.39% 6.12% 9.48%

niques, the time cost for a single network response on the
GPU is 6.8 ms, resulting in a significantly oscillating phase-
locking performance averaging 0.49 in the closed-loop con-
figuration. In contrast, the deployment of the network with
cuDNN and TensorRT in FP16 half-precision calculating
reduces the response time to 0.62 ms. This substantial
decrease in response time effectively mitigates the impact of
phase noise on the system, thereby achieving a more stable
phase-locking performance, with the PIB value improving to
approximately 0.94.

Furthermore, we investigate the network response and
phase-locking performance under different acceleration
strategies. As presented in Table 3, it can be seen that
the efficient combination of cuDNN, TensorRT and FP16
precision inference substantially boosts network inference
performance, consequently improving the resistance of the
system to phase noise and its overall robustness.

To offer further substantial evidence of the advantages of
DL techniques in large-scale CBC systems, we evaluate the
performance of our approach against the SPGD algorithm in
Figure 5, using the phase noise data collected from a real
high-power fiber AMP operating under 1 kHz[20]. The con-
figuration of SPGD algorithms is set according to Ref. [17],
with a 100 kHz execution speed, a two-sided perturbation
at an amplitude of 0.05 rad and a gain coefficient of 180.
The evaluation function is calculated as the combined power
within half the size of the central main lobe. It is clear that
our approach significantly surpasses the SPGD algorithm

Figure 5. Phase-locking performances of the DL method and SPGD
algorithm in the 1027-channel CBC system with dynamic phase noise from
real high-power fiber amplifiers.

in terms of phase locking. Specifically, our CNN attains
nearly optimal phase locking in 0.01 seconds, featuring an
average normalized PIB value of 0.93 in the closed loop. In
contrast, the SPGD algorithm struggles with dynamic phase
noise, causing the normalized PIB to fluctuate and remain
significantly lower, without any notable improvement. In
addition, a separate ResNet-50 is trained using the tradi-
tional random sampling dataset[6], consisting of a total of
3.5 million training patterns, which is 10 times greater
than in ladder sampling. However, the network struggles to
achieve convergence during the training stage and performs
poorly in the phase-locking test. The phase-locking results
indicate that the DL method with the traditional random
sampling method completely fails in such a massive CBC
system.

3.2. Influence of sample generation

To demonstrate the efficacy of our sample generation
methodology for training data, we present a comparative
analysis of the phase-locking performance of a hexagonal
61-channel CBC system, which is subject to random phase
noise of 5000 Hz and ±0.2 rad random phase noise, using the
ResNet-18 framework trained on datasets produced through
different strategies.

In prior studies on DL-based CBC, the phase profiles of
the training samples are conventionally generated through
random sampling, whereby the phase of each individual sub-
beam is independently and randomly sampled from −π to π .

Table 3. Time consumption and phase-locking performance of networks under different acceleration strategies (phase noise: 5000 Hz,
±0.2 rad).

Acceleration strategies GPU GPU+cuDNN GPU+cuDNN +TensorRT GPU+cuDNN +TensorRT+FP16

Response time (ms) 6.80 5.23 1.48 0.62
Normalized PIB 0.491 0.577 0.862 0.942
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Figure 6. Phase-locking results of the 61-channel system with dynamic phase noise under different data generation and volume. (a)–(d) PIB variation in a
closed loop with ResNet-18 trained on 5000, 10,000, 100,000 and 200,000 samples for each generating strategy, respectively. (e)–(h) PIB distributions of the
corresponding training samples for (a)–(d).

In contrast, we implemented a ladder sampling methodology
in which training data is synthesized by sampling from
multiple intervals that are uniformly partitioned in the entire
2π phase range, thus producing a diverse array of far-field
patterns. These two generation strategies will be referred to
as random sampling and ladder sampling, respectively.

We create four groups of datasets for each strategy, with
sample numbers of 5000, 10,000, 100,000 and 200,000,
respectively. Specifically, the 2π phase range is divided
into 10 intervals for the ladder sampling strategy in this
experiment. The corresponding variation of the normalized
PIB in the closed loop is presented in Figures 6(a)–6(d).
Figures 6(e)–6(h) illustrate the distribution of the normalized
PIB for training samples, indicating the diversity of far-field
patterns at the focal plane. Our method generates samples
that comprehensively span the entire range of the PIB axis
from 0 to 1, whereas the random method produces scattered
patterns with low PIB values.

Networks trained using ladder sampling exhibit efficient
CBC performance, with average normalized PIB values
consistently exceeding 0.95. Even with a very small dataset
of 5000 samples, our ladder sampling allows the DL method
to reach an average PIB of 0.953, while random sampling can
only offer an average PIB of 0.12 (Figure 6(a)). Furthermore,
for networks trained with random sampling, effective CBC
can only be achieved with 200,000 samples, yielding an aver-
age PIB of 0.879, still significantly lower than the combining
efficiency observed when ladder sampling is applied to a
5000 dataset, which is 40 times smaller. This suggests that
models trained on datasets produced by our method exhibit
superior generalization capabilities, despite a significantly
smaller volume of training data. Moreover, our observations
indicate that with our data generation strategy, the variation
in combined PIBs between training with 5000 and 200,000
samples is approximately 0.01. Furthermore, even when

increasing the training data size from 200,000 to 300,000
samples, the normalized PIB only improves by merely 0.001.
These results demonstrate that our data generation method is
capable of producing highly diverse far-field patterns with a
very limited amount of data, thereby significantly reducing
the volume of data for effective network training.

As noted previously, random sampling leads to much
missing of patterns associated with higher PIB values. Its
effectiveness highly depends on the fortunate occurrence
of encountering similar local patterns of higher PIB values
within the extensive amount of randomly generated data.
Here, we also illustrate this phenomenon in Figures 7(a1)–
7(a5) for a brief demonstration in the same 61-channel laser
array setting. We maintain a constant phase for a beam subset
within a hexagonal region on the emission plane, while the
phase outside can vary randomly. As a result, it is evident
that the far-field patterns corresponding to the beams within
the hexagonal area exhibit a similar structure in a local region
of the non-focal plane (Figures 7(b1)–7(b5), highlighted
by white rectangles). This suggests a strong correlation
between the phase distribution of a subset of laser sources
and its corresponding local pattern in the non-focal plane.
Thus, the CNN is trained to utilize the local information
of these patterns to make accurate predictions regarding
the overall phase distribution on the emission plane. In
contrast to traditional sampling strategies, which require the
network to train on a vast volume of data to generate various
local patterns similar to those across larger PIB ranges, our
approach significantly reduces the data volume requirement.
Specifically, our ladder sampling strategy directly presents
different kinds of intensity structure spanning from PIB 0 to
1, enabling efficient extraction of useful and universally valid
features. As a result, our sampling demonstrates substantially
improved phase-locking performance with a much smaller
training dataset compared to conventional methods.
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Figure 7. Local correlation between far-field patterns and near-field phase distributions. (a1)–(a5) Five near-field phase maps containing locally equal phase
distributions within the hexagonal areas. (b1)–(b5) The corresponding far-field patterns of (a1)–(a5) with similar intensity profiles in the rectangular areas.

Table 4. Average normalized PIB of CBC systems with differ-
ent network structures (phase noise: 5000 Hz, ±0.2 rad).

PIB
127 channels 397 channels 1027 channels

(10,000 (100,000 (350,000
Network samples) samples) samples)

ResNet–18 0.943 0.962 0.552
ResNet–50 0.047 0.928 0.943

3.3. Influence of the CNN architecture

Selecting an appropriate network structure according to
varying combining scales is crucial for achieving effective
CBC. To elucidate the influence of network architecture,
we compare the beam combining outcomes of the 127-
channel, 397-channel and 1027-channel CBC systems uti-
lizing ResNet-18 and ResNet-50, each trained on the same
dataset corresponding to its scale. The dataset sizes are
10,000, 100,000 and 350,000, respectively, for the three
specified combining scales. The respective phase-locking
results for the two networks are displayed in Table 4.

Within the 127-channel system, ResNet-50 does not suc-
ceed in achieving phase locking, whereas ResNet-18 attains
an average normalized PIB of 0.934. The predominant cause
for this disparity is the limited size of the dataset for the
given task, in conjunction with the deeper architecture of
ResNet-50 relative to ResNet-18. This difference led to over-
fitting during the training process. Consequently, an increase
in the volume of training data is necessary for ResNet-50 to
achieve efficient CBC within the 127-element system.

In particular, in the context of the 397-channel system,
ResNet-18 exhibits a better combining efficiency compared
to ResNet-50. This is attributed to the fact that, on a smaller
scale, both networks are sufficiently powerful to execute
rational phase prediction after being trained on adequate
datasets. However, ResNet-18 comprises fewer layers than

ResNet-50, facilitating a faster forward propagation process
and thus reducing computational time. In the present experi-
ment, ResNet-18 requires an average of 0.34 ms to complete
a single-time phase prediction, while ResNet-50 requires
0.62 ms. Consequently, the expedited response of ResNet-18
diminishes the cumulative phase noise interference to which
the system is exposed during a single-time phase modula-
tion, thereby enhancing the system’s combining efficiency
compared to that achieved with ResNet-50.

For the 1027-channel system, the results obtained using
ResNet-50 indicate that 350,000 samples are sufficient
for effective training and superior learning capabilities
are demonstrated with more complicated data compared
to ResNet-18. Furthermore, even with an increase in
the training samples to 500,000 for ResNet-18, the
normalized PIB remains within the range of [0.5, 0.6], thus
substantiating that it lacks the learning ability in complex
situations of the 1027-channel CBC system.

In summary, for smaller combining scales, deeper models
usually require more training data to avoid overfitting. When
samples are sufficiently diverse, the learning capacity of
the chosen network becomes the main factor that influences
the phase-locking performance, especially for large-scale
combining. Networks with deeper structures usually achieve
better performance but with more computational time con-
sumption, which may degrade the efficiency of combining.
Therefore, it is crucial to choose a suitable network structure
that balances data learning capacity and phase controlling
bandwidth according to different combining scales.

3.4. Generation of multi-mode OAMs

Structured light with specific spatial intensity and phase
distributions has found widespread applications in various
fields, including particle manipulation, optical communica-
tion and imaging[3]. Recent studies have indicated that the
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Figure 8. 1000-channel CBC system for multi-mode OAM superpositions. (a) The phase distribution of the laser array. (b) The focal pattern of (a). (c) The
variation of far-field mode purities in phase-locked and unlocked states. (d) The comparison of far-field OAM spectra under different states.

generation of specific structured light can be achieved by
introducing particular phase distributions into CBC systems.
This multi-beam combining approach effectively addresses
the challenges associated with traditional methods of struc-
tured light generation, such as low output power and limited
speed in mode switching[33].

However, the number of array beams is a crucial factor
that influences the quality of structured beam generation.
To generate structured light with rich phase variations and
complex structures, it is often necessary to increase the
number of source channels in a laser array. For instance,
in the case of OAM beams, relevant studies have indicated
that to generate a vortex beam with a topological charge of
l, the outermost layer of the array must contain at least 3l
beams[34,35]. Otherwise, a beam of adequate quality cannot
be guaranteed.

In this study, our CNN effectively enables phase control
over a coherent array consisting of thousands of chan-
nels, paving the way for the generation of high-power vor-
tex beams with large topological charges. Furthermore, the
nested structure of the multi-layer beam arrays offers an
efficient solution for OAM multiplexing in free-space optical
communication[11]. Here, we validate the feasibility of a
large-scale CBC system in the generation of complex vortex
superpositions. Specifically, we employ an array consisting
of 1026 beams arranged in 18 circular layers, with each layer
containing different topological charges (designated as 1–
18, respectively, in Figure 8(a)) encoded as helical phases
to generate complex superpositions in the far field (Figure
8(b)). In detail, the innermost layer contains six beams, while
the outermost layer comprises 108 beams, which enables the
generation of vortex beams with topological charges ranging
from –36 to 36 and allows for the flexible implementation of
up to 18 modes of OAM multiplexing.

To illustrate the importance of phase locking in this appli-
cation, we present a comparison of the vortex mode purity
in the far field under both phase-locked and unlocked states,
as demonstrated in Figure 8(c). Mathematically, the mode

purity is quantified by the modulus of the overlap inte-
gral between the received mode and the ideal mode. It is
evident that, in the absence of phase locking, the beam
profile at the receiving plane undergoes severe distortion
due to dynamic phase noise, ultimately leading to complete
dispersion. In contrast, our efficient phase-locking system
consistently corrects piston phase errors through the trained
CNN, preserving a stable vortex superposition pattern in
which the purity of the mode remains consistently at an
average of 97.8%.

Furthermore, the far-field OAM spectra in different states
are shown in Figure 8(d). In the ideal state, the OAM spectra
are expected to display a progressively increasing trend in
intensity, corresponding to the far-field pattern that includes
OAM modes with topological charges spanning from 1 to 18.
However, without efficient phase locking, the OAM modes
responsible for conveying information cannot be generated
correctly and become uncontrollable due to continuous noise
interference. This means that the generated OAM spectra
would follow a randomly fluctuating distribution, even with
unexpected messy modes totally outside of the topological
charge range from 1 to 18, far away from the pre-designed
OAM modes that convey accurate information. In contrast,
employing our phase-locking technique can effectively gen-
erate OAM modes that are fairly close to the ideal state,
thereby guaranteeing accurate encoding for the information
to be transmitted.

4. Conclusion

In an effort to answer the question of the number of channels
that can be effectively supported by DL-based methodolo-
gies in CBC systems, we have successfully implemented
phase locking in a laser array comprising over 1000 channels
with a deep CNN for the first time. By leveraging the
ladder sampling strategy to generate training data and GPU-
accelerated technologies, our approach achieves superior
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performance in phase locking for CBC systems even under
heavy dynamic phase noise. The impacts of various sampling
strategies for generating training data, along with the evalu-
ation of different neural networks, are analyzed in detail to
provide a more comprehensive overview for DL-based CBC
systems. In addition, we illustrate that our effective phase-
locking approach in a CBC system allows for the generation
of multi-mode OAM beams, presenting significant potential
for high-power structured light generation.
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