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Invariant Subspaces on T
N and R

N

Michio Seto

Abstract. Let N be an integer which is larger than one. In this paper we study invariant subspaces of

L2(T
N ) under the double commuting condition. A main result is an N-dimensional version of the

theorem proved by Mandrekar and Nakazi. As an application of this result, we have an N-dimensional

version of Lax’s theorem.

1 Invariant Subspaces of L2(T
N)

Let N be an integer which is larger than one, and T
N denote the torus, the Cartesian

product of N unit circles in C, that is,

T
N

= {z = (z1, z2, . . . , zN ) ∈ C
N : |zi | = 1(i = 1, 2, . . . , N)}.

L2(T
N ) will denote the usual Lebesgue space with respect to the normalized Lebesgue

measure µ of T
N , and let α denote a multi-index that is an ordered N-tuple α =

(α1, . . . , αN) of integers α j . H2(T
N ) =

⊗N
H2(T) will denote the Hardy space over

T
N , that is, H2(T

N ) is the space of all f in L2(T
N ) whose Fourier coefficients

f̂ (α) =

∫

TN

f (z)z̄α dµ

are 0 whenever at least one component of α is negative. For integers 1 ≤ i1, . . . , ik ≤
N , we define a closed subspace H2

zi1
,...,zik

(T
N ) of L2(T

N ) as follows:

H2
zi1

,...,zik
(T

N ) =

∨

m1,...,mk<0

zm1

i1
· · · zmk

ik
H2(T

N ),

where
∨

denotes closed vector span.

Definition 1 A closed subspace M of L2(T
N ) is said to be an invariant subspace of

L2(T
N ) if ziM ⊆ M for any i = 1, . . . , N . V i denotes the restriction on M of the

multiplication operator Lzi
on L2(T

N ) by zi .

Mandrekar [5] and Nakazi [9] characterized the invariant subspaces of L2(T
2) un-

der the condition that V1 commutes with V ∗
2 .

Theorem 1 ([9]) Let M be an invariant subspace of L2(T
2). If M satisfies the condition

that V1V ∗
2 = V ∗

2 V1, then one and only one of the following occurs.
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(i) M = χEL2(T
2) ⊕ χE1

φ1H2
z1

(T
2),

(ii) M = χEL2(T
2) ⊕ χE2

φ2H2
z2

(T
2),

(iii) M = qH2(T
2),

where φi and q are unimodular functions, χE denotes the characteristic function of E,

χE j
is the characteristic function of E j which depends only on a variable z j .

We consider the condition which is analogous to the case N = 2, that is, each

Vi commutes with V ∗
j for any j 6= i. Since V i is an isometry on M for each i =

1, 2, . . . , N , we have the following Wold decomposition,

Vi = V (u)
i ⊕V (o)

i on M = M
(u) ⊕ M

(o),

where V (u)
i = Vi |M

(u) is unitary, V (o)
i = Vi |M

(o) is a unilateral shift, and

M
(u)

= { f ∈ M : ‖V ∗k
i f ‖ = ‖ f ‖ (k ≥ 1)}

=

∞
⋂

k=1

{ f ∈ M : V k
i V ∗k

i f = f } =

∞
⋂

k=1

V k
i M

is the maximal reducing subspace on which its restriction is unitary. Let Pi denote

the projection from M onto M(u). Then Pi is in the center of R(V i), where R(Vi) is

the von Neumann algebra generated by V i (cf. [12]).

The following lemma is well known.

Lemma 1 Let M and N be invariant subspaces of L2(T
N ). If M is orthogonal to N,

then f g = 0 for any f ∈ M and any g ∈ N.

Proof For any f ∈ M and any g ∈ N,
∫

TN f ḡz̄α dσ = 0.

In the following argument, we deal with the case where N = 3, because it is

difficult to describe invariant subspaces under the double commuting condition in

general. (But we will be aware that our proof in the case where N = 3 can be applied

to the general case.) This is a complicated problem and, in the later remark, we shall

reduce this complication.

Theorem 2 Let M be an invariant subspace of L2(T
3). If M satisfies the condition that

ViV
∗
j = V ∗

j Vi for i 6= j, then one and only one of the following occurs.

(i) M = χEL2(T
3) ⊕ χE1,2

φ1H2
z1,z2

(T
3) ⊕ χE3,1

φ2H2
z3,z1

(T
3) ⊕ χE2,3

φ3H2
z2,z3

(T
3),

(ii) M = χEL2(T
3) ⊕ χE1,2

φ1H2
z1,z2

(T
3) ⊕ χE3,1

φ2H2
z3,z1

(T
3) ⊕ χE1

φ3H2
z1

(T
3),

(iii) M = χEL2(T
3) ⊕ χE1,2

φ1H2
z1,z2

(T
3) ⊕ χE2,3

φ2H2
z2,z3

(T
3) ⊕ χE2

φ3H2
z2

(T
3),

(iv) M = χEL2(T
3) ⊕ χE2,3

φ1H2
z2,z3

(T
3) ⊕ χE3,1

φ2H2
z3,z1

(T
3) ⊕ χE3

φ3H2
z3

(T
3),

(v) M = qH2(T
3),

where φi and q are unimodular functions, χE denotes the characteristic function of E,

χEi, j
is the characteristic function of Ei, j which depends only on two variables zi and z j ,

χEi
is the characteristic function of Ei which depends only on a variable zi .
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Proof The following argument is a slight modification of the proof given by Man-

drekar [5] and Nakazi [9].

Suppose that ViV
∗
j = V ∗

j Vi (i 6= j). By the property of Wold decomposition, we

have the following:

M =

∑

a,b,c∈{0,1}

P(a)
1 P(b)

2 P(c)
3 M,

where P(0)
i = Pi and P(1)

i = P⊥
i = I − Pi . We note that Pi commutes with P j because

Vi ∈ R(V j)
′ and V j ∈ R(Vi)

′ by the assumption. Hence it suffices to describe

P1P2P3M, P1P2P⊥
3 M, P1P⊥

2 P⊥
3 M and P⊥

1 P⊥
2 P⊥

3 M. Let M1, M2, M3 and M4 denote

the above four subspaces, respectively.

(1) By the Wiener-Tauberian theorem, M1 = χEL2(T
3).

(2) For M2 = P1P2P⊥
3 M, we have the following decomposition:

M2 =

∞
∑

k=0

V k
3 (M2 	V3M2),

where we note that the restriction of V1 and V2 on M2 	V3M2 are unitary operators.

For f ∈ M2	V3M2, we have
∫

| f |2zi
1z

j
2zk

3 dµ = 0 for k 6= 0. Hence | f | is independent

of z3. Then we have
∨

i, j∈Z

zi
1z

j
2 f = φ f χE( f )L

2(T
2),

where, for any measurable function g, a measurable set E(g) and a unimodular func-

tion φg are defined as follows:

E(g) = {z ∈ T
N : g(z) 6= 0},

φg =

{

g/|g| (g 6= 0)

1 (g = 0).

Since there exists a function F in M2 	 V3M2 which has the maximal support in

M2 	V3M2, that is, E( f ) ⊆ E(F), for any f ∈ M2 	V3M2, we have M2 	V3M2 =

φFχE(F)L
2(T

2). Hence

M2 =

∞
∑

k=0

V k
3φFχE(F)L

2(T
2) = χE(F)φFH2

z1,z2
(T

3).

(3) For M3 = P1P⊥
2 P⊥

3 M, we have the following decomposition:

M3 =

∑

j,k≥0

V
j

2V k
3{(M3 	V2M3) ∩ (M3 	V3M3)}.
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Let (M3 	 V2M3) ∩ (M3 	 V3M3) be denoted by N. The restriction of V1 on N is

unitary. For f ∈ N, we have
∫

| f |2zi
1z

j
2zk

3 dµ = 0 for all ( j, k) 6= (0, 0). Hence | f | is

independent of z2 and z3. Then we have

∨

i∈Z

zi
1φ f | f | = φ f χE( f )L

2(T),

where φ f and χE( f ) are the same defined in the case (2). Since there exists a function

F in N which has the maximal support in N, we have N = φFχE(F)L
2(T). Hence

M3 =

∑

j,k≥0

V
j

2V k
3φFχE(F)L

2(T) = χE(F)φFH2
z1

(T
3).

(4) For M4 = P⊥
1 P⊥

2 P⊥
3 M, we have the following decomposition:

M4 =

∑

i, j,k≥0

V i
1V

j
2V k

3{(M4 	V1M4) ∩ (M4 	V2M4) ∩ (M4 	V3M4)}.

Let (M4 	 V1M4) ∩ (M4 	 V2M4) ∩ (M4 	 V3M4) be denoted by N ′. For q ∈ N ′

such that ‖q‖L2(T3) = 1, we have
∫

|q|2zi
1z

j
2zk

3 dµ = 0 for all (i, j, k) 6= (0, 0, 0). Hence

|q| = 1 and dim N ′
= 1. We have

M4 =

∑

i, j,k≥0

V i
1V

j
2V k

3 q = qH2(T
3).

Combining those results that we got in (1), (2), (3) and (4), and using Lemma 1,

we have the conclusion.

Remark 1 In this remark we shall simplify complication in the general case. First,

we shall consider the following figures, and call their arms z1, z2 and z3, respectively

as follows:

z1

z2 z3

∼
= χEφH2

z1
(T

3),

∼
= χEL2(T

3),

∼
= χEφH2

z1,z2
(T

3), ∼
= qH2(T

3),

Next we shall identify function spaces with figures by the correspondence of the in-

dices of the function spaces to the arms of the figures. Where we note that L2(T
3) =

H2
z1,z2,z3

(T
3). Since the function spaces which appeared in Theorem 2 can be identified
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with some figures by this correspondence, we have the following simple description

of Theorem 2:

(i)

(ii)

(iii)

(iv)

(v)

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

By the same method, applying this identification to Theorem 1, we have the follow-

ing:

(i)

(ii)

(iii)

⊕

⊕

z1z2

Similarly, for the case where N = 4, we have 13 invariant subspaces. Since there is

a rule induced by Lemma 1, under the double commuting condition, the research of

invariant subspaces can be reduced to a combinatorial problem.

2 Invariant Subspaces of L2(R
N)

Let N be an integer which is larger than one. L2(R
N ) will denote the usual Lebesgue

space with respect to the Lebesgue measure dx = dx1 dx2 · · · dxN on the usual N-

dimensional Euclidean space R
N , and let α denote a multi-index that is an ordered

N-tuple α = (α1, . . . , αN ) of real numbers α j . Let H2(R
N ) =

⊗N
H2(R) be the

space of all f in L2(R
N ) whose Fourier transform

F( f )(α) = f̂ (α) =

∫

RN

f (x)e−i〈α,x〉 dx

is 0 whenever at least one component of α is negative, where x = (x1, . . . , xN ) is

in R
N and 〈 , 〉 denotes the usual inner product in R

N . Note that our H2(R
N ) is

different from the usual Hardy space on R
N .
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We define a closed subspace H2
xi1

,...,xik
(R

N ) as follows:

H2
xi1

,...,xik
(R

N ) =

⊗

1≤ j≤k

L2(R, dxi j
)

⊗

1≤i≤N,i 6=i1,...,ik

H2(R, dxi).

Definition 2 A closed subspace M of L2(R
N ) is said to be an invariant subspace of

L2(R
N ) if eisx j M ⊆ M for any j = 1, . . . , N and any s ≥ 0. For s ≥ 0, S j(s) denotes

the restriction on M of the multiplication operator L
e

isx j on L2(R
N ) by eisx j .

In this section, we shall show an N-dimensional version of Lax’s theorem (cf.

Lax [4]). The essential idea of our proof was given by Hoffman in [2], he proved

Lax’s theorem as a corollary of famous Beurling’s theorem by using a linear fractional

transformation from R to T. In Section 1, we considered the double commuting con-

dition, and in this section we shall consider a similar condition for S j(s) and Sk(t),

that is,

S j(s)Sk(t)∗ = Sk(t)∗S j(s)

for any j 6= k and s, t ≥ 0. We first consider the case N = 2, let Ss = S1(s) and

Tt = S2(t), for short.

Theorem 3 Let M be an invariant subspace of L2(R
2). If M satisfies the condition that

SsT
∗
t = T∗

t Ss for any s, t ≥ 0, then one and only one of the following occurs.

(i) M = χEL2(R
2) ⊕ χE1

φ1H2
x1

(R
2),

(ii) M = χEL2(R
2) ⊕ χE2

φ2H2
x2

(R
2),

(iii) M = qH2(R
2),

where φi and q are unimodular functions, χE denotes the characteristic function of E,

χE j
is the characteristic function of E j which depends only on the variable x j .

Proof Let HS be the generator of Ss. HS is a densely defined closed symmetric op-

erator on the domain D(HS), and HS is the multiplication operator by x on D(HS).

Vx1
denotes the Cayley transform of HS, that is,

Vx1
= c(HS) = (HS − iI)(HS + iI)−1.

Then Vx1
is the multiplication by (x1 − i)/(x1 + i) on M, that is, for all f ∈ M

Vx1
f =

x1 − i

x1 + i
f

and Vx1
is an isometry on M. Similarly, we have an isometry Vx2

on M as follows:

Vx2
f =

x2 − i

x2 + i
f ( f ∈ M).

Since {Ss}s≥0 and {Tt}t≥0 are semi-groups of isometries on M, we have the following

integral representations of Vx1
and Vx2

, respectively:

I −Vx1
= 2

∫ ∞

0

e−sSs ds and I −Vx2
= 2

∫ ∞

0

e−tTt dt.
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Hence Vx1
∈ R({Ss}s≥0) and Vx2

∈ R({Tt}t≥0), where R({Ss}s≥0) (resp. R({Tt}t≥0))

is the von Neumann algebra generated by {Ss}s≥0 (resp. {Tt}t≥0). Since SsT
∗
t = T∗

t Ss

for any s, t ≥ 0, we have Vx1
V ∗

x2
= V ∗

x2
Vx1

. Here we construct an isometric operator

U from L2(R
2) onto L2(T

2) as follows:

U :
1

π2

(x1 − i)k

(x1 + i)k+1

(x2 − i)l

(x2 + i)l+1
7−→ zk

1zl
2

where z1 and z2 are the coordinate functions on T
2 (cf. [2]). Especially, U

(

H2(R
2)

)

=

H2(T
2), U

(

Hx1
(R

2)
)

= H2
z1

(T
2) and U

(

Hx2
(R

2)
)

= H2
z2

(T
2). Since Vx1

= U∗Vz1
U

and Vx2
= U∗Vz2

U , where Vz1
and Vz2

denote the multiplication operators on U (M)

by the coordinate functions z1 and z2, respectively. Then, we have that Vx1
V ∗

x2
=

V ∗
x2

Vx1
if and only if Vz1

V ∗
z2

= V ∗
z2

Vz1
. Since U (M) is an invariant subspace of L2(T

2),

and by Theorem 1, we have the conclusion.

By the same way as in the proof of Theorem 3, we have the following:

Theorem 4 Let M be an invariant subspace of L2(R
3). If M satisfies the condition

that S j(s)Sk(t)∗ = Sk(t)∗S j(s) for any j 6= k and s, t ≥ 0, then one and only one of the

following occurs.

(i) M = χEL2(R
3) ⊕ χE1,2

φ1H2
x1,x2

(R
3) ⊕ χE3,1

φ2H2
x3,x1

(R
3) ⊕ χE2,3

φ3H2
x2,x3

(R
3),

(ii) M = χEL2(R
3) ⊕ χE1,2

φ1H2
x1,x2

(R
3) ⊕ χE3,1

φ2H2
x3,x1

(R
3) ⊕ χE1

φ3H2
x1

(R
3),

(iii) M = χEL2(R
3) ⊕ χE1,2

φ1H2
x1,x2

(R
3) ⊕ χE2,3

φ2H2
x2,x3

(R
3) ⊕ χE2

φ3H2
x2

(R
3),

(iv) M = χEL2(R
3) ⊕ χE2,3

φ1H2
x2,x3

(R
3) ⊕ χE3,1

φ2H2
x3,x1

(R
3) ⊕ χE3

φ3H2
x3

(R
3),

(v) M = qH2(R
3),

where φi and q are unimodular functions, χE denotes the characteristic function of E,

χEi, j
is the characteristic function of Ei, j which depends only on two variables xi and x j ,

χEi
is the characteristic function of Ei which depends only on a variable xi .
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