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1. Introduction. Let K be a local field of positive characteristic p. This means, in
particular, that K is complete and locally compact with respect to a normalized discrete
valuation vK . Let us denote by OK = {x ∈K| vK(x)≥ 0} the valuation ring of vK , and let
pK be its maximal ideal. The residue field F :=OK/pK is finite of order some power q of
p. Let � be a fixed algebraic closure of K and let v� the unique extension of vK to �. We
denote by (�, v�) the completion of (�, v�). For any extension F ⊂� of K, we denote by
vF the restriction of v� to F. We also denote by OF ⊂ F the valuation ring of vF , and by
pF the maximal ideal of OF . The completion of F in � will be noted F. In all this paper, π
is a fixed prime of K. In other words π ∈K, and we have vK(π)= 1.

Let B be a commutative ring with unity. A one-dimensional formal group over B is, by
definition, a formal series F ∈ B[[X ,Y ]] such that F(X ,Y )= X + Y + terms of degree≥ 2,
and F(F(X , Y ), Z)= F(X , F(Y , Z)). A homomorphism from a formal group F into a for-
mal group G is a formal power series β ∈ XB[[X ]] such that β(F(X , Y ))=G(β(X ), β(Y )).
We denote by Hom(F,G) the set of all homomorphisms from F into G. The set M =
XB[[X ]] forms an abelian group with respect to the addition f +G g=G( f (X ), g(X )), and
Hom(F,G) is a subgroup of M . If G= F, we usually write End(F) instead of Hom(F, F)
and call it the set of endomorphisms of F. We recall that End(F) is a ring with respect to
the addition f +F g= F( f (X ), g(X )) and the composition f ◦ g. Let D : End(F)−→ B be
the ring homomorphism that sends the endomorphism � to �′(0).

When B is an OK-algebra, with γ :OK −→ B being the structure map, Drinfeld
defined in [5, §1] a formal OK-module over B to be a pair (F, f ) where F is a formal
group over B and f is a homomorphism from OK into End(F) such that D ◦ f = γ . If
Ga(X , Y )= X + Y is the additive group, then every element of End(Ga) has the form∑∞

i=0 biX pi
. Hence, We may identify End(Ga) with the twisted power series ring B{{τp}}

where τp is the p-Frobenius, that is the element satisfying the rule τ n
p b= bpn

τ n
p , for any

b ∈ B and n ∈N. In this case, we view D as the map B{{τp}} −→ B that assigns to a power
series f =∑∞

n=0 bnτ
n
p its constant term b0. Let us fix, once for all, F0 a subfield of OK/pK

of order , say q0 := pe and let τ := τ e
p . Following Michael Rosen, cf. [8], we define a formal

Drinfeld OK-module over B to be a ring homomorphism

ρ :OK −→ B{{τ }}, a 
−→ ρa
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such that

(1) for all a ∈OK , D(ρa)= γ (a).
(2) ρ(OK) �⊂ B and ρπ �= 0.

If f ∈ B{{τ }} has the expansion f =∑∞
i=0 cnτ

n, then we denote by ordτ ( f ) the least
nonnegative integer n such that cn �= 0. We know by [8, Lemma 1.2] that for any for-
mal Drinfeld OK-module ρ and any prime element of K, the integer ordτ (ρπ) (which is
obviously independent of π ) is divisible by the degree

d := [F : F0].
By definition, the height of ρ is the integer ht(ρ)= ordτ (ρπ)/d. Let L⊂� be an extension
of K. Then OL and OL/pL are naturally commutative OK algebras with unity. When B=
OL, the structure map γ :OK −→OL will always be the inclusion map. For such a formal
Drinfeld OK-module, we say that ρ has stable reduction if the ring homomorphism ρ̄ :
OK −→OL/pL{{τ }} is a formal Drinfeld OK-module over OL/pL.

Let K∞u ⊂� be the maximal unramified extension of K in �. For any positive
integer m, we denote by Km

u ⊂K∞u the unramified extension of K of degree [Km
u :K] =m.

Let Rm (resp. R) be the set of all formal Drinfeld OK-modules over OKm
u

(resp. OK∞u )
for some positive integer m having stable reduction and such that ht(ρ̄)= 1. We denote
by R∞ the union of Rm for all the integers m> 0. The purpose of this short article is to
continue the exploration of the properties of formal Drinfeld modules begun by Michael
Rosen in [8]. In particular, we focus on the questions raised at the end of section 3 of
[8], concerning the Galois module structure of the torsion of formal Drinfeld modules
belonging to R. Thus we want to study the fields generated by the sets

W n
ρ = {α ∈ p� such that ρa(α)= 0, for all a ∈ pn

K}, (1)

where ρ ∈R, and n≥ 1 is any positive integer. Our first result is the following:

THEOREM 1.1. (Theorems 3.4 and 3.5) The field K∞u (W n
ρ ) does not depend on the for-

mal OK-module ρ ∈R∞. Let Wρ be the union of W n
ρ for all n≥ 1. Then K∞u (Wρ) is the

maximal abelian extension Kab of K in �.

Proposition 3.1, which is a generalization of [7, Lemma 1], is an important ingredient
in the proof of the above theorem. Let ρ ∈Rm and let H =Km

u . In Section 2, we used the
Weierstrass preparation theorem [8, Theorem 3.2] to study the extensions Hn

ρ =Km
u (W

n
ρ ).

It is worthwhile to give further details about these local fields as abelian extensions of K
in terms of the local class field theory. It is interesting to know how these fields vary as a
function of ρ. What can we say about the group NHn

ρ/K

(
(Hn

ρ)
∗))?

In Section 4, we prove that the logarithm λρ of ρ is such that λρ(X ) is the limit in
H[[X ]]1 of the sequence ρπn (X )

πn . Such a result was first proved for the Lubin–Tate logarithm
by Wiles in [10, Lemma 3] in the case of local fields of characteristic zero. It was then
generalized by Coleman to all characteristics in [4, Lemma 21].

In the last section, we define a trace operator Sρ,π and a norm operator Nρ,π similar
to those defined by Coleman. It would be interesting to explore the connection between the
image of the logarithm of ρ and the eigenspaces of Sρ , in the spirit of [4, Section VI].

When ρ satisfies a certain congruence, described in the theorem below, we are able
to prove a theorem that may be considered as a generalization of [4, Theorem A]. It also
generalizes [3, Theorem 11]. In the sequel, if R is a ring, then we note R∗ the multiplicative
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group of R. We also let OH((X ))=OH [[X ]][ 1
X ] be the ring of Laurent power series f such

that X sf ∈OH [[X ]], for some non-negative integer s.

THEOREM 1.2. (Theorem 5.8) Suppose we have

(i) ρ ∈Rm0 for some rational integer m0 > 0 dividing m.
(ii) There exists η ∈OK such that vK(η)=m0 and ρη ≡ τ dm0 modulo πOK

m0
u
{{τ }}.

Let u ∈O∗K be such that uη= πm0 . Then define the operator Ñ by Ñ ( f )=Nm0
ρ,π ( f ) ◦

ρu(X ) and set ϕ̃ = ϕm0 , where ϕ is the frobenius automorphism of K∞u /K. For any n ∈N∗
let En =Km

u (W
nm0
ρ ), and define X∞ = lim←−n

E∗n to be the projective limit of the multiplicative

groups E∗n with respect to the norm maps. Let M∞ = { f ∈OH((X ))∗, Ñ ( f )= f ϕ̃}. There
exists a topological isomorphism

evÑ :M∞ −→ X∞,

given by evÑ ( f )= (
f ϕ̃
−n
( ṽn)

)
n
, where the system ( ṽn)n is defined in subsection 5.3.1

The formal Drinfeld modules coming from rank 1 Drinfeld modules all satisfy the
hypotheses of the above Theorem 1.2. See, for instance, [3]. Francesc Bars and Ignazio
Longhi proved a reciprocity law for rank 1 Drinfeld modules, cf. [3, Theorem 24]. It is then
natural to ask if any reciprocity laws can be formulated for the formal Drinfeld OK-modules
satisfying the hypotheses of the above theorem.

2. The OK-modules W n
ρ . Let H =K∞u or H =Km

u , for some m, so that H is com-
plete for vH and unramified above K. Let ρ be a formal Drinfeld OK-module over OH ,
having stable reduction and such that ht(ρ̄)= 1. It is clear that W n

ρ is a subgroup of (p�,+).
It is even an OK-submodule of p� for the action

a ·ρ α= ρa(α), for a ∈OK and α ∈ p�.
We also have

W n
ρ = {α ∈ p� such that ρπn(α)= 0}.

LEMMA 2.1. There exists (Un)n≥1 and (Qn)n≥1 two sequences of elements of OH{{τ }}
uniquely determined by the following conditions:

(1) Qn is a distinguished polynomial of degree d and Un is a unit.
(2) ρπ =U1Q1 and Q1U1 =U2Q2.
(3) Q1U1Un−1 =UnQn, for all n> 2. Moreover, we have

ρπn =U1UnQnQn−1 · · ·Q2Q1.

Proof. We simply apply the Weierstrass preparation theorem [8, Theorem 3.2] first to
ρπ , then to Q1U1 and inductively to Q1U1Un−1. The degree of Q1 is d because by hypoth-
esis ht(ρ̄)= 1. This gives the degree of the polynomials Qi. The last equality is easy to
check.

By the above lemma 2.1, we see that

Qn = τ d + c(n)d−1τ
d−1 + · · · + c(n)1 τ + πn,
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where πn is a prime of H , and the other coefficients c(n)i are in pH . Hence, Pn =
QnQn−1 · · ·Q2Q1 is a distinguished polynomial of degree nd. Therefore, Pn(X ) is a monic
separable polynomial of degree qn, with coefficients in OH [X ] and such that Pn(0)= 0.
The OK-module W n

ρ is the set of all roots of Pn(X ) in �. In particular, the order of W n
ρ is

qn and H(W n
ρ ) is a finite Galois extension of H . Let P0 = τ 0, so that P0(X )= X and

hn(X )= Pn(X )

Pn−1(X )
= Qn(Pn−1(X ))

Pn−1(X )
, for all n≥ 1, (2)

is an Eisenstein polynomial in OH [X ] of degree (q− 1)qn−1. Moreover, we have the
equality

Pn(X )= hn(X )hn−1(X ) · · · h2(X )h1(X )X . (3)

COROLLARY 2.2. The sequences of polynomials (Pn(X ))n≥0 and (hn(X ))n≥0, and, in
particular, the sequence (πn)n≥0 of prime elements of H depend only on ρ (and not on π ).
We will denote them Pρn , hρn and πρn , respectively.

Proof. On one hand, we have Pn(X )=∏
w∈W n

ρ
(X −w) and hn(X )= Pn(X )/Pn−1(X ),

and on the other hand, by its very definition (1), the set W n
ρ depends only on ρ (and not

on π ). This clearly shows that for any n, the polynomials Pn(X ) and hn(X ) and the prime
element πn of H depend only on ρ.

REMARK 2.3. It is also true that the polynomial (Q1) does not depend on π . Indeed,
if π ′ is an other prime element of K, then there exists u a unit of OK such that π ′ = uπ .
Thus we have ρπ ′ = ρuU1Q1. Since ρu is a unit in OH{{τ }}, the decomposition of ρπ ′ as a
product U ′1Q′1 given by the Weierstrass preparation theorem [8, Theorem 3.2] corresponds
to U ′1 = ρuU1 and Q′1 =Q1.

Let us also remark that

Pρn (X + Y )= Pρn (X )+ Pρn (Y ). (4)

PROPOSITION 2.4. The set W n
ρ −W n−1

ρ is the set of roots of hn(X ). If α0 ∈W n
ρ −W n−1

ρ ,
then the degree [H(α0) :H] = (q− 1)qn−1 and NH(α0)/H(α0)= πn.

Proof. We have seen that hn(X ) divides Pn(X ) and that W n
ρ is the set of roots of Pn(X ).

Hence, If α0 ∈� is such that hn(α0)= 0, we automatically have α0 ∈W n
ρ . To say that

α0 ∈W n−1
ρ means that α0 is a root of Pn−1. The equality Pn(X )= hn(X )Pn−1(X ) given

by (3) would imply that α0 is a multiple root of Pn(X ). But we know that Pn is separable.
We deduce that α0 ∈W n

ρ −W n−1
ρ . Since W n

ρ −W n−1
ρ has exactly (q− 1)qn−1 elements, we

conclude that this set is the set of all roots of hn(X ). Finally, since the polynomial hn(X )
is Eisenstein and hn(0)= πn, we deduce that the degree of [H(α0) :H] = (q− 1)qn−1 and
the norm NH(α0)/H(α0)= (−1)deg hn hn(0)= πn since (−1)deg hn = 1 in all cases.

Fix an element α0 ∈W n
ρ , α0 �∈W n−1

ρ . Then the kernel of the map a 
−→ ρa(α0) is equal
to pn

K , and therefore, induces an isomorphism

OK/p
n
K �W n

ρ . (5)

This implies that W n
ρ =OK ·ρ α0. Let Endρ(W n

ρ ) the ring of all endomorphisms of
the OK-module W n

ρ . To any a ∈OK , we associate an element εa
ρ of Endρ(W n

ρ ) such that
εa
ρ(β)= ρa(β). This defines a ring homomorphism ερ :OK −→ Endρ(W n

ρ ) which is onto
thanks to the equality W n

ρ =OK ·ρ α0. It is easy to see that its kernel is pn
K . Hence, we obtain
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a ring isomorphism

OK/p
n
K � Endρ(W

n
ρ ).

We also have a group homomorphism UK −→ Autρ(W n
ρ ), where UK is the group

of units of OK and Autρ(W n
ρ ) is the multiplicative group of all invertible elements of

Endρ(W n
ρ ). We deduce from the above isomorphism the following one:

UK/U
(n)
K � Autρ(W

n
ρ ), (6)

where U (n)
K = 1+ pn

K . Let Hn
ρ =H(W n

ρ ) and let σ ∈Gal(Hn
ρ/H). Since σ is continuous, we

have σ(ρa(α))= ρa(σ (α)), for all a ∈OK and α ∈W n
ρ . Thus σ induces an element σ ′ of

Autρ(W n
ρ ). This correspondence is an injective group homomorphism ψ :Gal(Hn

ρ/H)−→
Autρ(W n

ρ ). But Proposition 2.4 and the isomorphism (6) show that Autρ(W n
ρ ) has order at

most equal to [Hn
ρ :H]. Hence, ψ is actually an isomorphism. Let us summarize the above

discussion in the following:

PROPOSITION 2.5. There exists a surjective group homomorphism

δn
ρ :UK −→Gal(Hn

ρ/H),

such that δn
ρ(u)(α)= ρu(α), for all u ∈UK and all α ∈W n

ρ . The kernel of δn
ρ is equal to

U (n)
K . This gives the equality

[Hn
ρ :H] = (q− 1)qn−1. (7)

Let Hρ be the union of the fields Hn
ρ , n≥ 1. Then the projective limit of the morphisms δn

ρ

gives a topological isomorphism

δρ :UK −→Gal(Hρ/H).

COROLLARY 2.6. The extension Hn
ρ/H is totally ramified and πρn ∈N(Hn

ρ/H).

Proof. We have Hn
ρ =H(α0) for any α0 ∈W n

ρ −W n−1
ρ . By Corollary 2.4 the norm

group N(Hρ/H) contains πρn , which is a prime element of H . This implies that Hn
ρ/H

is totally ramified

3. The fields K∞
u (W n

ρ ) and K∞
u (W n

ρ ). The Galois group Gal(K∞u /K) is topologi-

cally generated by the Frobenius automorphism ϕ. The extension of ϕ to K∞u will be noted
by ϕ too. In this section, we want to study the dependance of the fields K∞u (W n

ρ ) on ρ ∈R,
and also the dependance of K∞u (W n

ρ ), when ρ varies inside R∞. We use the following two
propositions. The first one generalizes [7, Lemma 1] and [6, Proposition 3.12]. The second
proposition is [6, Lemma 3.11].

PROPOSITION 3.1. Let F ⊂K∞u be an extension of K, and suppose that [F :K]<∞ or
F =K∞u . Let a and b be elements of OF such that vF(a)= vF(b)= t> 0. Let f1 and f2 be
power series in OF[[X ]] such that

f1(X )≡ aX , f2(X )≡ bX mod deg 2 and f1(X )≡ f2(X )≡ X qt
mod pF .

Let m be a positive integer and let α1, . . . , αm be elements of OF such that αϕ
t−1

i = a/b
for all (i) Then there exists a unique power series θ(X1, . . . , Xm) ∈OF[[X1, . . . , Xm]] such
that
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θ ≡ α1X1 + · · · + αmXm mod deg 2 and f1 ◦ θ = θϕt ◦ f2,

where θϕ
t ∈OF[[X1, . . . , Xm]] is the power series whose coefficients are obtained by

applying the automorphism ϕt to the coefficients of θ . We recall the definition (θϕ
t ◦

f2)(X1, . . . , Xm)= θϕt
( f2(X1), . . . , f2(Xm)).

Proof. This is the generalization to every t≥ 1 of [6, Proposition 3.12] proved for
t= 1. Since Iwasawa’s proof can easily be adapted to the general case, we omit the details
here. We point out that [6, Proposition 3.12] generalizes [7, Lemma 1].

PROPOSITION 3.2. Let t be a positive integer. Then the following sequences are exact:

0 −−−−→ OKt
u
−−−−→ OK∞u

ϕt−1−−−−→ OK∞u −−−−→ 0

1 −−−−→ UKt
u
−−−−→ UK∞u

ϕt−1−−−−→ UK∞u −−−−→ 1.

Proof. This is [6, Lemma 3.11].

Let ρ, ρ ′ ∈R be two formal Drinfeld OK-modules. Since the elements πρi and πρ
′

i are
all primes of K∞u the above Proposition 3.2 implies that for any integer n≥ 1, there exists
a unit ηn ∈UK∞u such that

π
ρ ′
1 · · · πρ

′
n = ηϕ

n−1
n π

ρ

1 · · · πρn . (8)

Let us apply Proposition 3.1 to f1 = Pρ
′

n , f2 = Pρn and m= 1. We then deduce the existence
of a unique power series θn ∈OK∞u [[X ]] such that

θn(X )≡ ηnX mod deg 2 and Pρ
′

n ◦ θn = θϕn

n ◦ Pρn . (9)

The power series θn also satisfies the additivity property θn(X + Y )= θn(X )+ θn(Y ).
Indeed, let M(X , Y )= θn(X + Y ) and N(X , Y )= θn(X )+ θn(Y ). Then, by (9), we certainly
have M(X , Y )≡N(X , Y )≡ ηn(X + Y ) mod deg 2 and Pρ

′
n ◦M =Mϕn ◦ Pρn . Moreover,

since we have Pρ
′

n (θn(X )+ θn(Y ))= Pρ
′

n (θn(X ))+ Pρ
′

n (θn(Y )), thanks to (4), we deduce by
also using (9) the equality Pρ

′
n ◦N =Nϕn ◦ Pρn . The unicity assertion in Proposition 3.1

implies that M =N . Consequently, we have an isomorphism

θn :W n
ρ −→W n

ρ ′ (10)

of Fq-vector spaces.

COROLLARY 3.3. The field K∞u (W n
ρ ) does not depend on the formal Drinfeld OK-

module ρ ∈R.

Proof. Let ρ and ρ ′ be as above. It suffices to check the inclusion K∞u (W n
ρ ′)⊂

K∞u (W n
ρ ). By the isomorphism (10) it suffices to prove that for any α ∈W n

ρ , the element

θn(α) ∈K∞u (W n
ρ ). Let us remark that θn(X ) has coefficients in K∞u . In particular, the series

θn(α) is a limit of elements in K∞u (W n
ρ ). Since K∞u (W n

ρ ) is complete, we deduce that

θn(α) ∈K∞u (W n
ρ ). This completes the proof.

THEOREM 3.4. The field K∞u (W n
ρ ) does not depend on the formal Drinfeld OK-

module ρ ∈R∞. It is an abelian extension of K, and Gal(K∞u (W n
ρ )/K) is isomorphic to

Gal(K∞u /K)×UK/U
(n)
K .
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Proof. Let ρ, ρ ′ ∈R∞ and let E=K∞u (W n
ρ ) and E′ =K∞u (W n

ρ ′). By the above

Corollary 3.3, we have E= E′. By [6, Lemma 3.1], since the compositum E(E′) is a finite
separable extension of both E and E′, we have

E= E ∩ E(E′)= E′ ∩ E(E′)= E′.

Furthermore, if ρ ′ ∈R1, the extension K(W n
ρ ′)/K is abelian thanks to Proposition 2.5.

Now K∞u (W n
ρ )=K∞u (W n

ρ ′)=K∞u K(W n
ρ ′) is a compositum of abelian extensions of K.

Since K(W n
ρ ′) is a totally ramified extension of K, thanks to Corollary 2.6, we have

K(W n
ρ ′)∩K∞u =K. This gives the isomorphism

Gal(K∞u (W
n
ρ ′)/K)�Gal(K∞u /K)×Gal(K(W n

ρ ′)/K)�Gal(K∞u /K)×UK/U
(n)
K .

The last isomorphism is a direct consequence of Proposition 2.5.

THEOREM 3.5. Let ρ ∈R∞, and let Wρ be the union of W n
ρ for all n≥ 1. Then K∞u (Wρ)

is the maximal abelian extension Kab of K in �.

Proof. Let f (X )= X q + πX , then by Lubin–Tate theory, we know that there exists an
injective ring homomorphism OK −→ End(Ga)which associates to a ∈OK a unique power
series [a]f such that

[a]f (X )≡ aX modulo deg 2 and f ◦ [a]f = [a]ϕf ◦ f .

The reader is invited to consult [6, Chapter IV] for more details. It follows from remark
(3.13) at the end of [6, Chapter III] that [a]f ∈OK[[X ]]. Moreover, we easily check that
the power series [a]f has the form aX +∑∞

i=1 aiX qi
. From this, we deduce the existence of

a formal Drinfeld OK-module ψ :OK −→OK{{τ }} such that ψπ = τ d + π and ψa = a+∑∞
i=1 aiτ

di. In fact, ψ ∈R1. It is obvious that K(W n
ψ) is the field denoted Lπ,n by Lubin and

Tate in [7]. This field is denoted Kn
π =K1,n

π in [6, page 66 and page 69]. Thus, K∞u (Wψ)=
K∞u Lπ =Kab by [7, Corollary]. We conclude by using Theorem 3.4.

REMARK 3.6. The reader can easily check that for any ρ ∈R∞, the field K∞u (W n
ρ ) is

equal to the field denoted Ln in [6, page 66].

4. The logarithm of a formal Drinfeld OK-module. Let L⊂� be an extension
of K. Let L((X )) be the field of fractions of L[[X ]], that is the field of Laurent power
series f such that X nf ∈ L[[X ]], for some nonnegative integer n. Let L((X ))1 be the sub-
set of L((X )) whose elements are power series convergent on B′ := p� − {0}, and we let
L[[X ]]1 := L((X ))1 ∩ L[[X ]]. Let us endow L((X ))1 with the compact-open topology which
we denote by T . A sub-basis of T is given by the sets

SL(C,U)= {f ∈ L((X )) such that f (C)⊂U},
where C is any compact of B′ and U is any open set in �. It is clear that T is the topology
of uniform convergence on any compact of B′.

In this section, we show that the logarithm of ρ where ρ ∈R∞ is the limit in H[[X ]]1 of
the sequence ρπn (X )

πn . We recall that the logarithm of ρ is introduced in [8, Proposition 2.1]
for any ρ. The construction we give here is inspired by [10, Lemma 3] and also by [4,
Lemma 21 (i)]. If a ∈�, we set |a| = q−v�(a).
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PROPOSITION 4.1. Let ρ ∈Rm for some positive integer m and let H =Km
u . Then the

sequence of power series ρπn (X )
πn converges in H[[X ]]1. The limit λρ belongs to H{{τ }} and

satisfies D(λρ)= 1.

Proof. Let us first observe that H[[X ]]1 is complete for the compact-open topol-
ogy. Indeed, if ( fn(X ))n∈N ∈H[[X ]]1 is a Cauchy sequence, then ( fn(X ))n∈N is a Cauchy
sequence for the topology of uniform convergence on any closed ball D⊂ B′. By [1,
Théorème 4.1.6 and Lemme 4.1.8] the set

A(D)= { f ∈�[[X ]] such that f converges on D}
is a Banach space for the norm of uniform convergence on D. Hence, there exists a formal
power series fD ∈ A(D) such that ( fn(X ))n∈N converges uniformly to fD on the closed ball
D. Since the individual coefficients of ( fn(X ))n∈N converge to those of fD and since H is
complete, we see that fD ∈H[[X ]] and does not depend on D. This limit f = fD converges on
D for any D. This means that f ∈H[[X ]]1 and proves that H[[X ]]1 is complete. Therefore,
to prove the proposition, we only have to check that ρπn (X )

πn is a Cauchy sequence. For this,
we adapt the proofs of [4, Lemma 20 (ii) and Lemma 21 (i)]. First we observe that for any
b ∈ B′, we have

|ρπ(b)| ≤max(|πb|, |bq|).
Indeed, we have ρπ(X )= πX +∑∞

i=1 αiX qi
0 , where the coefficients αi are in OH , |αd| = 1

and |αi| ≤ |π | for any i ∈ {1, . . . , d − 1}. This implies

|πb+ α1bq0 + · · · + αd−1bqd−1
0 | = |πb| and |

∞∑
i=d

αib
qi

0 | = |bqd
0 | = |bq|.

By arguing as in [4, page 107], we deduce that for any positive real number R< 1 there
exists a constant CR such that

|ρπn(b)|< |πn|CR, (11)

for all n≥ 1 and all b such that |b| ≤ R. Now, for positive integers m> n, we have

ρπm(X )

πm
− ρπn(X )

πn
= π−nfm,n ◦ ρπn(X ),

where fm,n(X )= ρπm−n (X )
πm−n − X . It is clear that fm,n(X )= X 2hm,n(X ), with hm,n(X ) ∈H[[X ]].

We deduce that if |b| ≤ R then

|π−nfm,n
(
ρπn(b)

)| = |π |−n|ρπn(b)|2|hm,n(ρπn(b))| ≤ |π |nC2
R|hm,n(ρπn(b))|,

thanks to (11). On the other hand, since |ρπn(b)| ≤ |b|, we have for |b| ≤ R

|hm,n(ρπn(b))| ≤ sup
|x|≤R

| fm,n(x)|
|x2| = sup

|x|=R

| fm,n(x)|
|x2| ≤

CR + R

R2
,

thanks to (11). The equality in the middle is the maximum principle satisfied by the ele-
ments of H((X ))1 for any H . We deduce from above that our sequence ρπn (X )

πn is a Cauchy
sequence and hence is convergent to, say λρ . Since the coefficients of the power series
ρπn (X )
πn converge in H to the coefficients of λρ , we deduce that λρ ∈H{{τ }}.

The following properties of λρ are already proved in [8, proposition 2.2], but one may
also deduce them from the above proposition.
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(1) λρ ◦ ρa = aλρ , for all a ∈OK .
(2) The power series λρ belongs to H[[X ]]1.
(3) The kernel of λρ in B′ is equal to Wρ \ {0}.
We recall that λρ is called the logarithm of ρ because of property (1).

5. The trace and norm operators of Coleman. In this section, we fix a formal
Drinfeld OK-module ρ ∈Rm, where m is a positive integer. In our situation also, there is
a trace operator Sρ,π and a norm operator Nρ,π analogous to the trace and norm defined
by Coleman in [4]. Since our construction is strongly inspired by Coleman’s approach, we
will only give an outline of the construction. Let G∞,ρ be the Galois group of H(Wρ)/H ,
where H =Km

u . Let

κ :G∞,ρ −→UK,

be the inverse of the isomorphism δρ defined in Proposition 2.5. let �H =OH [[G∞,ρ]] be
the Iwasawa algebra of G∞,ρ over OH , that is,

�H = lim←−
n

OH [Gn,ρ],

where Gn,ρ =Gal(H(W n
ρ )/H). The proof of [4, Theorem 1] is still valid to check that

H((X ))1 has a unique structure of �H -module such that

σ.f = f ◦ ρκ(σ),
for any σ ∈G∞,ρ and any f ∈H((X ))1. This action is continuous. Furthermore, exactly as
in [4, Lemma 3], if f ∈OH [[X ]] is such that f (X +w)= f (X ) for any w ∈W 1

ρ , then there
exists a unique g ∈OH [[X ]] such that

f = g ◦ ρπ .

5.1. The trace operator.

PROPOSITION 5.1. There exist a unique map Sρ,π :H((X ))1 −→H((X ))1 such that

Sρ,π ( f ) ◦ ρπ(X )=
∑
u∈W 1

ρ

f (X + u)

The map Sρ,π is a continuous �H -endomorphism of H((X ))1.

Proof. See [4, Theorem 4] or [3, Theorem 7].

Let us remark that for any m≥ n the map α 
−→ ρπm−n(α) induces a surjective homo-
morphism of OK-modules W m

ρ −→W n
ρ . The inverse limit lim←−n

W n
ρ with respect to these

maps is easily seen to be isomorphic to OK , thanks to (5). We fix a generator (vn)n of
lim←−n

W n
ρ as an OK-module. In particular, we have ρπ(vn+1)= vn and W n

ρ = {ρa(vn), a ∈
OK} =OK ·ρ vn. Moreover, vn is a prime of Hn

ρ . Thus the maximal ideal pHn
ρ
= vnOHn

ρ
.

REMARK 5.2. The following properties of Sρ,π are easy to check. The reader may also
consult [4, Corollary 5 (i)] and [4, Lemma 6].

(1) Sn
ρ,π ( f ) ◦ ρπn(X )=∑

u∈W n
ρ

f (X + u).

(2) Sρ,π ( f )(vn)= Tn+1,n( f (vn+1)), where Tn+1,n is the trace map from Hn+1
ρ to Hn

ρ .
(3) If f ∈OH((X )) then Sn

ρ,π ( f )≡ 0 modulo πnOH((X )).
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Let Fρ be the set of G∞,ρ-equivariant maps f :W ′ρ −→H(Wρ), where Wρ is the union
of W n

ρ for all n≥ 1 and W ′ρ =W \ {0}. Then Fρ is naturally a�H -module, where the action
is given by

(λ.f )(w)= λ( f (w)), for any f ∈Fρ,w ∈W ′ρ and λ ∈�H .

Moreover, any power series f ∈H((X ))1 defines an element �( f ) ∈Fρ . This gives a �H -
homomorphism

� :H((X ))1 −→Fρ.

We immediately deduce from [4, Lemma 2a] that ker(�)∩OH((X ))= {0}. To compute
the image of OH((X )) by �, we need some preliminary remarks and results. Let h ∈Fρ .
Since h is G∞,ρ-equivariant, we have∑

w∈W n
ρ

w �=0

h(w)=
n∑

i=1

Ti(h(vi)),

where Ti is the trace map from Hi
ρ to H . Let us explain this equality. We have

∑
w∈W n

ρ

w �=0

h(w)=
n∑

i=1

∑
w∈W i

ρ\W i−1
ρ

h(w).

But the elements of W i
ρ \W i−1

ρ are the roots of the irreducible polynomial hi(X ) defined in
(2). Hence the elements of W i

ρ \W i−1
ρ are the conjugates over H of vi. This implies∑

w∈W i
ρ\W i−1

ρ

h(w)=
∑

σ∈Gal(Hi
ρ/H)

h(vσi )=
∑

σ∈Gal(Hi
ρ/H)

h(vi)
σ = Ti(h(vi)).

For any positive integer n, we let Ln(Wρ) be the�H -submodule of Fρ whose elements
are those h ∈Fρ for which we have

n∑
i=1

Ti(g(vi)h(vi))≡ 0 modulo πnOH , (12)

for all g ∈ XOH [[X ]]. By definition, we set L∞(Wρ)=⋂
n≥1 Ln(Wρ). Let us remark that

for any n

�(OH [[X ]])⊂ Ln(Wρ). (13)

Indeed, if f ∈OH [[X ]] and g ∈ XOH [[X ]] then∑
w∈W n

ρ

w �=0

g(w)f (w)=
∑

w∈W n
ρ

g(w)f (w)=
∑

w∈W n
ρ

(gf )(w)= Sn
ρ,π (gf )(0)≡ 0 modulo πnOH .

The third equality follows from property (1) in Remark 5.2 in which we take X = 0. The
final congruence is property (3) of the same remark.

LEMMA 5.3. Let n be a positive integer and let f ∈OH [[X ]] be such that X−1f (X ) ∈
Ln(Wρ), for some positive integer n. Then there exists g ∈OH [[X ]] such that g(w)=
w−1f (w), for all w ∈W n

ρ .
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Proof. Let us first prove that f (0) ∈ πnOH . By taking g= X in (12), we obtain that∑
w∈W n

ρ

w �=0

f (w)≡ 0 modulo πnOH .

Moreover, we have

f (0)=
∑

w∈W n
ρ

f (w)−
∑

w∈W n
ρ

w �=0

f (w)= Sn
ρ,π ( f )(0)−

∑
w∈W n

ρ

w �=0

f (w).

Since Sn
ρ,π ( f )(0) ∈ πnOH by the third property of Remark 5.2, we deduce from above that

f (0) ∈ πnOH . Therefore, the following power series

g(X )= X−1f (X )− f (0)

πn
X−2ρπn(X )

belongs to OH [[X ]] and satisfies the desired property.

LEMMA 5.4. Let n> 0 be a positive integer. Let α1, . . . , αn be such that αi ∈
πn−iv1OHi

ρ
. Then there exists f ∈OH [[X ]] such that f (vi)= αi, for all i ∈ {1, . . . , n}.

Proof. Since ρπn(X )= ρπn−k (ρπ k (X )), the power series

gn,k(X )= ρπn(X )

ρπ k (X )
· ρπ k−1(X )

belongs to OH [[X ]] and satisfies

gn,k(vi)=
{

0 if i �= k

πn−kv1 if i= k.

Now to obtain f , we use the equality OHi
ρ
=OH [vi] which is a consequence of the fact that

the extension Hi
ρ/H is totally ramified.

THEOREM 5.5. Let S(k) be the set of power series f ∈OH((X )) such that X kf ∈
OH [[X ]]. Then for any k ∈Z, h ∈Fρ and 1≤ n≤∞

X kh ∈ Ln(Wρ) ⇐⇒ ∃f ∈ S(k) such that f (w)= h(w) for all w ∈W n
ρ \ {0}.

Proof. We just repeat Coleman’s proof of [4, Theorem 8], page 101 at the end of sec-
tion III. Moreover, it is sufficient to give a proof when k = 0, because if h ∈Fρ , then
X kh ∈Fρ for any rational integer k. Let n> 0 be a positive integer. By (13), we see
that if f ∈OH [[X ]] and f (w)= h(w) for all w ∈W n

ρ \ {0}, then h ∈ Ln(Wρ). Conversely,
let h ∈ Ln(Wρ) and fix a positive integer r such that

vr
i h(vi) ∈ πn−iv1OHi

ρ
, for all 1≤ i≤ n.

By Lemma 5.4, there exists f ∈OH [[X ]] such that f (vi)= vr
i h(vi) for all 1≤ i≤ n. Since

r≥ 1, we easily check that X−1f (X ) ∈ Ln(Wρ). Therefore, using Lemma 5.3 iteratively,
we deduce the existence of f ∈OH [[X ]] satisfying f (w)= h(w) for all w ∈W n

ρ \ {0}. This
proves the theorem for n<∞. Now suppose that h ∈ L∞(Wρ). By we have just proved, for
any positive integer n, there exists fn ∈OH [[X ]] such that fn(w)= h(w) for all w ∈W n

ρ \ {0}.
By [4, lemma 2a], the sequence ( fn) is convergent to f ∈OH [[X ]] for the compact-open
topology, and we necessarily have f (w)= h(w) for all w ∈Wρ \ {0}.
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5.2. The norm operator.

PROPOSITION 5.6. There exist a unique map Nρ,π :OH((X ))−→OH((X )) such that

Nρ,π ( f ) ◦ ρπ(X )=
∏

u∈W 1
ρ

f (X + u).

The map Nρ,π is continuous.

Proof. See [4, Theorem 11] or [3, Theorem 7].

REMARK 5.7. The following properties of Nρ,π are immediate. They are also the
analogous of the properties proved in [4, section IV].

(1) N n
ρ,π ( f ) ◦ ρπn(X )=∏

u∈W n
ρ

f (X + u).

(2) Nρ,π ( f )(vn)=Nn+1,n( f (vn+1)), where Nn+1,n is the norm map from Hn+1
ρ to Hn

ρ .
(3) vX (Nρ,π ( f )(X ))= vX ( f ) where vX ( f ) is the order of f with respect to X .
(4) If f ≡ 1 modulo π iOH [[X ]], then Nρ,π ( f )≡ 1 modulo π i+1OH [[X ]].
For a positive integer t, we define ρϕ

t ∈Rm to be the formal Drinfeld OK-module such
that (ρϕ

t
)a = (ρa)

ϕt
, for any a ∈OK . We recall that (ρa)

ϕt
is the element of OH{{τ }} whose

coefficients are obtained by applying the automorphism ϕt to the coefficients of ρa. Then
we have

Nρϕ
t
,π ( f ϕ

t
)=Nρ,π ( f )ϕ

t
, (14)

for any f ∈OH((X )).

5.3. A class of formal Drinfeld modules. In this section, we make the following
two assumptions and notations:

� A1: ρ is a given formal Drinfeld OK-module that belongs to Rm, for some fixed
positive integer m.

� A2: There exists a positive integer m0 |m and η ∈OK such that vK(η)=m0 and
ρη ≡ τ dm0 modulo πOKm

u
{{τ }}. This is equivalent to say that ρη(X )≡ X qm0 modulo

πOKm
u
[[X ]].

We draw the attention of the reader that the formal Drinfeld modules coming from Drinfeld
modules of rank one and appearing for instance in [2, 3] all satisfy the above three condi-
tions, with m=m0. The case m0 =m= 1 is Lubin–Tate theory, and the results described
in the sequel are all already proved by Coleman in his famous article [4].

By its very definition, there exists u a unit of K such that uη= πm0 . We consider the
operator Ñ defined by

Ñ ( f )=Nm0
ρ,π ( f ) ◦ ρu(X ),

so that Ñ ( f ) ◦ ρη(X )=∏
u∈W

m0
ρ

f (X + u). We also define ϕ̃ = ϕm0 and we denote by H the
unramified extension Km

u of K. Then, exactly as in [4, Section IV], one may prove that for
any f ∈OH [[X ]], we have

Ñ ( f )≡ f ϕ̃(X ) modulo πOH [[X ]]. (15)

https://doi.org/10.1017/S0017089519000211 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089519000211


ON LOCAL FIELDS GENERATED BY DIVISION VALUES 471

Let OH((X ))∗ be the group of invertible elements of OH((X )). We deduce from (15)

Ñ i( f )

Ñ i−1( f ϕ̃)
≡ 1 modulo π iOH [[X ]] for all i≥ 1 and all f ∈OH((X ))

∗.

Therefore, the limit

Ñ∞( f )= lim
i→∞ Ñ i( f ϕ̃

−i
)

exists in OH((X ))∗ and satisfies Ñ (Ñ∞( f ))= Ñ∞( f ϕ̃).

5.3.1. The case ρ ∈Rm0

When ρ ∈Rm0 , the equality (14) implies the equation Ñ ( f ϕ̃)= Ñ ( f )ϕ̃ . This formula
is used below to prove a theorem that may be considered as a generalization of [4, Theorem
A] to the case m0 > 1. It also generalizes [3, Theorem 11]. For any n> 0, we denote by En

the local field Hnm0
ρ and we set ṽn = ρun(vnm0). In particular, we have ρη( ṽn+1)= ṽn.

THEOREM 5.8. Suppose we have ρ ∈Rm0 . Let X∞ = lim←−n
E∗n be the projective limit

of the multiplicative groups E∗n with respect to the norm maps. Let M∞ = {f ∈
OH((X ))∗, Ñ ( f )= f ϕ̃}. There exists a topological isomorphism

evÑ :M∞ −→ X∞,

defined by evÑ ( f )= (
f ϕ̃
−n
( ṽn)

)
n
.

Proof. Since we obviously have Nm0
ρ,π (g ◦ ρu(X ))=Nm0

ρ,π (g) ◦ ρu(X ), the property (2)
in Remark 5.7 gives us

Ñ (g)( ṽn)=NEn+1/En

(
g( ṽ(n+1))

)
,

for any g ∈OH((X )). Moreover, if f ∈M∞, then we have

Ñ ( f ϕ̃
−(n+1)

)= f ϕ̃
−n
.

Therefore, the sequence
(

f ϕ̃
−n
( ṽn)

)
n

belongs to X∞. Hence, the map evÑρ
is well defined.

It is also an injection thanks to [4, Lemma 2a]. Let us prove that evÑρ
is onto. In this, we

take our inspiration from the proof of [3, Theorem 11] and the proof of [9, Theorem 13.38].
Let (un)n be an element of X∞. Suppose first that (un)n ∈ lim←−n

O∗En
. For any positive integer

k ∈N, choose g ∈OH [[X ]]∗ such that gϕ̃
−2k
( ṽ2k)= u2k . Since

Ñ k(gϕ̃
−k
)≡ Ñ 2k−i(gϕ̃

−(2k−i)
) modulo π kOH [[X ]],

for all 1≤ i≤ k, we deduce that the power series fk = Ñ k(gϕ̃
−k
) is such that

f ϕ̃
−i

k ( ṽi)≡ Ñ 2k−i(gϕ̃
−2k
)( ṽi) modulo π kOEi .

But we have

Ñ 2k−i(gϕ̃
−2k
)( ṽi)=NE2k/Ei

(
gϕ̃
−2k
( ṽ2k)

)=NE2k/Ei

(
u2k)

)= ui.

Finally, we obtain f ϕ̃
−i

k ( ṽi)≡ ui modulo π kOEi , for 1≤ i≤ k. We deduce that the sequence
( fk)k is a Cauchy sequence. Let f ∈OH [[X ]]∗ be its limit. Then we necessarily have

f ϕ̃
−i
( ṽi)= ui.
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It is also immediate that f ∈M∞ and evÑ ( f )= (un)n. Now, if (un)n is a general element
of X∞, then there exists an integer e such that un ∈ ṽe

nO∗En
, for all n≥ 1 because the fields

En are totally ramified over H . As Coleman already proceeded to complete his proof of
[4, Theorem 15], we consider the power series G(X )= Ñ∞(X ). We have G(X ) ∈OH [[X ]]
and G(X )≡ X modulo πOH [[X ]]. Thus G( ṽn) is a prime of En. Moreover,

(
unG( ṽn)

−e
)

n
∈

lim←−n
O∗En

. Let f ∈M∞ be such that evÑ ( f )= (
unG( ṽn)

−e
)

n
. Then we have evÑ ( fGe)=

(un)n.
The continuity of evÑ is immediate. The continuity of its inverse is a consequence of

[4, Lemma 2a].
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