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A DISTANCE FUNCTION PROPERTY
IMPLYING DIFFERENTIABILITY

J.R. GILES

In a real normed linear space X, properties of a non-empty closed set K are closely related
to those of the distance function d which it generates. If X has a uniformly Gateaux
(uniformly Frechet) differentiable norm, then d is Gateaux (Frechet) differentiable at
x e X \ K if there exists an t f l , || "i* || = 1 such that

d(x + tl?) -d(x)
lim = 1

(-.0+ t

and is Gateaux (Frechet) differentiable on X \ K if there exists a set P+(K) dense in
X\K where such a limit is approached uniformly for all x £ P^.(K). When X is complete
this last property implies that K is convex.

Given a real normed linear space X a non-empty closed subset K generates a
distance function d on X where

d{x) = inf{||x - T/II : y 6 K}.

A distance function d always satisfies the Lipschitz condition

\d{x) - d{y)\ ^ \\x - y \ \ f o r a l l x,y € X

and is a convex function if and only if if is a convex set.

There is a natural duality between the properties of the set K and its distance
function d. We see this duality exploited in abstract approximation theory and in
techniques of non-smooth optimisation.

A longstanding abstract approximation problem concerns Chebyshev sets. A subset
K is said to be a Chebyshev set if for each x G X \ K there exists a unique p(x) € K
such that

<*(*) = H X - P O O H .

The problem is to determine necessary and sufficient conditions for a Chebyshev set
to be convex. The best result so far was given by Vlasov [10, 11] who showed that in
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a Banach space X with rotund dual X* a Chebyshev set K with continuous metric

projection x —> p(x) is convex. He used the continuity of the metric projection to

derive a differentiability condition for the distance function d and this differentiability

condition for d was actually the key to his proof for convexity of K.

As a tool for non-smooth optimisation Clarke [4] developed the generalised subdif-

ferential for a real locally Lipschitz function 4> on an open subset G of a normed linear

space X defined, for x € G by

d<p{x) = {/ £ X* | f(y) < limsup for all y £ X}.
x—>x t

t—• ()+

For any x £ G, d<f>(x) is a non-empty weak * .compact convex subset of X* and
the mapping x —• d<f>(x) is weak * upper semi-continuous. In Euclidean space,
Rademacher's Theorem guarantees that any locally Lipschitz function <j> on an open
subset G is differentiable a.e. on G. In that case the generalised differential d<f>(x) has
the particularly useful characterisation as the closed convex hull of the cluster points
of V<f>(xn) for points where <j> is differentiable and where xn converges to x , [5, p.27
and p.63]. Given a non-empty closed set K in X generating a distance function d,

the generalised subdifferential of d is important in characterising tangent and normal
cones to the set K, [5, p.51].

So for both applications it is useful to determine differentiability properties of
distance functions. We are assisted in this study by the fact that distance functions are
defined in terms of the norm of the space and in general, distance functions derive their
differentiability properties from those for the norm.

A real function <f> on a normed linear space X is said to be Gateaux differentiable

at x £ X if there exists a linear functional <j>'(x) on X where, given e > 0 and ||y|| = 1
there exists a S(e, x, y) > 0 such that

(x+ty)-4>(x)
< e when 0 < \t\ < 8.

The function <f> is said to be FrecAet different!able at x if there exists a 5(e, x) > 0
such that the inequality holds for all ||y|| = 1. The function <f> is said to be uniformly

Gateaux differentiable on a subset D if there exists a S(e, y) > 0 such that the in-
equality holds for all x £ D, and is said to be uniformly Frechet differentiable on a
subset D if there exists a 6(e) > 0 such that the inequality holds for all x £ D and
all ||y|| = 1. When the norm of X is Gateaux differentiable at x ^ 0 we denote the
Gateaux derivative by fx and we note that \\fx\\ = 1. We say that X has differentiable
norm if the norm is differentiable on {x : \\x\\ = 1}.

In a normed linear space X with uniformly Gateaux differentiable norm, Zajicek
[12, p.300] has shown that the distance function generated by a non-empty closed set
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K always has a significant differentiability property: for each x £ X\K the right hand
Gateaux derivative d'+(x)(y) exists and is a concave function in y. But also in such
a space, the generalised sub differential dd(x) is singleton if and only if d is Gateaux
differentiable at x , [1, Corollary 9].

In paper [9, Proposition 2] a characterisation of Gateaux (and Frechet) differen-
tiability of the distance function was given for a normed linear space with uniformly
Gateaux (uniformly Frechet) differentiable norm. But that characterisation is for the
distance function generated by a set where there exists a dense set of points which have
best approximating points in the set. The following characterisation does not depend
on the existence of such best approximating points in the set.

PROPOSITION 1. Consider a distance function d generated by a non-empty closed
set K in a normed linear space X with uniformly Gateaux (uniformly Frechet) differ-
entiable norm. For any x £ X \ K, d is Gateaux (Frechet) differentiable at x if and
only if either of the following hold:

(i) fz-u is weai* (norm) convergent a s z - n , \\z — u\\ —> d(x) and u £ K;
(ii) fx-v JS weak* (norm) convergent as \\x — v|| —> d(x) and v £ K .

PROOF: The proof of the Gateaux differentiable characterisation is given in [1,
Corollary 9]. We need only consider the Frechet differentiable characterisation,
(i) Suppose that fz-u is norm convergent as z —> x and \\z — u\\ —* d(x) where u £ K .
Then d is Gateaux differentiable at x . Suppose that d is not Frechet differentiable at
x. Then there exists an r > 0 and a sequence {yn} in X where yn —* 0 such that

r ||yn|| < d{x + yn) - d(x) - d\x)(yn).

Choose zn € X \ K such that \\zn - x\\ < A \\yn\\ and un £ K such that

d(zn) < \\zn - un\\ < d(zn) + - \\yn\\ .
n

Then

r ||yn|| < d{zn + yn) - d{zn) - d'(x)(yn) + - \\yn\\
• 3

< \\zn -un+ yn\\ - \\zn - un\\ - d'{x)(yn) + - \\yn\\ .

Since the norm is uniformly Frechet differentiable, given 0 < e < r/2 there exists a
S(e) > 0 such that

| \\zn - un+yn\\ - \\zn - wn|| - /*„-„„(j/n)| < £ ||yn|| for all \\yn\\ < 6.
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Then

\ ||yn|| < /*„-„„(</«) ~ A*)iVn) + £ \\Vn\\ for all | | j , n | | < 8

and we conclude that {/zn-«n} is no^ n o r m convergent to d'(x) although : n - n and
\\zn - un\\ -> d(a;) for un € # .

Suppose that d is Frechet differentiable at x £ X \ K. Suppose also that there
exists a sequence {zn} in X \ K where zn —> x and a sequence {un} in K where
\\zn — un\\ —* d(x) but where {/zn-un} is not norm convergent to d'(x). Then there
exists an r > 0 and a subsequence of {zn — un} such that

So there exists a sequence {yn} in -X" > ||yn|| = 1 such that

-/*„-«„(3/n) + ^(a;)(yn) > 3r for all n.

Since d is Frechet differentiable at x there exists a 6(e, x) > 0 such that

|d(x + w) - d{x) - d'(sc)(u;)| < r \\w\\ for all ||w|| < S.

Putting wn = 6yn we have ||wn|| = 8 for all n , and for each n

3r5 < -ftn-Un{wn) + d'{x){wn)

< d'(x)(wn) - d(x + wn) + d(x) + d{zn + wn) - d(zn) - /*„_„„(wn)

+ \\Zn-x\\ + d(zn)-d(x).

<r8 + \\zn -un + wn\\ - \\zn - «n| | - fZn-Un(wn) + \\zn - un\\ + \\zn - x\\ - d(x).

Since the norm is uniformly Frechet differentiable there exists a 0 < 8' < 8 such that

| \\zn -un + wn\\ - \\zn - un\\ - fZn-Un(tun)\ < r \\wn\\ for all ||«;n|| < 8'.

So

But this contradicts \\zn — wn|| —+ d(x).
(ii) If d is Frechet differentiable at x then from (i), /*_« is norm convergent as
||x - v|| -» d(x) and v e K.
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Suppose that fx-v is norm convergent as ||z — u|| —> d(x) and v £ f f . Then d is
Gateaux differentiable at x. Suppose that d is not Frechet differentiable at x. Then
following the corresponding argument in (i) and choosing vn 6 K such that

d{x)< \\x-vn\\ < d ( * ) + - | | y B | |
n

we find that fx-vn
 ls n°t norm convergent so d'(x) although \\x — vn\\ —> d(x) and

vn £ K . |

When a distance function does have a dense set of points of Gateaux differentiability
off the set then we have the following characterisation of its generalised subdifferential
which is an extension of Clarke's original characterisation in finite dimensional spaces.

COROLLARY 1. In a normed linear space with uniformly Gateaux differentiable
norm, given any non-empty closed set K with distance function d Gateaux differen-
tiable on a subset D dense in X \ K, then:

(i) for x £ X\K, dd(x) is the weak* closed convex hull of the weak* cluster
points of {d'(xn)} for xn £ D and {xn} converging to x;

(ii) for x £ bdyK , dd(x) is the weak* closed convex hull of 0 and the weaJc*
cluster points of {d'(xn)} for xn £ D and {xn} converging to x.

PROOF:

(i) From the weak* upper semi-continuity of the subdifferential mapping x —>
dd(x) we see that dd(x) contains the weak* cluster points of {d'(xn)} for xn G D
and xn —* x. We need only prove the converse containment. Suppose not, then we
can strongly separate some /o € dd(x) from the other set which is weak* compact and
convex. That is there exists a y € X and r > 0 such that

/o(j/) — f> sup{/(y) : / is a weak* cluster point of {d'(xn)} for xn e D and xn —> x}

Since f0 £ dd(x),

fo{y) < hmsup — 7 — .
z—*X t

t-.0 +

Now there exists zn —» x and tn —» 0+ such that

J U W / 3 tn

for sufficiently large n. Since x £ X \ K, zn £ X \ K for sufficiently large n. Since D
t3

is dense in X \ K, for each n we can choose xn £ D such that ||xn — zn|| < -J-. Then

t(,\ r <- <*(gn + tny) - d(xn) 2tnMy) ~ 3 < r + — .
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Now by Proposition l(ii), for each n we can choose un G K such that

T t2

d'(xn){y) > fxn-un(y) - - and ||xn - «n|| < d(xn) + y

Then

Since the norm is uniformly Gateaux differentiable

Mv) - ^ limsup/In_Un(y)
<> xn —tx

So

1r
fo(y) ~ -r- < limsupd'(xn)(y) .

But then a weak* cluster point / , of {d'(xn)} as xn —> x satisfies fo(y) ~ x ^ f*(v)
and this contradicts the separation property.

(ii) follows from [2, Lemma 2]. |

A characterisation of differentiability of the distance function which depends on
the density of points of Gateaux differentiability off the set also follows immediately
from Proposition l(i).

COROLLARY 2. In a normed linear space X with uniformly Gateaux (uniformly
Frechet) differentiable norm a non-empty closed set K with distance function d
Gateaux differentiable on a subset D dense in X \ K has d Gateaux (Frechet) differ-
entiable at x G X \ K if and only if {d'(xn)} is weak* (norm) convergent for xn S D
and {xn} converging to x .

The following lemma, using a technique of Fitzpatrick [8] exploits the special im-
plications of uniform Gateaux differentiability of the norm.

LEMMA 1. In a normed linear space X with uniformly Gateaux (uniformly
Frechet) differentiable norm consider a non-empty closed set K with distance func-
tion d. If d has the property that there exists a set P+(K) in X \ K where for each
x G P+(K) there exists an it G X, "x* = 1 such that

d(x+t~x) -d(x)

t—o+ t
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and this limit is approached uniformly for all x 6 P+{K), then d is uniformly Gateaux
(uniformly Frechet) differentiable on P+(K)n B where B is a closed ball contained in
X\K.

PROOF: Given that e > 0 and ||y|| = 1, there exists a 8(e, y) > 0, {5(s) > 0)
such that

+\y - If
< e for all x G P+(K) and 0 < |A| < 8,

so

But also there exists a 8'(e) > 0 such that

d(x + t ~x j — d(x)

r >x

Then

<e8.

- e6 for all x € P+{K) and all 0 < t < 6'.

d(x + tiy) - d(x) = d(x + thy) - d{x + i~x\ + d(x + t~x) - d(x)

>-t(h?-6y

) - 2e8t.

forO<t<S'

So

0)
d(x + iy) - d(x)

> / _ ( y ) - 2 e for 0 < t < 88'.

Now since the norm is uniformly Gateaux difFerentiable, d has a right-hand derivative
d'+(x) for all x 6 X \ K and — d'+(x)(y) is sublinear in y. But then from (i), for all
x6P+(K),

-d'+(x){y) < - /_ , (y) for all y £ X

and so d is Gateaux differentiable on P+{K) and

d'(x)(y) = f^(y) for ally eX.

Now for any x £ B and v £ K we have ||x — v\\ > d(B, K). Since the norm is
uniformly Gateaux (uniforinly Frechet) differentiable, given ||y|| = 1 there exists a
8"(e, y) > (6"{c) > 0) such that

\\x - v + ty\\ - \\x - v\\
< £ for all 0 < \t\ < 8".
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Now for each x £ P+(K) n B choose v £ K such that

||ic - v|| < d(x) + et where 0 < t < 6".

Then

d(x + ty) - d{x) ^ ||x + ty- v\\ - \\x - v\\ + et

< ifx-v(y) + 2e< for all 0 < t < 6".

But this is true for all such choices of v € K. Therefore, since d is Gateaux differen-
tiable at x, it follows from Proposition l.(ii) that

d(x+ty)-d(x) ^d,{x){y) + 2£ f o r a l l 0 < < < * " .

We conclude from (i) and (ii) that d is uniformly Gateaux (uniformly Frechet) differ-

entiable on P+{K) D B. M

We should note that the differentiability hypothesis for this lemma is satisfied if
P+(K) is a set where there exists an r > 0 such that for each x £ P+{K) there exists
a z £ X \K where ||a: — z|| = r and

d(z) = d(x) + \\z - z|| .

In the course of the proof of the lemma we have actually established the following
result.

COROLLARY 3. In a normed linear space X with uniformly Gateaux (uniformly

Frechet) differentiable norm if the distance function d generated by a non-empty closed

= 1set K has the property that at some x £ X \ K, there exists an x £ X, \\ x

where d'+(x)l ~x \ —\ then d is Gateaux (Frechet) differentiate at x .

This corollary should be compared with [1, Theorem 1] for it shows the power of
uniform Gateaux differentiability of the norm with distance functions.

We are now in a position to prove our theorem. This theorem is a generalisation of
[9, Theorem] in that assumptions about the existence of best approximation points in
the set are replaced by a differentiability assumption on the distance function. The proof
is similar to the earlier theorem but is built on Lemma 1 and Corollary 1 established
for this more general situation.
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THEOREM 1. In a normed linear space X with uniformly Gateaux (uniformly
Frechet) differentiable norm a non-empty closed set K generates a distance function d
wliich is Gateaux (Frechet) differentiable on X \ K if there exists a set P+(K) dense
in X \K where for each x £ P+(K) there exists an ~x € X, \\H? = 1 sucii fiat

lim
t—o+

d(x + t~x) -d(x)
—i ' = 1

and tin's limit is approached umformly for all x 6 P+(K) .

PROOF: Consider a closed ball B in X \K. It follows from Lemma 1 that d is
uniformly Gateaux (uniformly Frechet) differentiable on P+(K) D B . Therefore, given
e > 0 and ||y|| = 1 there exists a 6(e, y) > 0, (6(e) > 0) such that

d{x + ty) - d(x)
-f-tiv) < e for all x e P+{K) n B and 0 < \t\ < 6.

Then for xi, x2 £ P+(K) n B and ||y|| = 1,

ty) - d(Xl)

t
ty) - d(x2 + ty) - d(x2)

t t
d(x2 + ty) - d(x2)

' ! " ' t

<2e+ \\xi - x2\\ 4/6 for all 6/2 < \t\ < 6

< 6e for all ||xi — x2\\ < e6.

That is, the mapping x -* f-g{y), (x —* f-g) is uniformly continuous on P+(K) D B.
Since P+(K) is dense in X \ K this mapping has a unique continuous extension on
B. But this implies that for any x £ B and sequence {xn} in P+(K) O B converging
to x, {/-— } is weak* convergent, (norm convergent). Since /_ , = d'(xn) for all
xn € P+(K) it follows from Corollary 2 that d is Gateaux (Frechet) differentiable at
x. N

We draw attention to two significant results which follow if we assume that the
normed linear space is complete. When we are dealing with a Banach space X, a
distance function necessarily derives certain differentiability properties from the norm
and if the dual X* is rotund then the condition given in Theorem 1 actually implies
that the distance function is convex.

Recently, Borwein and Preiss [3] have established a significant extension of Eke-
land's Variational Principle. An important application of their result is as follows.
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PROPOSITION 2. In a Ba.na.ch space with Ga.tea.ux (Frechet) differentiable norm,
every proper lower semi-continuous real function g on an open domain is Gateaux
(Frechet) subdifferentiable on a dense subset of its domain.

By Gateaux (Frechet) subdifferentiability at x we mean that given e > 0 and
||i/|| = 1 there exists a continuous linear functional / on X and a 8(e, y) > 0, (6(e) > 0)
such that

c

The Borwein-Preiss Theorem has the following implication.

THEOREM 2. In a Banach space X with uniformly Gateaux (and Frechet) dif-
ferentiable norm, the distance function d generated by a non-empty closed set K is
Gateaux differentiable on a set D dense in X \ K{ with \\d'(x)\\ = 1 for all x G D).

PROOF: Since X has uniformly Gateaux differentiable norm we have from Zajicek
[12, p.300] that for each x £ K \ K, d'+(x){y) exists for all y £ X. But by Proposition
2, d is Gateaux subdifferentiable on a set D dense in X \K. So for each x 6 D there
exists a continuous linear functional / on X such that

d'+(x)(y) > f{y) for all y G X.

But since d'+(x)(y) is concave in y, [12, p.300] so d is Gateaux differentiable in D.
When the norm is also Frechet differentiable then by Proposition 2 there exists a set D
dense in X \ K where d is Frechet subdifferentiable. Then using an argument similar
to [1, Lemma 15] we have that |K(a:)|| = 1 for all x e D. R

So we deduce from Theorem 2 that in a Banach space with uniformly Gateaux
differentiable norm the generalised subdifferential of a distance function always has
such a characterisation as that given in Corollary 2.

We should point out that the differentiability hypothesis of our theorem is close to
the one Vlasov used to deduce the convexity of the set in a Banach space with rotund
dual. His result can be stated as follows.

PROPOSITION 3. In a Banach space X with rotund dual X" a non-empty closed
set K is convex if its distance function d satisfies

Now although Theorem 1 applies in a normed linear space which is not necessarily
complete, when the normed linear space is complete then a distance function satisfying
the hypothesis of Theorem 1 is in fact convex.

https://doi.org/10.1017/S0004972700027982 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027982


[11] A distance function property 69

THEOREM 3. In a BanacJi space X with rotund dual X* , a non-empty closed set
K with distance function d is convex if there exists a set P+(K) dense in X \K with

the property that for each x £ P+(K) there exists an ~x £ l , U* = 1 such that

lun+ -± ^ = 1

and this limit is approached uniformly for all x £ P+(K).

PROOF: It is clear that points in P+(K) satisfy Vlasov's differentiability condition.
For x' € (X \ K) \ P+(K) there exists a sequence { i n } in P+(A') converging to x'.

Then given e > 0 there exists a 8(e) > 0 such that for xng = xn + 5 ~x n ,

d(xno) - d(x') > d(xn) + (1 - e) \\xno - xn|| - d(x')

>(l-e)\\xno-x'\\-(2-e)\\xn-x'\\.

So
d(xng)~d(x') ^ (2-e)\\xn-x'\\

ii .it ^ J- ^ c I I - . -./N
° ~ I F " — x II

and therefore,
,. d(xno)-d(x')
l i m SUp —-::— -r = 1

IK-* ' lh° l l^o-^ l l
and we conclude that K is convex by Proposition 3. |

The differentiability property used in Lemma 1 and Theorem 1 for a distance

function at a point x £ X \ K does not necessarily imply that x has a closest point

in K even if X is reflexive. This is shown by Edelstein's example [6, p.6] of a closed

set K in an equivalent renorming of I2 © R and an open set U in (I2 © R) \ K where

no point of U has a closest point in K. Now Fitzpatrick [7, p.309] has shown that

the distance function d in Edelstein's example is Frechet differentiable in U. But then

||d'(x)|| = 1 for all x G U, [7, p.298]. However, since 12 (B R is reflexive, for each x € U

there exists an H?, \\l? = 1 such that d'(x)i ~x j = 1.

The results of this paper are contributory evidence that it is differentiability prop-
erties of the distance function rather than proximinal properties of the set which are
important in further development of the two problem areas we indicated in our intro-
duction.
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