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Invariant Subspaces on TV and RY

Michio Seto

Abstract. Let N be an integer which is larger than one. In this paper we study invariant subspaces of
L*(TN) under the double commuting condition. A main result is an N-dimensional version of the
theorem proved by Mandrekar and Nakazi. As an application of this result, we have an N-dimensional
version of Lax’s theorem.

1 Invariant Subspaces of L*(TV)

Let N be an integer which is larger than one, and TN denote the torus, the Cartesian
product of N unit circles in C, that is,

’][‘N:{Z:(ZI7ZZ7"'>ZN) E(CN : |Zi‘ = 1(12 17277N)}

L*(TV) will denote the usual Lebesgue space with respect to the normalized Lebesgue
measure ¢ of TV, and let o denote a multi-index that is an ordered N-tuple a =
(v, .., an) of integers aij. H*(TV) = Q" H2(T) will denote the Hardy space over
TV, that is, H*(TN) is the space of all f in L2(T") whose Fourier coefficients

fla) = /ﬂ @ dy

are 0 whenever at least one component of « is negative. For integers 1 < iy,..., i <
N, we define a closed subspace H - (TN) of L2(TN) as follows:

2 Ny m m 2N
H . (TN)= \/ 2" HE(TY),

g 1

my,...,m<0
where \/ denotes closed vector span.

Definition 1 A closed subspace M of L?(TV) is said to be an invariant subspace of
LX(TN) if zM € M forany i = 1,...,N. V; denotes the restriction on M of the
multiplication operator L,, on L*(T) by z;.

Mandrekar [5] and Nakazi [9] characterized the invariant subspaces of L?(T?) un-
der the condition that V; commutes with V.

Theorem 1 ([9]) Let M be an invariant subspace of L*(T?). If M satisfies the condition
that ViV = V3V, then one and only one of the following occurs.
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1) M= xpL*(T?) & xg, ¢ HZ (T7),
(i) M = xgL*(T*) @& x5,¢.HZ (1),
(iii) M = gH2(T?),

where ¢; and q are unimodular functions, xg denotes the characteristic function of E,
XE; is the characteristic function of Ej which depends only on a variable z;.

We consider the condition which is analogous to the case N = 2, that is, each
Vi commutes with V' for any j # i. Since V; is an isometry on M for each i =
1,2,..., N, we have the following Wold decomposition,

Vi=v”?®V® on M=M" oM,
where V% = V;|M® is unitary, V.”) = V;|M© is a unilateral shift, and
i YV

M@ = {f e M:[[VFf = /]l (k= D}

()0 et ViV = 1) = (vine

k=1 k=1

is the maximal reducing subspace on which its restriction is unitary. Let P; denote
the projection from M onto M. Then P; is in the center of R(V;), where R(V;) is
the von Neumann algebra generated by V; (cf. [12]).

The following lemma is well known.

Lemmal Let M and N be invariant subspaces of L*(TN). If M is orthogonal to N,
then fg = 0 forany f € M and any g € N.

Proof Forany f € Mandanyg € N, [, f§z* do = 0. ]

In the following argument, we deal with the case where N = 3, because it is
difficult to describe invariant subspaces under the double commuting condition in
general. (But we will be aware that our proof in the case where N = 3 can be applied
to the general case.) This is a complicated problem and, in the later remark, we shall
reduce this complication.

Theorem 2 Let M be an invariant subspace of L*(T°). If M satisfies the condition that
ViVi =V3iVifori# j, then one and only one of the following occurs.

(i) M= xeLl*(T°) ® xp,, 0 H, ., (T) @ X5, 92z, ,, (T°) © Xk, 65 H, , (),

(11) M = xeL*(T°) @ xg,,01H, ,(T°) @ xg,, 62Hz, , (1) & xg, ¢ HZ (1),

(i) M = XeL*(1%) @ Xr,, G1HZ, . (%) ® X, G2 F2 o, (T7) @ X, 65 HE (1),

(iv) M = xeL*(T°) ® xg,,01H, ,, (T°) @® X&,, 02H, , (T°) @& x5, ¢sHE (T°),

(v) M =gHXT),

where ¢; and q are unimodular functions, x g denotes the characteristic function of E,
XE, ; is the characteristic function of E; ; which depends only on two variables z; and z;,
XE; 1$ the characteristic function of E; which depends only on a variable z;.
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Proof The following argument is a slight modification of the proof given by Man-
drekar [5] and Nakazi [9].
Suppose that V;V* = ViV; (i # j). By the property of Wold decomposition, we
have the following:
M= > PPPPPEM,
a,b,ce{0,1}

where P;O) = P; and Plgl) = P} = I — P;. We note that P; commutes with P; because
Vi € R(V;) and V; € R(V;)’ by the assumption. Hence it suffices to describe
P,P,PsM, P,P,Ps M, P, P5-Pi-M and Pi-P5- P M. Let My, My, M3 and M, denote
the above four subspaces, respectively.

(1) By the Wiener-Tauberian theorem, M; = xpL*(T?).

(2) For M, = P1P2P§- M, we have the following decomposition:

M, = Z VEOM, © V3My),

k=0

where we note that the restriction of Vi and V; on M, © V3M,; are unitary operators.
For f € M,©V3M,, we have [ | f|?ziz)25 du = 0 for k # 0. Hence | f| is independent
of z3. Then we have

\/ 425f = ¢rxup (T2,
ijer

where, for any measurable function g, a measurable set E(g) and a unimodular func-
tion ¢, are defined as follows:

E(g) = {z €TV : g(2) # 0},

b = g/lgl (g #0)
¢ 1 (g=0).

Since there exists a function F in M, © V3M, which has the maximal support in

M, & V3M,, that is, E(f) C E(F), for any f € M, © V3M,, we have M, © VaM, =
drxEeE L (T?). Hence

o0
My =Y Vidrxew L (1) = xew¢rH:, , (T°).
k=0

(3) For M3 = PlPZLP3l M, we have the following decomposition:

My = > VIVE{(M; & VaMs) 0 (M5 © VM) .
7,k>0
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Let (M5 © V,M;3) N (M5 © V3M;) be denoted by N. The restriction of V; on N is
unitary. For f € N, we have [ |f|2ziz)zk dy = 0 for all (j, k) # (0,0). Hence |f| is
independent of z; and z;. Then we have

\/Z§¢f|f\ = ¢pxe(n LA (),

i€’

where ¢ and xg(y) are the same defined in the case (2). Since there exists a function
F in N which has the maximal support in N, we have N = ¢rx g L*(T). Hence

M = Y VIVigexemn L (1) = Xaw drHS (T°).
jH=0

(4) For My = Pi-P;-P- M, we have the following decomposition:

My= ) ViVIVE(M, © ViMa) 0 (M4 © VM) N (M © VaML) -
i,j,k>0

Let (My © ViMy) N (M4 © V,My) N (My © V3My) be denoted by N’. For g € N’
such that ||q||2¢13) = 1, we have [ |lql2ziZizk dyn = 0 forall (i, j, k) # (0,0,0). Hence
lgl = 1 and dim N’ = 1. We have

= Y Vivivig=qH (1)
i,j,k>0

Combining those results that we got in (1), (2), (3) and (4), and using Lemma 1,
we have the conclusion. [ |

Remark 1 In this remark we shall simplify complication in the general case. First,
we shall consider the following figures, and call their arms z;, z; and z3, respectively
as follows:

/g\ }\ ~ \pL2(T%),
/L > xpoH? (%), 4} > \eoHZ (T%), O = gHX(T),

Next we shall identify function spaces with figures by the correspondence of the in-
dices of the function spaces to the arms of the figures. Where we note that L>(T?) =

H; ,,..(T?). Since the function spaces which appeared in Theorem 2 can be identified
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with some figures by this correspondence, we have the following simple description
of Theorem 2:

P A A B
w Ao b b d
A b
NV RN

By the same method, applying this identification to Theorem 1, we have the follow-

ing;:
M2 ~ = o
S
W __o—e —o0
(iii) O

Similarly, for the case where N = 4, we have 13 invariant subspaces. Since there is
a rule induced by Lemma 1, under the double commuting condition, the research of
invariant subspaces can be reduced to a combinatorial problem.

2 Invariant Subspaces of L*(RY)

Let N be an integer which is larger than one. L?(RY) will denote the usual Lebesgue
space with respect to the Lebesgue measure dx = dx; dx;, - - - dxy on the usual N-
dimensional Euclidean space RV, and let o denote a multi-index that is an ordered
N-tuple @ = (a,...,ay) of real numbers oj. Let H*(RY) = Q" H2(R) be the
space of all f in L?(RY) whose Fourier transform

g’(f)(a) = f(a) = /IV f(x)e—i(a,x) dx
RN
is 0 whenever at least one component of « is negative, where x = (xi,...,xy) is

in RN and ( , ) denotes the usual inner product in RN. Note that our H*(RYN) is
different from the usual Hardy space on RY.
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We define a closed subspace Hi_l e, (RN) as follows:

H )= & P®dx) Q)  HRdx).

1<j<k 1<i<N,iiy,..ix

Definition 2 A closed subspace M of L*(RN) is said to be an invariant subspace of
L*(RN) if &M C M forany j = 1,...,N and any s > 0. Fors > 0, S;(s) denotes
the restriction on M of the multiplication operator L i, on L*(RY) by &'

In this section, we shall show an N-dimensional version of Lax’s theorem (cf.
Lax [4]). The essential idea of our proof was given by Hoffman in [2], he proved
Lax’s theorem as a corollary of famous Beurling’s theorem by using a linear fractional
transformation from IR to T. In Section 1, we considered the double commuting con-
dition, and in this section we shall consider a similar condition for S;(s) and Sk(t),
that is,

Si()Sk(t)™ = Si(£)*S;(s)
for any j # kands,t > 0. We first consider the case N = 2, let S, = S;(s) and
T; = S,(t), for short.

Theorem 3  Let M be an invariant subspace of L*(R?). If M satisfies the condition that
ST = T}S for any s, t > 0, then one and only one of the following occurs.

(i) M= xpL?(R?) & x5, ¢ Hy, (R?),

(i) M = xpL?(R*) & x5, 62 Hy, (R?),

(iii) M = gH*(R?),

where ¢; and q are unimodular functions, xg denotes the characteristic function of E,
XE; 15 the characteristic function of E; which depends only on the variable x;.

Proof Let Hg be the generator of S;. Hg is a densely defined closed symmetric op-
erator on the domain D(Hs), and Hg is the multiplication operator by x on D(Hs).
V,, denotes the Cayley transform of Hg, that is,

V,, = c(Hs) = (Hs — il)(Hs + i) "
Then V, is the multiplication by (x; — i)/(x; + i) on M, that is, for all f € M

xl—i
Vxlf:—.
X1 +1

and V, is an isometry on M. Similarly, we have an isometry V, on M as follows:

X

— Z_i
Vfo_x2+if (f € M).

Since {S;}s>0 and { T} };>¢ are semi-groups of isometries on M, we have the following
integral representations of V, and V,,, respectively:

o0 o0
I1-V, = 2/ e *Sqds and -V, = 2/ e 'T, dt.
0 0

https://doi.org/10.4153/CMB-2004-011-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2004-011-5

106 Michio Seto

Hence Vy, € R({S;}s>0) and Vy, € R({T;}1>0), where R({S;}s>0) (resp. R({ T} }+>0))
is the von Neumann algebra generated by {S;}s>¢ (resp. {T; };>¢). Since S, T} = T;S;
for any s, > 0, we have V,, Vi = VIV, . Here we construct an isometric operator
U from L*(R?) onto L*(T?) as follows:

i (x) — i)k (x2 — i)l Zkzl
C o2 (x; + l’)kﬂ (x; + i)l+1 12

where z; and z, are the coordinate functions on T? (cf. [2]). Especially, U (H 2 (]Riz)) =
H*(T?), U (Hy, (R?)) = H2(T?) and U (H,,(R?)) = HZ(T?). Since Vy, = U*V,,U
and V,, = U*V,,U, where V,, and V,, denote the multiplication operators on U(M)
by the coordinate functions z; and z,, respectively. Then, we have that V, Vi
ViV, ifandonlyif V,, V} = V'V, . Since U(M) is an invariant subspace of LZ(T
and by Theorem 1, we have the conclusion.

I\—’H

By the same way as in the proof of Theorem 3, we have the following:

Theorem 4 Let M be an invariant subspace of L*(R*). If M satisfies the condition
that S;(s)Sk(t)* = Sk(t)*S;(s) for any j # k and s,t > 0, then one and only one of the
following occurs.

(i) M= xsl*?(R®) XE,,$1H. 5 XZ(R &) XE31¢2 500 (R @ XE23¢3 s (R?),
(i) M = xeLl*(R*) ® xg,, 01 H. % xz(R ) © Xg,, $2H o (R*) & xg, ¢3H2 (R),
(i) 3 = X200 & X261 L () © x5, 6oH () © x5 601 (),
(V) M = XL () © i i HE o (R) © o HE o (RY) © s, 5 HE (R,
(v) M= qH*(R?),

where ¢; and q are unimodular functions, xg denotes the characteristic function of E,
XE,; 15 the characteristic function of E; ; which depends only on two variables x; and x;,
XE; 1s the characteristic function of E; which depends only on a variable x;.
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