Invariant Subspaces on \mathbb{T}^{N} and \mathbb{R}^{N}

Michio Seto

Abstract. Let N be an integer which is larger than one. In this paper we study invariant subspaces of $L^{2}\left(\mathbb{T}^{N}\right)$ under the double commuting condition. A main result is an N-dimensional version of the theorem proved by Mandrekar and Nakazi. As an application of this result, we have an N-dimensional version of Lax's theorem.

1 Invariant Subspaces of $L^{2}\left(\mathbb{T}^{N}\right)$

Let N be an integer which is larger than one, and \mathbb{T}^{N} denote the torus, the Cartesian product of N unit circles in \mathbb{C}, that is,

$$
\mathbb{T}^{N}=\left\{z=\left(z_{1}, z_{2}, \ldots, z_{N}\right) \in \mathbb{C}^{N}:\left|z_{i}\right|=1(i=1,2, \ldots, N)\right\}
$$

$L^{2}\left(\mathbb{T}^{N}\right)$ will denote the usual Lebesgue space with respect to the normalized Lebesgue measure μ of \mathbb{T}^{N}, and let α denote a multi-index that is an ordered N-tuple $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ of integers $\alpha_{j} . H^{2}\left(\mathbb{T}^{N}\right)=\bigotimes^{N} H^{2}(\mathbb{T})$ will denote the Hardy space over \mathbb{T}^{N}, that is, $H^{2}\left(\mathbb{T}^{N}\right)$ is the space of all f in $L^{2}\left(\mathbb{T}^{N}\right)$ whose Fourier coefficients

$$
\hat{f}(\alpha)=\int_{\mathbb{T}^{N}} f(z) \bar{z}^{\alpha} d \mu
$$

are 0 whenever at least one component of α is negative. For integers $1 \leq i_{1}, \ldots, i_{k} \leq$ N, we define a closed subspace $H_{z_{i}, \ldots, z_{i_{k}}}^{2}\left(\mathbb{T}^{N}\right)$ of $L^{2}\left(\mathbb{T}^{N}\right)$ as follows:

$$
H_{z_{i}, \ldots, z_{i_{k}}}^{2}\left(\mathbb{T}^{N}\right)=\bigvee_{m_{1}, \ldots, m_{k}<0} z_{i_{1}}^{m_{1}} \cdots z_{i_{k}}^{m_{k}} H^{2}\left(\mathbb{T}^{N}\right)
$$

where \bigvee denotes closed vector span.
Definition 1 A closed subspace \mathcal{M} of $L^{2}\left(\mathbb{T}^{N}\right)$ is said to be an invariant subspace of $L^{2}\left(\mathbb{T}^{N}\right)$ if $z_{i} \mathcal{M} \subseteq \mathcal{M}$ for any $i=1, \ldots, N . V_{i}$ denotes the restriction on \mathcal{M} of the multiplication operator $L_{z_{i}}$ on $L^{2}\left(\mathbb{T}^{N}\right)$ by z_{i}.

Mandrekar [5] and Nakazi [9] characterized the invariant subspaces of $L^{2}\left(\mathbb{T}^{2}\right)$ under the condition that V_{1} commutes with V_{2}^{*}.

Theorem 1 ([9]) Let \mathcal{M} be an invariant subspace of $L^{2}\left(\mathbb{T}^{2}\right)$. If \mathcal{M} satisfies the condition that $V_{1} V_{2}^{*}=V_{2}^{*} V_{1}$, then one and only one of the following occurs.

[^0](i) $\mathcal{M}=\chi_{E} L^{2}\left(\mathbb{T}^{2}\right) \oplus \chi_{E_{1}} \phi_{1} H_{z_{1}}^{2}\left(\mathbb{T}^{2}\right)$,
(ii) $\mathcal{M}=\chi_{E} L^{2}\left(\mathbb{T}^{2}\right) \oplus \chi_{E_{2}} \phi_{2} H_{z_{2}}^{2}\left(\mathbb{T}^{2}\right)$,
(iii) $\mathcal{M}=q H^{2}\left(\mathbb{T}^{2}\right)$,
where ϕ_{i} and q are unimodular functions, χ_{E} denotes the characteristic function of E, $\chi_{E_{j}}$ is the characteristic function of E_{j} which depends only on a variable z_{j}.

We consider the condition which is analogous to the case $N=2$, that is, each V_{i} commutes with V_{j}^{*} for any $j \neq i$. Since V_{i} is an isometry on \mathcal{M} for each $i=$ $1,2, \ldots, N$, we have the following Wold decomposition,

$$
V_{i}=V_{i}^{(u)} \oplus V_{i}^{(o)} \quad \text { on } \quad \mathcal{M}=\mathcal{N}^{(u)} \oplus \mathcal{M}^{(o)}
$$

where $V_{i}^{(u)}=V_{i} \mid \mathcal{M}^{(u)}$ is unitary, $V_{i}^{(o)}=V_{i} \mid \mathcal{M}^{(o)}$ is a unilateral shift, and

$$
\begin{aligned}
\mathcal{M}^{(u)} & =\left\{f \in \mathcal{M}:\left\|V_{i}^{* k} f\right\|=\|f\|(k \geq 1)\right\} \\
& =\bigcap_{k=1}^{\infty}\left\{f \in \mathcal{M}: V_{i}^{k} V_{i}^{* k} f=f\right\}=\bigcap_{k=1}^{\infty} V_{i}^{k} \mathcal{M}
\end{aligned}
$$

is the maximal reducing subspace on which its restriction is unitary. Let P_{i} denote the projection from \mathcal{M} onto $\mathcal{M}^{(u)}$. Then P_{i} is in the center of $\mathcal{R}\left(V_{i}\right)$, where $\mathcal{R}\left(V_{i}\right)$ is the von Neumann algebra generated by V_{i} (cf. [12]).

The following lemma is well known.
Lemma 1 Let \mathcal{M} and \mathcal{N} be invariant subspaces of $L^{2}\left(\mathbb{T}^{N}\right)$. If \mathcal{N} is orthogonal to \mathcal{N}, then $f g=0$ for any $f \in \mathcal{M}$ and any $g \in \mathcal{N}$.

Proof For any $f \in \mathcal{M}$ and any $g \in \mathcal{N}, \int_{\mathbb{T}^{N}} f \bar{g} \bar{z}^{\alpha} d \sigma=0$.
In the following argument, we deal with the case where $N=3$, because it is difficult to describe invariant subspaces under the double commuting condition in general. (But we will be aware that our proof in the case where $N=3$ can be applied to the general case.) This is a complicated problem and, in the later remark, we shall reduce this complication.

Theorem 2 Let \mathcal{M} be an invariant subspace of $L^{2}\left(\mathbb{T}^{3}\right)$. If \mathcal{M} satisfies the condition that $V_{i} V_{j}^{*}=V_{j}^{*} V_{i}$ for $i \neq j$, then one and only one of the following occurs.
(i) $\mathcal{M}=\chi_{E} L^{2}\left(\mathbb{T}^{3}\right) \oplus \chi_{E_{1,2}} \phi_{1} H_{z_{1}, z_{2}}^{2}\left(\mathbb{T}^{3}\right) \oplus \chi_{E_{3,1}} \phi_{2} H_{z_{3}, z_{1}}^{2}\left(\mathbb{T}^{3}\right) \oplus \chi_{E_{2,3}} \phi_{3} H_{z_{2}, z_{3}}^{2}\left(\mathbb{T}^{3}\right)$,
(ii) $\mathcal{M}=\chi_{E} L^{2}\left(\mathbb{T}^{3}\right) \oplus \chi_{E_{1,2}} \phi_{1} H_{z_{1}, z_{2}}^{2}\left(\mathbb{T}^{3}\right) \oplus \chi_{E_{3,1}} \phi_{2} H_{z_{3}, z_{1}}^{2}\left(\mathbb{T}^{3}\right) \oplus \chi_{E_{1}} \phi_{3} H_{z_{1}}^{2}\left(\mathbb{T}^{3}\right)$,
(iii) $\mathcal{M}=\chi_{E} L^{2}\left(\mathbb{T}^{3}\right) \oplus \chi_{E_{1,2}} \phi_{1} H_{z_{1}, z_{2}}^{2}\left(\mathbb{T}^{3}\right) \oplus \chi_{E_{2,3}} \phi_{2} H_{z_{2}, z_{3}}^{2}\left(\mathbb{T}^{3}\right) \oplus \chi_{E_{2}} \phi_{3} H_{z_{2}}^{2}\left(\mathbb{T}^{3}\right)$,
(iv) $\mathcal{M}=\chi_{E} L^{2}\left(\mathbb{T}^{3}\right) \oplus \chi_{E_{2,3}} \phi_{1} H_{z_{2}, z_{3}}^{2}\left(\mathbb{T}^{3}\right) \oplus \chi_{E_{3,1}} \phi_{2} H_{z_{3}, z_{1}}^{2}\left(\mathbb{T}^{3}\right) \oplus \chi_{E_{3}} \phi_{3} H_{z_{3}}^{2}\left(\mathbb{T}^{3}\right)$,
(v) $\mathcal{M}=q H^{2}\left(\mathbb{T}^{3}\right)$,
where ϕ_{i} and q are unimodular functions, χ_{E} denotes the characteristic function of E, $\chi_{E_{i, j}}$ is the characteristic function of $E_{i, j}$ which depends only on two variables z_{i} and z_{j}, $\chi_{E_{i}}$ is the characteristic function of E_{i} which depends only on a variable z_{i}.

Proof The following argument is a slight modification of the proof given by Mandrekar [5] and Nakazi [9].

Suppose that $V_{i} V_{j}^{*}=V_{j}^{*} V_{i}(i \neq j)$. By the property of Wold decomposition, we have the following:

$$
\mathcal{M}=\sum_{a, b, c \in\{0,1\}} P_{1}^{(a)} P_{2}^{(b)} P_{3}^{(c)} \mathcal{N}
$$

where $P_{i}^{(0)}=P_{i}$ and $P_{i}^{(1)}=P_{i}^{\perp}=I-P_{i}$. We note that P_{i} commutes with P_{j} because $V_{i} \in \mathcal{R}\left(V_{j}\right)^{\prime}$ and $V_{j} \in \mathcal{R}\left(V_{i}\right)^{\prime}$ by the assumption. Hence it suffices to describe $P_{1} P_{2} P_{3} \mathcal{M}, P_{1} P_{2} P_{3}^{\perp} \mathcal{M}, P_{1} P_{2}^{\perp} P_{3}^{\perp} \mathcal{M}$ and $P_{1}^{\perp} P_{2}^{\perp} P_{3}^{\perp} \mathcal{M}$. Let $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}$ and \mathcal{M}_{4} denote the above four subspaces, respectively.
(1) By the Wiener-Tauberian theorem, $\mathcal{M}_{1}=\chi_{E} L^{2}\left(\mathbb{T}^{3}\right)$.
(2) For $\mathcal{M}_{2}=P_{1} P_{2} P_{3}^{\perp} \mathcal{M}$, we have the following decomposition:

$$
\mathcal{M}_{2}=\sum_{k=0}^{\infty} V_{3}^{k}\left(\mathcal{M}_{2} \ominus V_{3} \mathcal{M}_{2}\right)
$$

where we note that the restriction of V_{1} and V_{2} on $\mathcal{M}_{2} \ominus V_{3} \mathcal{N}_{2}$ are unitary operators. For $f \in \mathcal{M}_{2} \ominus V_{3} \mathcal{M}_{2}$, we have $\int|f|^{2} z_{1}^{i} z_{2}^{j} z_{3}^{k} d \mu=0$ for $k \neq 0$. Hence $|f|$ is independent of z_{3}. Then we have

$$
\bigvee_{i, j \in \mathbb{Z}} z_{1}^{i} z_{2}^{j} f=\phi_{f} \chi_{E(f)} L^{2}\left(\mathbb{T}^{2}\right)
$$

where, for any measurable function g, a measurable set $E(g)$ and a unimodular function ϕ_{g} are defined as follows:

$$
\begin{aligned}
E(g) & =\left\{z \in \mathbb{T}^{N}:\right. \\
\phi_{g} & = \begin{cases}g /|g| & (g \neq 0\}, \\
1 & (g=0) .\end{cases}
\end{aligned}
$$

Since there exists a function F in $\mathcal{M}_{2} \ominus V_{3} \mathcal{M}_{2}$ which has the maximal support in $\mathcal{M}_{2} \ominus V_{3} \mathcal{M}_{2}$, that is, $E(f) \subseteq E(F)$, for any $f \in \mathcal{M}_{2} \ominus V_{3} \mathcal{M}_{2}$, we have $\mathcal{M}_{2} \ominus V_{3} \mathcal{M}_{2}=$ $\phi_{F} \chi_{E(F)} L^{2}\left(\mathbb{T}^{2}\right)$. Hence

$$
\mathcal{M}_{2}=\sum_{k=0}^{\infty} V_{3}^{k} \phi_{F} \chi_{E(F)} L^{2}\left(\mathbb{T}^{2}\right)=\chi_{E(F)} \phi_{F} H_{z_{1}, z_{2}}^{2}\left(\mathbb{T}^{3}\right)
$$

(3) For $\mathcal{M}_{3}=P_{1} P_{2}^{\perp} P_{3}^{\perp} \mathcal{M}$, we have the following decomposition:

$$
\mathcal{M}_{3}=\sum_{j, k \geq 0} V_{2}^{j} V_{3}^{k}\left\{\left(\mathcal{M}_{3} \ominus V_{2} \mathcal{M}_{3}\right) \cap\left(\mathcal{M}_{3} \ominus V_{3} \mathcal{M}_{3}\right)\right\}
$$

Let $\left(\mathcal{M}_{3} \ominus V_{2} \mathcal{M}_{3}\right) \cap\left(\mathcal{M}_{3} \ominus V_{3} \mathcal{M}_{3}\right)$ be denoted by \mathcal{N}. The restriction of V_{1} on \mathcal{N} is unitary. For $f \in \mathcal{N}$, we have $\int|f|^{2} z_{1}^{i} z_{2}^{j} z_{3}^{k} d \mu=0$ for all $(j, k) \neq(0,0)$. Hence $|f|$ is independent of z_{2} and z_{3}. Then we have

$$
\bigvee_{i \in \mathbb{Z}} z_{1}^{i} \phi_{f}|f|=\phi_{f} \chi_{E(f)} L^{2}(\mathbb{T})
$$

where ϕ_{f} and $\chi_{E(f)}$ are the same defined in the case (2). Since there exists a function F in \mathcal{N} which has the maximal support in \mathcal{N}, we have $\mathcal{N}=\phi_{F} \chi_{E(F)} L^{2}(\mathbb{T})$. Hence

$$
\mathcal{M}_{3}=\sum_{j, k \geq 0} V_{2}^{j} V_{3}^{k} \phi_{F} \chi_{E(F)} L^{2}(\mathbb{T})=\chi_{E(F)} \phi_{F} H_{z_{1}}^{2}\left(\mathbb{T}^{3}\right)
$$

(4) For $\mathcal{M}_{4}=P_{1}^{\perp} P_{2}^{\perp} P_{3}^{\perp} \mathcal{M}$, we have the following decomposition:

$$
\mathcal{M}_{4}=\sum_{i, j, k \geq 0} V_{1}^{i} V_{2}^{j} V_{3}^{k}\left\{\left(\mathcal{M}_{4} \ominus V_{1} \mathcal{M}_{4}\right) \cap\left(\mathcal{M}_{4} \ominus V_{2} \mathcal{M}_{4}\right) \cap\left(\mathcal{M}_{4} \ominus V_{3} \mathcal{M}_{4}\right)\right\} .
$$

Let $\left(\mathcal{M}_{4} \ominus V_{1} \mathcal{M}_{4}\right) \cap\left(\mathcal{M}_{4} \ominus V_{2} \mathcal{M}_{4}\right) \cap\left(\mathcal{M}_{4} \ominus V_{3} \mathcal{M}_{4}\right)$ be denoted by \mathcal{N}^{\prime}. For $q \in \mathcal{N}^{\prime}$ such that $\|q\|_{L^{2}\left(\mathbb{T}^{3}\right)}=1$, we have $\int|q|^{2} z_{1}^{i} z_{2}^{j} z_{3}^{k} d \mu=0$ for all $(i, j, k) \neq(0,0,0)$. Hence $|q|=1$ and $\operatorname{dim} \mathcal{N}^{\prime}=1$. We have

$$
\mathcal{M}_{4}=\sum_{i, j, k \geq 0} V_{1}^{i} V_{2}^{j} V_{3}^{k} q=q H^{2}\left(\mathbb{T}^{3}\right)
$$

Combining those results that we got in (1), (2), (3) and (4), and using Lemma 1, we have the conclusion.

Remark 1 In this remark we shall simplify complication in the general case. First, we shall consider the following figures, and call their arms z_{1}, z_{2} and z_{3}, respectively as follows:

$$
\bigcirc \chi_{E} \phi H_{z_{1}, z_{2}}^{2}\left(\mathbb{T}^{3}\right), \quad \bigcirc \cong \chi_{E} \phi H_{z_{1}}^{2}\left(\mathbb{T}^{3}\right), \quad \bigcirc \cong H^{2}\left(\mathbb{T}^{3}\right)
$$

Next we shall identify function spaces with figures by the correspondence of the indices of the function spaces to the arms of the figures. Where we note that $L^{2}\left(\mathbb{T}^{3}\right)=$ $H_{z_{1}, z_{2}, z_{3}}^{2}\left(T^{3}\right)$. Since the function spaces which appeared in Theorem 2 can be identified
with some figures by this correspondence, we have the following simple description of Theorem 2:
(i)

(iii)

(iv)

(v)

By the same method, applying this identification to Theorem 1, we have the following:
(i)

(ii)

(iii)

Similarly, for the case where $N=4$, we have 13 invariant subspaces. Since there is a rule induced by Lemma 1, under the double commuting condition, the research of invariant subspaces can be reduced to a combinatorial problem.

2 Invariant Subspaces of $L^{2}\left(\mathbb{R}^{N}\right)$

Let N be an integer which is larger than one. $L^{2}\left(\mathbb{R}^{N}\right)$ will denote the usual Lebesgue space with respect to the Lebesgue measure $d x=d x_{1} d x_{2} \cdots d x_{N}$ on the usual N dimensional Euclidean space \mathbb{R}^{N}, and let α denote a multi-index that is an ordered N-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ of real numbers α_{j}. Let $H^{2}\left(\mathbb{R}^{N}\right)=\otimes^{N} H^{2}(\mathbb{R})$ be the space of all f in $L^{2}\left(\mathbb{R}^{N}\right)$ whose Fourier transform

$$
\mathfrak{F}(f)(\alpha)=\hat{f}(\alpha)=\int_{\mathbb{R}^{N}} f(x) e^{-i\langle\alpha, x\rangle} d x
$$

is 0 whenever at least one component of α is negative, where $x=\left(x_{1}, \ldots, x_{N}\right)$ is in \mathbb{R}^{N} and \langle,$\rangle denotes the usual inner product in \mathbb{R}^{N}$. Note that our $H^{2}\left(\mathbb{R}^{N}\right)$ is different from the usual Hardy space on \mathbb{R}^{N}.

We define a closed subspace $\left.H_{x_{i}, \ldots, x_{i k}}^{2}, \mathbb{R}^{N}\right)$ as follows:

$$
H_{x_{i}, \ldots, x_{i}}^{2}\left(\mathbb{R}^{N}\right)=\bigotimes_{1 \leq j \leq k} L^{2}\left(\mathbb{R}, d x_{i_{j}}\right) \bigotimes_{1 \leq i \leq N, i \neq i_{1}, \ldots, i_{k}} H^{2}\left(\mathbb{R}, d x_{i}\right) .
$$

Definition 2 A closed subspace \mathcal{M} of $L^{2}\left(\mathbb{R}^{N}\right)$ is said to be an invariant subspace of $L^{2}\left(\mathbb{R}^{N}\right)$ if $e^{i s x_{j}} \mathcal{M} \subseteq \mathcal{M}$ for any $j=1, \ldots, N$ and any $s \geq 0$. For $s \geq 0, S_{j}(s)$ denotes the restriction on \mathcal{M} of the multiplication operator $L_{e^{i s x_{j}}}$ on $L^{2}\left(\mathbb{R}^{N}\right)$ by $e^{i s x_{j}}$.

In this section, we shall show an N-dimensional version of Lax's theorem (cf. Lax [4]). The essential idea of our proof was given by Hoffman in [2], he proved Lax's theorem as a corollary of famous Beurling's theorem by using a linear fractional transformation from \mathbb{R} to \mathbb{T}. In Section 1, we considered the double commuting condition, and in this section we shall consider a similar condition for $S_{j}(s)$ and $S_{k}(t)$, that is,

$$
S_{j}(s) S_{k}(t)^{*}=S_{k}(t)^{*} S_{j}(s)
$$

for any $j \neq k$ and $s, t \geq 0$. We first consider the case $N=2$, let $S_{s}=S_{1}(s)$ and $T_{t}=S_{2}(t)$, for short.

Theorem 3 Let \mathcal{M} be an invariant subspace of $L^{2}\left(\mathbb{R}^{2}\right)$. If \mathcal{M} satisfies the condition that $S_{s} T_{t}^{*}=T_{t}^{*} S_{s}$ for any $s, t \geq 0$, then one and only one of the following occurs.
(i) $\quad \mathcal{M}=\chi_{E} L^{2}\left(\mathbb{R}^{2}\right) \oplus \chi_{E_{1}} \phi_{1} H_{\chi_{1}}^{2}\left(\mathbb{R}^{2}\right)$,
(ii) $\mathcal{M}=\chi_{E} L^{2}\left(\mathbb{R}^{2}\right) \oplus \chi_{E_{2}} \phi_{2} H_{x_{2}}^{2}\left(\mathbb{R}^{2}\right)$,
(iii) $\mathcal{M}=q H^{2}\left(\mathbb{R}^{2}\right)$,
where ϕ_{i} and q are unimodular functions, χ_{E} denotes the characteristic function of E, $\chi_{E_{j}}$ is the characteristic function of E_{j} which depends only on the variable x_{j}.

Proof Let H_{S} be the generator of S_{s}. H_{S} is a densely defined closed symmetric operator on the domain $\mathcal{D}\left(H_{S}\right)$, and H_{S} is the multiplication operator by x on $\mathcal{D}\left(H_{S}\right)$. $V_{x_{1}}$ denotes the Cayley transform of H_{S}, that is,

$$
V_{x_{1}}=c\left(H_{S}\right)=\left(H_{S}-i I\right)\left(H_{S}+i I\right)^{-1}
$$

Then $V_{x_{1}}$ is the multiplication by $\left(x_{1}-i\right) /\left(x_{1}+i\right)$ on \mathcal{M}, that is, for all $f \in \mathcal{M}$

$$
V_{x_{1}} f=\frac{x_{1}-i}{x_{1}+i} f
$$

and $V_{x_{1}}$ is an isometry on \mathcal{M}. Similarly, we have an isometry $V_{x_{2}}$ on \mathcal{M} as follows:

$$
V_{x_{2}} f=\frac{x_{2}-i}{x_{2}+i} f \quad(f \in \mathcal{M})
$$

Since $\left\{S_{s}\right\}_{s \geq 0}$ and $\left\{T_{t}\right\}_{t \geq 0}$ are semi-groups of isometries on \mathcal{M}, we have the following integral representations of $V_{x_{1}}$ and $V_{x_{2}}$, respectively:

$$
I-V_{x_{1}}=2 \int_{0}^{\infty} e^{-s} S_{s} d s \quad \text { and } \quad I-V_{x_{2}}=2 \int_{0}^{\infty} e^{-t} T_{t} d t
$$

Hence $V_{x_{1}} \in \mathcal{R}\left(\left\{S_{s}\right\}_{s \geq 0}\right)$ and $V_{x_{2}} \in \mathcal{R}\left(\left\{T_{t}\right\}_{t \geq 0}\right)$, where $\mathcal{R}\left(\left\{S_{s}\right\}_{s \geq 0}\right)$ (resp. $\left.\mathcal{R}\left(\left\{T_{t}\right\}_{t \geq 0}\right)\right)$ is the von Neumann algebra generated by $\left\{S_{s}\right\}_{s \geq 0}$ (resp. $\left\{T_{t}\right\}_{t \geq 0}$). Since $S_{s} T_{t}^{*}=T_{t}^{*} S_{s}$ for any $s, t \geq 0$, we have $V_{x_{1}} V_{x_{2}}^{*}=V_{x_{2}}^{*} V_{x_{1}}$. Here we construct an isometric operator U from $L^{2}\left(\mathbb{R}^{2}\right)$ onto $L^{2}\left(\mathbb{T}^{2}\right)$ as follows:

$$
U: \frac{1}{\pi^{2}} \frac{\left(x_{1}-i\right)^{k}}{\left(x_{1}+i\right)^{k+1}} \frac{\left(x_{2}-i\right)^{l}}{\left(x_{2}+i\right)^{l+1}} \longmapsto z_{1}^{k} z_{2}^{l}
$$

where z_{1} and z_{2} are the coordinate functions on $\mathbb{T}^{2}(c f$. [2] $)$. Especially, $U\left(H^{2}\left(\mathbb{R}^{2}\right)\right)=$ $H^{2}\left(\mathbb{T}^{2}\right), U\left(H_{x_{1}}\left(\mathbb{R}^{2}\right)\right)=H_{z_{1}}^{2}\left(\mathbb{T}^{2}\right)$ and $U\left(H_{x_{2}}\left(\mathbb{R}^{2}\right)\right)=H_{z_{2}}^{2}\left(\mathbb{T}^{2}\right)$. Since $V_{x_{1}}=U^{*} V_{z_{1}} U$ and $V_{x_{2}}=U^{*} V_{z_{2}} U$, where $V_{z_{1}}$ and $V_{z_{2}}$ denote the multiplication operators on $U(\mathcal{M})$ by the coordinate functions z_{1} and z_{2}, respectively. Then, we have that $V_{x_{1}} V_{x_{2}}^{*}=$ $V_{x_{2}}^{*} V_{x_{1}}$ if and only if $V_{z_{1}} V_{z_{2}}^{*}=V_{z_{2}}^{*} V_{z_{1}}$. Since $U(\mathcal{M})$ is an invariant subspace of $L^{2}\left(\mathbb{T}^{2}\right)$, and by Theorem 1, we have the conclusion.

By the same way as in the proof of Theorem 3, we have the following:
Theorem 4 Let \mathcal{M} be an invariant subspace of $L^{2}\left(\mathbb{R}^{3}\right)$. If \mathcal{M} satisfies the condition that $S_{j}(s) S_{k}(t)^{*}=S_{k}(t)^{*} S_{j}(s)$ for any $j \neq k$ and $s, t \geq 0$, then one and only one of the following occurs.
(i) $\mathcal{M}=\chi_{E} L^{2}\left(\mathbb{R}^{3}\right) \oplus \chi_{E_{1,2}} \phi_{1} H_{x_{1}, x_{2}}^{2}\left(\mathbb{R}^{3}\right) \oplus \chi_{E_{3,1}} \phi_{2} H_{x_{3}, x_{1}}^{2}\left(\mathbb{R}^{3}\right) \oplus \chi_{E_{2,3}} \phi_{3} H_{x_{2}, x_{3}}^{2}\left(\mathbb{R}^{3}\right)$,
(ii) $\mathcal{M}=\chi_{E} L^{2}\left(\mathbb{R}^{3}\right) \oplus \chi_{E_{1,2}} \phi_{1} H_{x_{1}, x_{2}}^{2}\left(\mathbb{R}^{3}\right) \oplus \chi_{E_{3,1}} \phi_{2} H_{x_{3}, x_{1}}^{2}\left(\mathbb{R}^{3}\right) \oplus \chi_{E_{1}} \phi_{3} H_{x_{1}}^{2}\left(\mathbb{R}^{3}\right)$,
(iii) $\mathcal{M}=\chi_{E} L^{2}\left(\mathbb{R}^{3}\right) \oplus \chi_{E_{1,2}} \phi_{1} H_{x_{1}, x_{2}}^{2}\left(\mathbb{R}^{3}\right) \oplus \chi_{E_{2,3}} \phi_{2} H_{x_{2}, x_{3}}^{2}\left(\mathbb{R}^{3}\right) \oplus \chi_{E_{2}} \phi_{3} H_{x_{2}}^{2}\left(\mathbb{R}^{3}\right)$,
(iv) $\mathcal{M}=\chi_{E} L^{2}\left(\mathbb{R}^{3}\right) \oplus \chi_{E_{2,3}} \phi_{1} H_{x_{2}, x_{3}}^{2}\left(\mathbb{R}^{3}\right) \oplus \chi_{E_{3,1}} \phi_{2} H_{x_{3}, x_{1}}^{2}\left(\mathbb{R}^{3}\right) \oplus \chi_{E_{3}} \phi_{3} H_{x_{3}}^{2}\left(\mathbb{R}^{3}\right)$,
(v) $\mathcal{M}=q H^{2}\left(\mathbb{R}^{3}\right)$,
where ϕ_{i} and q are unimodular functions, χ_{E} denotes the characteristic function of E, $\chi_{E_{i, j}}$ is the characteristic function of $E_{i, j}$ which depends only on two variables x_{i} and x_{j}, $\chi_{E_{i}}$ is the characteristic function of E_{i} which depends only on a variable x_{i}.

Acknowledgements The author thanks Professor Takashi Yoshino for his helpful and valuable suggestions. Also the author is grateful to the referee for his comments.

References

[1] H. Helson, Lectures on Invariant Subspaces. Academic Press Inc., New York-London, 1964.
[2] K. Hoffman, Banach spaces of analytic functions. Prentice-Hall, Englewood Cliffs, N.J., 1962.
[3] K. Izuchi, Invariant subspaces on a torus. Lecture notes (1998), unpublished.
[4] P. D. Lax, Translation invariant subspace. Acta Math. 101(1959), 163-178.
[5] V. Mandrekar, The validity of Beurling theorems in polydiscs. Proc. Amer. Math. Soc. 103(1988), 145-148.
[6] S. Merrill, III, and N. Lal, Characterization of certain invariant subspace of H^{p} and L^{p} spaces derived from logmodular algebras. Pacific J. Math. 30(1969), 463-474.
[7] T. Nakazi, Invariant subspaces of weak-*Dirichlet algebras. Pacific J. Math. 69(1977), 151-167.
[8] Certain invariant subspaces of H^{2} and L^{2} on a bidisc. Canad. J. Math. 40(1988), 1272-1280.
[9] \longrightarrow Invariant subspaces in the bidisc and commutators. J. Austral. Math. Soc. Ser. A 56(1994), 232-242.
[10] Y. Ohno, Some Invariant Subspaces in $L_{\mathcal{H}}^{2}$. Interdiscip. Inform. Sci. 2(1996), 131-137.
[11] W. Rudin, Function theory in polydiscs. Benjamin Inc., New York-Amsterdam, 1969.
[12] T. Yoshino, Introduction to operator theory. Pitman Res. Notes Math. Ser. 300, Longman Scientific and Technical, Harlow, and John Wiley \& Sons, New York, 1993.

Mathematical Institute

Tohoku University

Sendai 980-8578
Japan
email: s98m21@math.tohoku.ac.jp

[^0]: Received by the editors January 23, 2002; revised May 30, 2002.
 AMS subject classification: Primary: 47A15; secondary: 47B47.
 Keywords: invariant subspaces.
 (C)Canadian Mathematical Society 2004.

