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Abstract

The minimization of signal distortion was one approach applied successfully in the
theory of optimum signal detection for arrays [3]. The processors considered
operated on the input as received.

In some applications it is desirable to clip the received signal before processing and
the problem of optimum processing of such clipped signals then arises. Several
approaches to this problem are being studied, but the present paper is concerned with
that based on minimum signal distortion.

1. Introduction

Criteria for the optimization of acoustic signal detection were discussed in detail by
Edelblute, Fisk and Kinnison [3] with relation to an array processor in which the
input from each of K receivers in an array was linearly weighted before they were
further processed. These authors showed that three approaches to the problem of
optimum weightings gave precisely the same results at a single frequency. The three
approaches studied by them were

(i) the maximization of array gain,
(ii) the minimization of signal distortion

and
(iii) the Neyman-Pearson likelihood ratio.

This work combined the results of several earlier papers, including those by Bryn
[1], Faran and Hills [6] and Mermoz [9].

For several years there has been considerable interest in signal processors which
operate on clipped inputs, the input I,{t) from each receiver being first transformed
to sgn [7,0)] before any further processing is carried out. Such a processor has been
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described and its performance discussed by several authors (see, for example,
[2,4, 5, 7, 11, 12]). However, there appears to be little or no published work on the
problem of optimum weighting of clipped inputs. Clearly appropriate processing of
the clipped signals should give improved performance over the simple sum and
square processing discussed in [7, 11, 12].

A recent paper by de Mare [8] describes the application of Wiener theory [13] to
the reconstruction of a stationary Gaussian process from its sign changes. The
success of this work suggests that the second approach of Edelblute et al. [3], namely
the minimization of signal distortion, may prove useful in developing optimum
processing methods for cupped signals. This suggestion is explored further in the
sequel. However, it is most unlikely that the three different approaches used in [3]
will yield identical results when applied to clipped data and other approaches to the
problem including the remaining two from [3] are being explored.

The problem discussed in this paper is displayed in Figure 1. The inputs to each
receiver, Rh consist of a signal S, plus noise N(. These inputs, which are assumed to be

( t ) -
N|(t)

S 2 ( t ) -
N 2 ( t ) -»»

1,(1) J
J

sgn[l,(t)]=A,(t)

sqn[l2(t)]=A2(t)

W,

W2

S j ( t ) —
Ii (t) J sqn[lj(t)]'Aj(t)

W:

In(t) J sgn[ln(t)]=An(t)|

Fig. I. A weighted clipped signal processor.

realizations of stationary normal random processes, are first clipped and then
linearly filtered using weighting functions Wt = W^u). It is proposed to use the
criterion of minimum signal distortion in order to develop optimum weighting
functions.

https://doi.org/10.1017/S0334270000002253 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002253


[3] Optimum processing of clipped signals 177

2. Notation and assumptions

Throughout this paper the following notation and assumptions will apply; further
assumptions may be introduced as they arise in particular cases.

2.1. Input signal and noise

The input signal at the ith receiver, i — l,2,...,n, is denoted by S,{t), which is a
realization of a normal, stationary, ergodic, random process having zero mean and
variance <s1

i. The signal to be detected will be represented by S0{t); it may equal one
of the S,{t).

The noise at the ith receiver is denoted by Nfr) which is also a realization of a
normal, stationary, ergodic, random process having zero mean and variance c2f-

2.2 Covariance and correlation functions

The symbol R with appropriate subscripts and superscripts is used to represent
covariance functions; similarly, p will represent a correlation function. Thus

and

2.3. Fourier transforms

Script letters are used to denote spectral density functions, cross spectral densities
and Fourier transforms in general. Thus

= f "
J-c

Rl{t)e-iB"dt.

2.4. Clipped output and other notation

The clipped output from the ith receiver is represented by At{t) = sgn [/.-(t)]. where
= St{t) + N,{t) is the input to that receiver.

Two additional symbols, a, and ch defined below, will also be used. Since we are
dealing with a detection problem it will be assumed that al

i <g <r2f and, accordingly,
a{ and | ct | are both small. The definitions are

«s
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and

c,= ( |

where

J-<

3. The Wiener approach

The second approach to their problem was also referred to by Edelblute et al. [3]
as the Wiener approach. In his paper [8], de Mare investigated the problem of
reconstructing a stationary normal process from its sign changes. He considered a
process such as S(t) above, with unit variance, and constructed a linear filter W(u)
such that

E\ S(t) - T sgn {S(t - u)} W(u) duf

is a minimum. This is a classical Wiener problem involving a non causal filter. The
examples given in [8] appear most encouraging, certainly sufficiently so to suggest
a similar approach to the present problem. Accordingly, one seeks weighting
functions Wlu) which minimize the quantity

) - £ f° At{t - u) Wt{u) duf.

It is well known [13] that the solution to this problem is contained in the n equations

El{So(t)-So(t)}-{A,{t-u)U=0, i=l , . . . ,n, (1)

where S0(t) is estimated by
n foo

S0(t)= I Alt-u)Wlu)du. (2)
i=l J-co

Each of these n equations can be written in the form

£ I R*(u-v)W{v)dv = Rs
0?(-u), (3)

j = l J - oo
where

= -arcsinpf/T)f,

This well-known result may be obtained as a simple application of Plackett [10].
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with

and

V£[{So(t)} |S,<t + T) + Ni(t +

This last result (4) can be derived by noting that

= ElS0(t)\l,{t + x) > 0] [P{/,(t+t) > 0}]

0] [P{/,<t+T) < 0}]

0]-£[So(t)|/,-(t + T) < 0]},

which can be shown to equal

Too To

! dy
Jo J -

2 dy\ xf(x,y)dx,
Jo J-oo

where f(x,y) is the joint probability density function of S0(t) and I,{t+T).
Substituting for the bivariate normal density function f{x, y) and performing the
integrations gives

Taking Fourier transforms of both sides of (3), the n equations become

£ Stftfo) IKffo) = ®lf{co), i = l,..., n,

where * denotes complex conjugate, or in matrix form

Rw = r*. (5)

Assuming R"1 exists, the required vector w is given by

w = R"1r*. (6)

Theoretically, no further problems exist but, in general, the calculation of the
several covariance functions and their transforms will be possible only by using
numerical methods. However, various simplifications can be made in order to
obtain some appreciation of this Wiener approach. Such simplifications are made in
this section in order to carry the analysis further forward and also in the following
section where some examples are given.
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We now make the following additional assumptions:

(a) £[S,<r)N/t+T)]=O,
(b) S0(t) and S,{t) differ only by a time shift; thus

E[S0(t)S,<t+T)] =

and

The covariance functions then become

and

# T ) = -arc sin [a,- a;pg(t - 1 } + tj],

the vector r* of equation (6) has components

5^V

the matrix R has diagonal terms

= I
J

arcsin[a?pg(T)+(l-flf)pf(T)]g-todt, (8)
- O O 7 1

and the off-diagonal terms of R are of the form

- arc sin [a, at pg(r - ti +1,)] e ~im dx. (9)

Using the assumption in Section 2.4 that the a, are small, we have, approximately,

and

Equation (6) may then be written

c, (10)

where H denotes transpose conjugate. The matrix Q is diagonal with components
difi((o) — |c f |

2 s: @u{(o), and the vector c has components cf.
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Equation (10) is similar in form to equation (53) of [3] and accordingly the
expression for w may be written

w = kQ~lc, (11)

where fc is a scalar which will in general depend on a>. The differences between the
components of w will arise from three factors:

(a) different noise variances at the input to each channel,
(b) different noise correlation functions,

and
(c) phase differences between the input signals.

Factors (a) and (c) occur only in c while the factor (b) occurs only in Q~'. Since

it is clear that the weighting function applied to each channel should include a term

*"-•/*?. (12)

This is the only channel-dependent factor if pf(T) is independent of i; otherwise, the
matrix Q must be inverted to determine the effects of the different correlation
functions.

It is interesting to note that the denominator of (12) involves only the standard
deviation of the noise in the ith channel; a similar derivation for unclipped data would
give a denominator involving the variance of the noise [3].

4. Some examples with one or two receivers

In this section four examples will be discussed involving one or two receivers. In
comparing the performance of a clipped processor using weighting functions
developed by the approach in this paper with that of a clipped processor using no
weighting functions, the criterion used was the signal to noise ratio, SNR, defined as

) Hsignalabsenl
t\i-\ '
J Jsignalabsenl

where §0(t) is defined in equation (2), with W£u) = 8(u) for the case of no weighting.
Throughout this section it will be assumed that the signal and noise are

uncorrelated and the noise processes from different channels are also uncorrelated.
Although it is clear that in the absence of weighting a clipped processor with one

receiver would be useless as a signal detector, this is not generally the case when
Wiener weighting is incorporated. To illustrate this fact two examples are given in
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Table 1. In the absence of weighting, £[S0(t)
2] = 1 whether signal is present or

absent; hence SNR = 0. When Wiener weighting is used, the SNR is positive in both
examples, although this effect is much more marked in the first than in the second.

TABLE 1

Signal to noise ratios with Wiener weighting and no weighting

No. of
receivers

1
1
2

2

n2

1

0.1
0.1
a\ =

<•! =
a\ =

0.1
0.05
a\ =0.1

Correlation
of signal

exp(-|r|)
exp(-2|T|)
exp(-|t|)

exp(-|r|)

Correlation
of noise(s)

exp(-2|r|)
exp(-|T|)

PJ'(T) = exp ( - 2111)
p*(T) = exp( — 3 | T | )

pf(t) = P?(T) = CXp(-|

SNR
no

weighting

0
0
0.05

11) 0.063

SNR
Wiener

weighting

0.050
0.002
0.138

0.087

The table also contains the results for two examples involving two receivers; in
both examples there are significant gains in signal to noise ratio when Wiener
weighting is used.

The last example in the table corresponds to one of the earliest studies of
processors with clipped inputs carried out by Faran and Hills [5]. The signal and
both noise processes are assumed to have the same correlation function, in this case
exp (— | T |); it is also assumed that ax = a2 = a. After taking Fourier transforms of
the Wiener equations, (3), the expression for each weighting function becomes

Some further manipulation yields ^^(co) as the real part of the expression

1 J J L _ ^ E r[(to+i)/2]l
n\2i(o to3" r[(ia> + 2)/2]JI

while

and, for a2 small,

2 ( 9 + a > 2 ) 2 x 4 ( 2 5 W ) T

Thus the values of i^^co), the transfer function corresponding to W^u), are easily
calculated.
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Using these weighting functions, the SNR value was found to be 0.087 for the case
a2 =0.1, a significant increase over the value 2a2/n = 0.064 for SNR when no
weighting is used. This result contrasts with the unclipped case, using the parameters
of this example, where no increase in SNR can be obtained using Wiener or similar
weighting [11].

5. Discussion

The work in this paper shows that, using a signal to noise ratio as criterion of
performance, the Wiener approach to optimum weightings of the output of clipped
receivers will produce significant improvements in the performance of a signal
detection system over one in which no weightings are used. There is evidence based
on an approximate analysis that such weightings will incorporate a factor to offset
any time shift between channels and one which is inversely proportional to the
standard deviation of the noise; the corresponding factor for the unclipped case is
inversely proportional to the variance of the noise.
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