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Using an improved numerical code we investigate the creation and evolution of quantum
knots and links as defects of the Gross–Pitaevskii equation. The particular constraints
put on quantum hydrodynamics make this an ideal context for application of geometric
and topological methods to investigate dynamical properties. Evolutionary processes are
classified into three generic scenarios representing (i) direct topological cascade and
collapse, (ii) structural and topological cycles, and (iii) inverse topological cascade of
complex structures. Several examples and test cases are studied; the head-on collision of
quantum vortex rings and the creation of a trefoil knot from initially unlinked, unknotted
loops are realized for the first time. Each type of scenario is studied by carrying out a
detailed evaluation of fundamental geometric and dynamical properties associated with
evolution. Direct topological cascade that governs the decay of complex structures to
small-scale vortex rings is identified by writhe measures, while picks of total curvature are
found to provide a clear signature of reconnection events. We demonstrate that isophase
minimal surfaces spanning knots and links have a privileged role in the decay process by
detecting surface energy relaxation of complex structures. Minimal surfaces are shown to
be critical markers for energy and prove to be appropriate detectors for the evolution of
complex systems.

Key words: topological fluid dynamics, quantum fluids, vortex dynamics

1. Introduction

In this paper, by analysing the creation and evolution of vortex knots and links under the
Gross–Pitaevskii equation (GPE) we show that total curvature and writhing number prove
to be appropriate detectors for reconnection events and production of small-scale vortex
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rings, and we demonstrate that minimal isophase surfaces are privileged markers in the
decay process and surface energy relaxation of complex structures.

Since the first experimental realizations of Bose–Einstein condensates (Andrews et al.
1997; Cornell & Wieman 1998), quantum defects have become objects of intense study
for their fundamental aspects in science and their potential role in future technology.
Laboratory creation of quantum vortices is part of current research (Matthews et al. 1999;
Leanhardt et al. 2002) and theoretical work, based also on the advances of numerical
simulations (Wyatt 2005; Caliari & Zuccher 2021), is pushing the limits to explore new
states of matter where defects may form complex networks of knots and links (Hall
et al. 2016; Kleckner, Kauffman & Irvine 2016; Zuccher & Ricca 2017; Foresti & Ricca
2019). By relying on the progress made in the field, we exploit here the constraints
posed by quantum hydrodynamics to investigate and determine new relationships between
geometric and topological properties associated with creation and evolution of quantum
knots and links and key features of evolutionary processes and energy transfers.

To place all this in context, let us consider a condensate given by a highly diluted gas of
bosons in an unbounded domain at ultra-cold temperature (Pitaevskii & Stringari 2016). In
this situation particles loose their independence and are governed by a single wavefunction
ψ = ψ(x, t), x being vector position and t time. By taking into account only first-order
effects, the system is governed by a mean field equation given by the GPE (Gross 1961;
Pitaevskii 1961) that in non-dimensional form reads as

∂ψ

∂t
= i

2
∇2ψ + i

2

(
1 − |ψ |2

)
ψ. (1.1)

This system admits defects that emerge as nodal lines of the wavefunction. By applying the
Madelung transformation ψ = √

ρ exp(iθ) (θ phase of ψ), the imaginary and real parts of
(1.1) are transformed into a momentum and a continuity equation of a fluid-like medium
of density ρ = |ψ |2 and velocity u = ∇θ ; we take ρ → 1 as |x| → ∞. This allows us to
interpret the evolution of the condensate by a hydrodynamic description, where continuity
is governed by the standard equation of a compressible fluid, and momentum is purely
balanced by density gradients (Barenghi & Parker 2016). The viscous term of ordinary
fluids is thus replaced by the action of a quantum potential that to some extent makes
the dynamics of the system similar to that of an Euler flow. The presence of a quantum
potential not only makes particle trajectories highly correlated, but it also introduces a form
of memory of the initial conditions in the wave function (Wyatt 2005). In many respects,
at least to first approximation, the world of quantum hydrodynamics is much simpler than
that of a classical, viscous fluid. Hence, the presence of quantum defects makes this system
all the more interesting because, contrary to the Euler context, vortex defects are objects
strictly localized that can reconnect and change topology in the absence of dissipation.

Relationships between topological aspects and non-Hermiticity properties of the
governing Hamiltonian (related to local energy loss and gain, twist and writhe production,
and stability analysis) are currently under intense investigation for both theoretical aspects
and practical applications (Dos Santos 2016; Zuccher & Ricca 2018; Foresti & Ricca
2019, 2020; Coulais, Fleury & van Wezel 2021; Wang et al. 2021), and this justifies
the present study. The paper is organized as follows. Key results in topological quantum
hydrodynamics are presented in § 2, where we propose to classify evolutionary processes
under three topologically distinct scenarios, useful for investigation. In § 3 we give some
information on the numerical method and implementation for measuring geometric and
topological quantities. In § 4 we consider several test cases according to the three scenarios
identified in § 2. Results regarding total length, curvature, writhe, twist and kinetic helicity
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are presented and discussed in § 5. In § 6 we recall various energy contributions and
evaluate the relevant terms considering isophase surfaces of least geometric area, proving
that these minimal surfaces have indeed a privileged role in the decay process and surface
energy relaxation of complex structures. Conclusions are drawn in § 7

2. Topological quantum hydrodynamics

We identify a defect line with an oriented space curve C in R3 represented by the vector
position X ; vorticity ω is given by a Dirac delta function δ(X ) that induces the orientation
on C. A nodal line can thus be seen as a locus of intersection of infinitely many phase
surfaces S. Since by definition a Seifert surface of a knot is a (compact, connected) oriented
surface in R3 whose boundary is the given knot (Rolfsen 1990), any surface S of constant
phase (isophase) spanning C is a Seifert surface of C; isophase surfaces of defects are
therefore Seifert surfaces whose orientation is induced by vorticity. An example of such a
surface for the Hopf link is shown in figure 10(a) of § 6.

Quantum defects have quantized circulation given by Γ = 2πn (n ∈ N), where n
denotes topological charge (non-dimensionalized by �/m, where � = h/2π, with h
Planck’s constant and m the particle’s mass). Quantization arises from the line integration
of u = ∇θ over a loop encircling C once and multivaluedness of the phase θ . For simplicity
and without loss of generality, we shall take n = 1. By application of Noether’s theorem,
circulation emerges as the first conserved charge of quantum fluids (Kedia et al. 2018) and
can be regarded as a topological invariant of the system. Together with other conserved
quantities like total mass and energy, a second conserved quantity of topological character
is kinetic helicity; classically this is defined by

H =
∫
Ω

u · ω dV, (2.1)

where ω = ∇ × u and V = V(Ω) represents the volume of the vorticity region Ω . For
quantum systems, we have

H = Γ

∮
C

u · dX = Γ

∮
C

∇θ · dX = 0, (2.2)

because vorticity is singular on C and the domain of vorticity has measure zero (in
distributional sense). This zero helicity result can be obtained also by direct application of
Noether’s theorem (Kedia et al. 2018). When vorticity is localized on N thin filaments of
centreline Ci (i = 1, . . . ,N), helicity admits topological interpretation in terms of linking
numbers; in general, we have (Moffatt 1969; Moffatt & Ricca 1992; Ricca 1998)

H =
∑

i

ΓiSli +
∑
i /= j

ΓiΓjLkij, (2.3)

where Sli is the Călugăreanu self-linking number, a topological invariant of the ith defect,
and Lkij is the Gauss linking number, a topological invariant of the link between defects
i and j, with i /= j (i, j = 1, . . . ,N). It is well known that Sli = Wri + Twi, where Wri
denotes writhing number and Twi total twist (remember that total twist can be further
decomposed into total torsion and intrinsic twist) (Moffatt & Ricca 1992). In the case of
quantum fluids Salman (2017) showed that the topological interpretation of helicity given
by (2.3) holds true also for condensates and can be applied to quantum defects. There
is no difficulty to compute Wri = Wri(Ci) and Lkij = Lk(Ci, Cj) for knots and links using
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analytical definitions, or the algebraic interpretation in terms of apparent crossings (Ricca
& Nipoti 2011). Computation of twist, however, requires the definition of a mathematical
ribbon. A practical way to proceed is to take advantage of the foliation of the ambient space
by the family of isophase surfaces S hinged on Ci. The ribbon Ri can then be defined by
taking the portion of Seifert surface determined by Ci (baseline of Ri) and its push-off
C′

i on S, congruently oriented with Ci and such that Lk(Ci, C′
i) = 0. This gives a Seifert

framing for Ci that is used for computation of Twi = Twi(Ri) (Zuccher & Ricca 2015).
Note that Seifert framing is independent of the particular Seifert surface chosen for Ci, and
computation of Twi is independent of the choice of S.

If we denote by L the link given by a disjoint union (denoted by �) of Ci, we have the
following theorem (Sumners, Cruz-White & Ricca 2021).

THEOREM 2.1 (Zero helicity). If L = �iCi has Seifert framing then H = H(Ci) = 0 for
all i = 1, . . . ,N, and H(L) = ∑

i H(Ci) = 0.

This result is confirmed by several numerical experiments (see, for example, Zuccher &
Ricca 2017, hereafter referred to as ZR17). The zero helicity theorem provides topological
conditions for the existence of potentially stable states. Since GPE defects have Seifert
framing, total helicity is zero, so that total linking number must be zero; this means that
when several defects are present, the sum of mutual linking and self-linking of individual
components must be zero, putting consequentially constraints on the writhe and twist of
each individual defect. An example of this has been tested by Zuccher & Ricca (2018),
who considered the superposition of uniform twist Tw = +1 on an isolated, vortex ring
with initially Wr1 = Tw1 = 0 (Sl1 = 0 and H = 0). Since the planar ring acquires new
twist (�Tw1 = +1), then the jump �Sl1 = +1 triggers an instantaneous production of a
secondary defect, linked with the first so that Sl1 = +1, Sl2 = +1 and Lk12 = Lk21 = −1,
keeping H = 0. A hydrodynamic interpretation and a topological proof of this is given by
Foresti & Ricca (2019).

As mentioned previously, evolution of quantum defects is in many ways similar to
that of Euler flows, because long-distance interaction is governed by the Biot–Savart
law (Bustamante & Nazarenko 2015). Topology however is not conserved under GPE.
Upon short-distance effects and interaction quantum defects can undergo topological
changes by reconnection, similarly to what happens to classical vortex filaments in viscous
flows. Several numerical experiments done on the evolution of knotted and linked defects
(Proment, Onorato & Barenghi 2012; Clark di Leoni, Mininni & Brachet 2016; Kleckner
et al. 2016; Zuccher & Ricca 2017; Bai, Yang & Liu 2020) show that often defects evolve
and decay following what we may call a direct topological cascade through a stepwise
unlinking sequence of topological simplifications. The topological decay has generic
features dictated by reconnections that gradually reduce complex knots/links to small-scale
unknotted, unlinked rings. Assuming that at any stage only a single reconnection event
takes place, the whole process (exemplified by figure 1a–f ) can be described by the
following idealized sequence:

. . . → T (2, 6) → T (2, 5) → . . . → T (2, 1) → T (2, 0). (2.4)

Here T ( p, q) denotes a generic knot/link type represented by a closed braid standardly
embedded on a mathematical torus T (Oberti & Ricca 2016), where p = 2 denotes the
number of wraps that the braid makes in the longitudinal (toroidal) direction, and q
(integer) the number of wraps in the meridian (poloidal) direction. In this representation
topological complexity is simply given by the crossing number q ≥ 2N, and topological
change by the reduction of q due to a single reconnection event (supposedly taking place
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T (2,5) T (2,4) T (2,3)

T (2,3)

Time

T (2,2) T (2,1) T (2,0)

T (2,0)

(a) (b)

(g) (h) (i)

(c) (d) (e) ( f )

Figure 1. (a–f ) Time sequence of topological cascade of idealized torus knots and links T ( p, q): change of
topology is due to a single reconnection event (not shown) supposedly occurring at a specific site exemplified
by the encircled region. (g–i) Snapshots of numerical evolution of a trefoil knot defect governed by the
Gross–Piteavskii equation: the knot T (2, 3) undergoes three simultaneous reconnections that create a system
of two unlinked, unknotted loops T (2, 0). Bottom diagrams adapted from Proment et al. (2012). Red arrows
on strands denote vorticity direction.

in the encircled region of figure 1a–f ). The topological sequence (2.4) was observed in
the unlinking pattern of DNA catenanes subject to site-specific enzyme recombinations
(Shimokawa et al. 2013; Stolz et al. 2017), while the last stages of the sequence were
observed experimentally in the evolution of a vortex trefoil knot in water (Kleckner &
Irvine 2013) and in GPE simulations (see, for instance, Kleckner et al. (2016) and ZR17).

A more dramatic reduction of topological complexity occurs when multiple
reconnections take place concurrently; if n ≤ q simultaneous reconnections occur, we have
T ( p, q) → T ( p, q − n) with a drastic reduction of topology. Such a topological collapse
can be achieved when the geometry of the interacting strands is highly symmetric, a rather
improbable situation in nature, but easily achieved in numerical experiments. This can
be obtained, for example, by superposing n helical wave perturbations on a vortex ring
producing the decay of torus knots T ( p, q) directly to a pair of convoluted rings T (2, 0)
(see the example in figure 1g–i) (Proment et al. 2012; Bai et al. 2020). This topological
collapse has been observed also in direct numerical simulations of a reconnecting trefoil
knot under Navier–Stokes equations (Yao, Yang & Hussain 2021), where a much richer
scenario due to vorticity diffusion shows the formation of bridges and threads of vorticity
in the immediate aftermath of the reconnection stage.

These types of topological scenarios are not the only ones possible. Recent numerical
simulations of superfluid turbulence have shown that rather complex knots may not only
form during evolution (Mesgarnezhad et al. 2018), but they can interact and reconnect
to create, temporarily, even more complex knots. Localized networks of vortex lines
may undergo simultaneous reconnections to produce entanglements of much greater
topological complexity. This inverse topological cascade, where topological complexity
may momentarily increase rather than simplify, has been observed in numerical
simulations of superfluid tangles, where ‘monster knots’ of incredibly high complexity
can arise (Cooper et al. 2019).

In this case topological analysis must be based on descriptors more sophisticated
than crossing numbers, such as Alexander, Jones and HOMFLYPT knot polynomials
(Kauffman 2001). ‘Monster knots’ were indeed detected by Cooper et al. (2019) using
the Alexander polynomial. Liu & Ricca (2012, 2015) derived Jones and HOMFLYPT
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polynomials directly from helicity, proving that these are new topological invariants of
ideal fluid mechanics that can be used to quantify topological changes and complexity.
Direct application of these polynomials to the sequence (2.4), for example, showed that
(2.4) can be put in one-to-one relation with a monotonically decreasing sequence of
numerical values and energy contents (Liu & Ricca 2016).

Finally, let us remark that since reconnection of quantum knots preserve orientation,
Seifert framing is also conserved. This means that according to the sequence (2.4) above,
we can state the following theorem (Sumners et al. 2021).

THEOREM 2.2 (Zero helicity under topological cascade). Consider the sequence (2.4):
H[T (2, 0)] = 0 if and only if H[T (2, q)] = 0, and any T (2, q) = 0 has Seifert framing.

Taking any two-component link of (2.4), let L = C1 � C2 denote the disjoint union
of Seifert framed defects C1 and C2, whose reference ribbons are given by R1 and R2,
respectively; let C1# C2 be their reconnected sum, with ribbon R1#R2; then we have the
following theorem.

THEOREM 2.3 (Total twist conservation). The total twist of two Seifert framed defects
C1 and C2 is conserved under anti-parallel reconnection, that is, Tw(R1)+ Tw(R2) =
Tw(R1#R2).

These theorems will be useful for the analysis of the results obtained by the test cases
considered in § 4

3. Numerical methods

Before proceeding to consider various evolutionary scenarios we give some basic
information on the numerical scheme. The dimensionless form of (1.1) (taking �/m = 1)
has coefficients of the Laplacian and nonlinear term equal to 1/2; this implies that
Γ = 2π, the healing length ξ = 1 and the Mach number (cf. equation (21) of Nore,
Abid & Brachet 1997) M = √

2; these values have been adopted in all simulations, and
compressibility has been therefore taken into account.

Numerical solution to the three-dimensional GPE (1.1) is computed by employing a new
technique recently proposed by Caliari & Zuccher (2021). The code exploits a mapping
that rescales appropriately space variables, so that problems with boundary conditions
are automatically resolved. We write x = (x1, x2, x3) in terms of the new space variable
y = ( y1, y2, y3); let

yk(xk) = 2
π

arctan
(

xk

αk

)
(αk > 0; k = 1, 2, 3), (3.1)

so that in each direction the unbounded space is mapped to the open interval
(−∞,+∞) �→ (−1, 1). Using (3.1) we have ψ(x, t) �→ η(y, t), thus reducing the
numerical search for solutions to a free-boundary approach. The governing equation (1.1)
becomes

ηt = i
2

[ 3∑
k=1

(
y′2

k
∂2η

∂y2
k

+ y′′
k
∂η

∂yi

)
+ 1 − |η|2η

]
, (3.2)

where prime denotes space derivative. Space discretization is uniquely determined once
the number of points nk and scale factor αk are prescribed. Each interval (−1, 1)k is
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discretized by nk points ym
k = −1 + 2m/(nk + 1), with m = 1, 2, . . . , nk (k = 1, 2, 3). The

Strang splitting method is chosen for time discretization; first and second space derivative
operators are discretized by either fourth-order central finite differences or one-sided finite
differences according to the number of neighbouring points available. The linear part
of the equation is solved by a new and fast approximation of the action of the matrix
exponential at machine precision accuracy (see Caliari & Zuccher 2021, for details), while
the nonlinear part is solved exactly. Compared with the Fourier pseudo-spectral method
used previously (see Zuccher et al. 2012), the present method not only outperforms the
previous one in terms of CPU and memory usage, but it resolves the limits imposed by
boundary conditions on a truncated domain, providing a much more reliable time evolution
of integral quantities like mass, energy and momentum.

3.1. Initial conditions: numerical details
Numerically speaking the straight vortex line represents the only true, time-independent,
exact solution to the GPE that can be used to check the numerical reliability of any
GPE code (see Caliari & Zuccher 2018, and comments therein). All other types of vortex
configuration, including vortex rings, knots and links require ad hoc techniques to generate
initial conditions (see, for example, Proment et al. 2012; Clark di Leoni et al. 2016; Bai
et al. 2020). Another common approach is to employ the Biot–Savart integral to compute
the induced velocity field u = ∇θ , extracting the phase θ(x) by direct integration (see, for
example, Scheeler et al. 2014). This method, however, gives rise to numerical problems
when integration is very close to the nodal line where phase is ill-defined. To overcome
this difficulty, we adopt a different approach: we set θ = 0 at a point (in the computational
domain) sufficiently distant from a defect line and integrate along paths that start from
that point and go either towards infinity or terminate on the defect line. The difficulty
associated with an undefined phase is thus resolved. Once the initial phase is computed,
we follow the standard technique to prescribe density evaluated at each grid point by
the minimum distance from the closest nodal line according to the fourth-order Padé
approximation of the straight vortex solution.

As an initial condition, we use either the self-preserving quantum ring solution (Zuccher
& Caliari 2021), or some prescribed parametric equations of nodal lines according to the
technique discussed above. Several initial geometries and topologies will be considered
in § 4: the Hopf link (referred to as HOPF), the head-on collision of two perturbed rings
(HOC), several torus knots (in particular the T (2, 9), referred to as T29), the collision
of three rings (3R), the interaction of two elliptical rings (2E) and the interaction of two
perturbed rings (2P). Perturbation of a ring is given by

X :

⎧⎪⎨
⎪⎩

X(t) = [R + Ai cos(mt)] cos t,
Y(t) = [R + Ai cos(mt)] sin t,

Z(t) = Ao cos
[
m
(

t − π

6

)]
,

(3.3)

where R is the radius of the unperturbed ring, Ai the perturbation of the components in
the xy-plane, Ao the perturbation of the out-of-plane component and m the wavenumber.
Torus knots T ( p, q) are given by

X :

⎧⎪⎨
⎪⎩

X(t) = [
R + r cos(qt)

]
cos( pt),

Y(t) = [
R + r cos(qt)

]
sin( pt),

Z(t) = r sin(qt),
(3.4)
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Case Nx × Ny × Nz α1, α2, α3 Physical domain �t Initial condition

HOPF 171 × 171 × 171 15, 15, 15 [−821, 821]3 0.02 ZR
HOC 187 × 187 × 187 15, 15, 15 [−898, 898]3 0.02 BS
T29 171 × 171 × 171 15, 15, 15 [−821, 821]3 0.02 BS
3R 171 × 171 × 171 15, 15, 15 [−821, 821]3 0.02 SP
2E 171 × 171 × 171 15, 15, 15 [−821, 821]3 0.02 BS
2P 171 × 171 × 171 15, 15, 15 [−821, 821]3 0.02 BS

Table 1. Case considered, degrees of freedom Nx × Ny × Nz, αk-values (k = 1, 2, 3), physical domain, time
step �t and type of initial condition: ZR, rings generated as in ZR17; BS, Biot–Savart generation; SP,
self-preserving rings generated by the product of initial conditions ψ0ν (ν = 1, 2, 3) for each of the three
self-preserving rings (according to Zuccher & Caliari 2021).

where R and r are respectively the large and small radius of the torus T, p and q are the
number of wraps along the longitudinal and meridian direction of T.

Details of the initial conditions used in the simulations are summarized here below.

Case H3L: the case discussed in ZR17 is repeated with the new code; 2 rings of radius
R = 8 are placed on mutually orthogonal planes, one centred at (0.5, 4.5, 0)
moving in the positive direction of x3 (≡ z), the other centred at (0,−4, 0)
moving in the positive direction of x1 (≡ x).

Case HOC: two rings of radius R = 17.4 perturbed according to (3.3), with Ai = 0.8,
Ao = 0.22 and wavenumber m = 11, are placed in two parallel planes x = ±4
mirror imaging one another.

Case T29: knot T (2, 9) given by (3.4), with R = 10, r = 3.3, p = 2 and q = 9, placed at
the origin.

Case 3R: three self-preserving rings with radius R = 8; first ring centred at
(−12,−4, 0)moving in the positive direction of x1 (≡ x), second ring centred
at (0,−12,−6)moving in the positive direction of x2 (≡ y), third ring centred
at (0.5, 4.5,−12) moving in the positive direction of x3 (≡ z).

Case 2E: two ellipses given in parametric form by (a cos t, b sin t); first ellipse of
semi-axes a = 5 and b = 12 centred at the origin; second ellipse of semi-axes
a = 4 and b = 12 centred at (0, 0,−3) and rotated by π/4 with respect to the
first.

Case 2P: two rings of radius R = 10, perturbed according to (3.3) with Ai = 2, Ao = 1
and wavenumber m = 3; first ring centred at the origin, second ring centred
at (1, 0,−4) and rotated by π/3 with respect to the first.

The numerical details of the simulations are shown in table 1.

3.2. Evaluation of geometric and topological properties
Nodal lines are identified following the same procedure used in previous works (see, for
example, ZR17). We first spline interpolate ψ on a very fine grid and look for points where
ρ = |ψ |2 → 0. Scattered points are then organized to form closed, smooth loops oriented
according to vorticity direction. Total length L (non-dimensionalized by the healing length
ξ ) and total curvature K (pure number) are defined considering the number i = 1, . . . ,N
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of nodal lines present, according to

L =
N∑

i=1

∮
Ci

ds, K = 1
2π

[ N∑
i=1

∮
Ci

c(s) ds

]
, (3.5a,b)

where c(s) is local curvature (function of arc length s of each nodal line Ci); this requires
a continuous second derivative of the vector position X = X (s). Other quantities such as
total writhing number Wri = Wr(Ci) and linking number Lkij = Lk(Ci, Cj) are computed
by their integral definition (Moffatt & Ricca 1992) using information on the nodal line
identification. We have

Wri = 1
4π

∮
Ci

∮
Ci

(X i − X ∗
i ) · dX i × dX ∗

i

|X i − X ∗
i |3

, (3.6)

where X i and X ∗
i denote two distinct points on Ci; remember that writhe is a global

geometric property of a space curve that takes real values, and it is zero for plane curves.
We also have

Lkij = 1
4π

∮
Ci

∮
Cj

(X i − X j) · dX i × dX j

|X i − X j|3 , (3.7)

where X i ∈ Ci and X j ∈ Cj; Lkij takes only integer values. As for the computation of the
total twist number Twi = Tw(Ri), we follow the procedure introduced by Zuccher & Ricca
(2015) through the identification of the ribbon Ri by the unit vector Û = Û(s) on each Ci;
we have

Twi = 1
2π

∮
Ci

(
Û × dÛ

ds

)
· T̂ ds. (3.8)

This integral, which takes real values, is also a global geometric property of Ci through its
ribbon. Since the ambient space is foliated by infinitely many isophase surfaces hinged on
Ci, twist computation is independent from the choice of a specific isophase surface.

3.3. Evaluation of isophase surfaces and energy integrals
Computation of isophase surface areas is carried out by one of the many numerical codes
available in the literature using standard triangulation techniques. For a given value of the
phase θ , the area A = A(Sθ ) of the isophase surface is given by

A(Sθ ) =
∑
ν

Aν =
∑
ν

1
2

‖V ν1 × V ν2‖ , (3.9)

where V ν1 and V ν2 denote the two edges (in vector form) of the νth triangle. At a
fixed simulation time A(Sθ ) reaches a global minimum Amin = A(Smin) for θ = θmin; by
repeating this search at each simulation time we get Amin = Amin(t) (see § 6 below).

Another quantity associated with the evolution of S is the energy E(S) computed as a
surface integral of a certain energy density e (energy per unit volume). From a numerical
viewpoint we interpolate the energy density at the centre of gravity Gν of each face Fν
of S to get eν . Denoting by E(S) the integral of e over S (thus getting an energy per unit
length) and by Ē(S) the average value, we have

E(S) =
∫

S
e dS =

∑
ν

eνAν , Ē(S) = E(S)
A(S)

=
∑
ν eνAν∑
ν Aν

. (3.10a,b)
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Figure 2. The HOPF case; snapshots of topological cascade of Hopf link to a pair of unlinked, unknotted
loops: link T (2, 2) → 1 loop → 2 loops T (2, 0); single reconnection events at time t = 38.00 and t = 42.40
(reconnection stages not shown).

4. Creation and evolution of quantum knots and links

The evolutionary scenarios identified in § 2 are here investigated by the test cases
mentioned in the previous section.

4.1. Direct topological cascade and collapse
A simple example of direct topological cascade is given by the evolution of the Hopf
link T (2, 2) (HOPF case) shown in figure 2. Results obtained by the new code confirm
what was found by previous simulations (Clark di Leoni et al. 2016; Kleckner et al. 2016;
Salman 2017; Zuccher & Ricca 2017; Villois, Proment & Krstulovich 2020). The link
undergoes a first reconnection to form a single unlinked, unknotted loop T (2, 1) that
reconnects again to form two separate small loops T (2, 0). The pattern found for the
decay process of a trefoil knot follows the sequence (2.4). Interaction and topological
decay of more complex systems given by linked, vortex tangles were observed by Villois,
Proment & Krstulovic (2016) with the production of separated, unlinked loops. Another
interesting example is provided by the topological collapse given by the head-on collision
of two vortex rings (HOC case). This is the quantum version of the famous experiment
of two vortex rings in water by Lim & Nickels (1992). According to the initial conditions
described in § 3.1, the two perturbed rings are seen to approach each other and stretch
(figure 3). When they are in close proximity, the mirror symmetric perturbations give rise
to 11 simultaneous reconnection events, equi-spaced all along the reconnection circular
region centred on the mutual axis of propagation; as a result, 11 small vortex rings are
created all around the collisional axis, propagating radially away from the reconnection
region (see Movie 1 in supplementary material available at https://doi.org/10.1017/jfm.
2022.362). Since in quantum hydrodynamics circulation is strictly constant, we cannot
have diffusive fragmentation of nodal lines; hence, threads and bridges of weaker vorticity
visible in viscous flows (as shown by Cheng, Lou & Lim 2018) cannot be reproduced here,
but the key features of the process are nevertheless well captured by the quantum code.

Other examples of topological collapse are given by considering the evolution of
perfectly symmetric torus knots. To show this, let us consider the evolution of T (2, 9)
(shown in figure 4 and referred to as T29). By symmetry the nine helical coils of the
knot produce nine simultaneous reconnections. As a result, the knot type T (2, 9) jumps
directly to T (2, 0) creating two separate loops: the leading ring (dark blue in figure 4) and
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Figure 3. The HOC case; snapshots of topological collapse due to the head-on collision of two vortex rings:
2 large rings → 11 small rings; 11 simultaneous reconnection events at time t = 46.80 (reconnection stage not
shown).
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Figure 4. Case T29; snapshots of topological collapse of torus knot: T (2, 9) → two loops → two loops and
nine small rings; nine simultaneous reconnection events at time t = 16.00 followed by other nine simultaneous
reconnections at t = 32.40 (reconnection stages not shown).

a convoluted trailing loop behind. The coiled regions of the trailing loop trigger then other
nine simultaneous reconnections creating nine small vortex rings. In this case the cascade
process is realized by the topological collapse of a large, single structure to produce first
a medium sized, and then small-scale structures (see Movie 2 available as supplementary
material).

4.2. Structural and topological cycles
Cases of structural and topological cycles may occur frequently. A structural cyclic process
is represented by the creation of a number of disconnected components, whose total
length may temporarily increase before further decay. One simple example (case 3R) is
represented by the ‘3-2-1-2-3’ cycle of figure 5, where collision of three rings propagating
one against the others in mutually orthogonal planes brings first the creation of two
loops, then one long loop before decaying to form two loops, and then three loops of
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Figure 5. Case 3R; snapshots of structural cycle of three mutually perpendicular rings: three loops → two
loops → one loop → two loops → three loops; single reconnection events at time t = 9.20, t = 20.40, t =
84.00, t = 116.40 (reconnection stages not shown).
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Figure 6. Case 2E; creation of Hopf link from two planar ellipses: two unlinked loops → Hopf link T (2, 2)→
two unlinked loops; single reconnection event at time t = 11.00 followed by two simultaneous reconnections
at t = 14.40 (reconnection stages not shown).

shorter length. The whole process is governed by a sequence of single reconnection
events. Similarly for the topological cycle shown in figure 6 (case 2E) represented by
the sequence T (2, 0) → T (2, 1) → T (2, 0), where the temporary increase of topology
due to the creation of a Hopf link gives way to the production of two unlinked, unknotted
loops.
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Figure 7. Case 2P; creation of trefoil knot from two unlinked, perturbed rings: two loops T (2, 0) → one
loop T (2, 1) → Hopf link T (2, 2) → trefoil knot T (2, 3); single reconnection events at t = 7.60, t = 11.20,
t = 16.80 (reconnection stages not shown).

4.3. Inverse topological cascade: creation of trefoil knot
As mentioned in § 2, inverse topological cascades characterized by the evolution of
topologically simple structures to produce more complex ones are also possible. In figure 7
we show an example of such a phenomenon (case 2P), where two initially disjoint,
unknotted and unlinked perturbed rings interact to create first a single convoluted loop,
then a Hopf link, and finally a trefoil knot. Note that this remarkable sequence reproduces
in reverse order the sequence (2.4) above (see Movie 3 available as supplementary
material). This production of the trefoil knot by GPE shows how topologically non-trivial
knots can indeed be created from topologically unlinked, unknotted loops, similarly to
what was done by Villois et al. (2016). The present experiment, first conjectured a long
time ago by one of the current authors (see Ricca 2009, figure 1 and discussion of
the proposed experiment therein), shows how crucial the role of the initial conditions
is to determine topologically complex configurations. Contrary to the experiment done
by Kleckner & Irvine (2013), where topology of the vorticity field is transferred from
the initial, existing topology of the trefoil shaped airfoil to the pressure field, here new
topology is created from truly trivial initial conditions.

5. Length rate of change, curvature and writhe as dynamical markers

5.1. Total length and total curvature
Total length L and total curvature K are computed for all the cases discussed above; results
are shown in figure 8 only for the cases T29 (topological collapse), 3R (structural cycle),
2E (topological cycle) and 2P (inverse topological cascade). For the case of the Hopf link
evolution (direct topological cascade) shown in figure 2, the interested reader can refer to
the results published in ZR17.

Total length (denoted by red squares in plots of figure 8, scale on the right) gets
generically stretched as defect lines get closer. This is consistent with the classical
scenarios observed for vortex filaments (Siggia 1985; Kerr 2011), and it is due to the
induction effect of the Biot–Savart law. As pointed out by Villois et al. (2020), the rate of
change δL/δt appears to be markedly higher (in absolute value) in the post-reconnection
stage rather than during pre-reconnection. The consequent faster separation time of
defects, due to the higher speed of the separated strands, is given by the higher curvature
of the recombined strands immediately after reconnection. This is further confirmation
of the time asymmetry and irreversibility of the process due to sound emission during
reconnection, which is known to be responsible for the energy loss, as originally
noticed by Leadbeater et al. (2001), and later confirmed by Zuccher et al. (2012) and
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Figure 8. Total length L (red squares, scale on the left) and normalized total curvature K (circles of various
colours, scale on the right) plotted against time t for T29, 3R, 2E, 2P. Circles of different colour identify
different components created during evolution; black dots on time axis denote reconnection events.

Allen et al. (2014). This feature is well captured by plots of total curvature, where
the pronounced picks and drops of K (figure 8, coloured circles) mark accurately the
occurrence of reconnection events (denoted by black dots on the time axis).

5.2. Writhe, total twist and helicity
Plots of writhe, twist and total helicity for T29, 3R, 2E, 2P are shown in figure 9.
In agreement with the results of theorems 2.1 and 2.2, total helicity (computed by
(2.3) and denoted by red squares in the plots) remains zero at all times, involving a
continuous exchange between writhe and twist during evolution. If writhe is essentially
a sign of non-planarity, production of twist (intrinsic twist, in particular) gives rise to
an axial flow of particles along the defect. The hydrodynamic interpretation of twist
in terms of azimuthal and longitudinal velocity on classical vortex filaments has been
numerically observed by Zuccher & Ricca (2018) and discussed in detail by Foresti &
Ricca (2019). Crude estimates and instability analysis (Foresti & Ricca 2020) show that
twist gradients along the nodal line may have an important role in defect dynamics, but
in these simulations no specific bounds on twist values have been observed or imposed,
other than noting total twist conservation across reconnections (in agreement with theorem
2.3). The apparently unbalanced jumps in 2E and 2P are due to the creation of the Hopf
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Figure 9. Writhe Wr (circles of various colours), total twist Tw (diamonds of various colours) and total helicity
H (red squares) plotted against time t for T29, 3R, 2E, 2P. Circles and diamonds of different colour identify
different components created during evolution; black dots on time axis denote reconnection events.

link and the consequential change in linking number |�Lk12| = 1. Direct topological
cascade visualized by the Hopf link evolution (HOPF) or collapse (exemplified by HOC
and T29) is detected by the decrease in writhe as a measure of the progressive decay
towards unlinked, unknotted planar rings. Of course this behaviour is partially reversed
under cyclic phenomena (as for 3R and 2E), or completely reversed in the presence of
inverse cascade (see 2P).

6. Defect dynamics driven by minimal surfaces

6.1. Energy contribution on isophase surface
It is interesting to evaluate time dependence of energy contribution on an isophase surface.
One such surface associated with the Hopf link evolution is shown in figure 10(a). The
non-dimensional form of total energy Etot, constant under GPE, is given by (Nore et al.
1997; Barenghi & Parker 2016)

Etot =
∫ (

1
2
|∇ψ |2 − 1

2
|ψ |2 + 1

4
|ψ |4

)
dV. (6.1)

By using Madelung’s transformation we have

|∇ψ |2 = ρ|∇θ |2 + |∇ρ|2
4ρ

= ρ|u|2 + |∇ρ|2
4ρ

; (6.2)
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Figure 10. The HOPF case; (a) isophase surface of least area (Smin) at t = 23.20; (b) same surface
colour-coded by the sum ek + eq (according to (3.10a,b) and (6.3)).

hence,

Etot = 1
2

∫
ρ|u|2 dV︸ ︷︷ ︸
Ek

+ 1
8

∫ |∇ρ|2
ρ

dV︸ ︷︷ ︸
Eq

− 1
2

∫
ρ dV︸ ︷︷ ︸

Ep

+ 1
4

∫
ρ2 dV︸ ︷︷ ︸
Ei

, (6.3)

where Ek refers to kinetic energy, Eq quantum, Ep potential and Ei interaction (or internal)
energy. Density reaches a constant value outside the healing region O(ξ), and it decays
rapidly to zero inside the healing region given by the tubular neighbourhood of C (Berloff
2004). This means that contributions from potential and interaction energy can be taken to
be constant everywhere outside the healing regions and can be ignored in the bulk of the
system. Direct computation of all these contributions on specific isophase surfaces (not
shown) are made for comparison; the contribution from the sum of kinetic and quantum
energy density is shown in figure 10(b).

6.2. Minimal surface as critical energy surface
Information on energy contributions is used to investigate the role of isophase surfaces S =
Smin of least geometric area and relation with energy and defect dynamics. As mentioned
at the beginning of § 3, since the Mach number M = √

2, compressibility is duly taken
into account. However, since M is constant, its value cannot be used as an indicator of
the importance of local compressible effects; to by-pass this problem, we look for the
regions where density gradients are important by measuring quantum energy Eq, i.e. the
contribution of compressibility to total energy (see (6.3)). To understand the implications
of this, let us consider an isophase surface of least area (see figure 10a) and suppose
to ignore the portions of such a surface where density gradients are relevant (that is, in
the healing region). Let us denote by S′

min the portion of Smin bounded by C′
i , i.e. where

density is almost constant. From computational data (see the example of figure 10b)
we see that the geometric contribution of this excluded area (where compressibility is
important) is negligible compared with the total area of Smin, hence, the area of the
minimal isophase surface S′

min where ρ is almost constant can be taken approximately
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Figure 11. Evolution of (total) minimal area Amin = A(Smin) of isophase surface plotted against time for T29,
3R, 2E, 2P. Insets show time evolution of χ = L2/Amin. Black dots on time axis denote reconnection events.

equal to Amin = A(Smin). Since u = ∇θ , we have

∇ · u = 0 ⇒ ∇2θ = 0 ∀x ∈ S′
min. (6.4)

This shows that S′
min is harmonic and, being a conformal immersion in R3, it is critical

with respect to the Dirichlet functional (Courant 1950)

D(Θ) = 1
2

∫
S′

min

|∇Θ|2 dS. (6.5)

Minimal isophase surfaces are therefore expected to be privileged markers for energy,
because

D(Θ) ≈ D(ψ)|Smin = 1
2

∫
Smin

|∇ψ |2 dS. (6.6)

By (6.2) and by recalling the definitions given by (3.10a,b), we have

D(ψ)|Smin = 1
2

∫
Smin

[
ρ|u|2 + |∇ρ|2

4ρ

]
dS =

∫
Smin

(
ek + eq

)
dS = Ek + Eq. (6.7)

Relying on the result of theorem 2.2, which ensures that at each evolutionary state Seifert
framing allows us to identify a minimal isophase surface, we proceed to compute Smin.
The search for minimal surfaces associated with defect dynamics proves to be a rather
demanding computational task. This is because of the large amount of information to be
analysed at each instant of time and the computational difficulties associated with possibly
highly convoluted geometry. Indeed, at each instant of time we must determine Smin by

942 A8-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

36
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.362


S. Zuccher and R.L. Ricca

(a) (b)

(c) (d)

0 10 20 30

t

t

40 50 60

0 10 20 30 40 50 60
0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.14

0.16

0.18

0.20

0.22

0.24

0.26

100

150

T29 3R

200

250

85

90

95

100

105

110

115

125

130

135

140

145

150

155

115

120

110

125

130

135

0 50 100 200150

0 5 10

t t
15 20

2E 2P

25

0 5
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29

10 15 20 25

0 10 20 4030

t
0

0.15

0.16

0.17

0.18

0.19

0.20

10 20 4030

t
0 50 100 200150

Figure 12. Time evolution of the maximal energy Max[D(ψ)] (blue circles), computed instantaneously over
all surfaces S for θ ∈ [0, 2π), and of D(ψ)|Smin (red circles), computed on S = Smin. Insets show time evolution
of average values given by Max[Ēkq(S)] (blue circles) and Ēkq|Smin (red circles). Black dots on time axis denote
reconnection events.

selecting out of all possible values of θ ∈ [0, 2π) the surface of least geometric area given
by measuring A(Smin) = Amin. This task is then repeated for all computational times.

Plots of Amin = Amin(t) for T29, 3R, 2E, 2P are shown in figure 11. For the direct
topological cascade of the Hopf link and torus knots T (2, 3), T (2, 5), T (2, 7) (not shown)
as well as for the topological collapse exemplified by T29 (shown), we observe an almost
monotonic decrease of Amin. The decrease of Amin is markedly uniform for the simplest
knots tested (not shown), while for T29 Amin, starts to increase (as shown in figure)
after the formation of small rings (when t > 40): this slight increase in slope is probably
related to a highly convoluted surface geometry. For structural cycles, exemplified by
the case 3R, Amin reaches a maximum when interaction between several components
leads to a single defect line (third plot of figure 5), and after a second reconnection (at
t = 20.40) Amin regain monotonic decrease towards small rings. The same behaviour is
observed for 2E after creation of the Hopf link; consistently, for the inverse cascade
(case 2P), we observe an increase of Amin, where the pick at t ≈ 27 is probably due to
a rather complicated geometry. Since for planar rings the ratio χ = L2/A is minimum
at χ = (2πR)2/(πR2) = 4π, the monotonic areal decrease of Smin towards small, planar
rings measured by writhe nullification of the Hopf link (as shown in ZR17, and visible
in figure 8 for the case T29) demonstrates that evolutionary decay processes are indeed
minimal surface energy relaxation processes. Plots of χ = χ(t) (figure 11, insets) provide
further confirmation of this.

The rate of change δAmin/δt helps to discriminate processes that are energetically more
favoured than others. The correlation between stationary points where dAmin(t)/dt = 0
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and the presence of reconnection events (denoted by black dots on time axis) is evidence
that changes of topology are invariably accompanied by critical rates of change of Amin
and energy.

To make sure that Smin has physical relevance, we compute the average value of the
sum of kinetic and quantum energy density, given by Ēkq = Ēk + Ēq (see again (3.10a,b)
for definitions). We compare the maximal average value Max[Ēkq(S)] as S changes with
θ ∈ [0, 2π) and Ēkq|Smin , i.e. the value of Ēkq computed on the isosurface of least area Smin.
Plots of these data coincide almost everywhere for all the cases investigated, confirming
that Smin is indeed critical for energy, and proves to be an appropriate marker for dynamics.
As a further check, we compute also the integral quantities Max[D(ψ)] ≡ Max[Ek + Eq],
obtained by evaluating the maximum value of D(ψ) over all surfaces for θ ∈ [0, 2π), and
D(ψ)|Smin . Direct comparison between Max[D(ψ)] and D(ψ)|Smin shows that numerical
values overlap almost everywhere. Figure 12 summarizes information on energy contents.
Large plots show the time evolution of the maximum value Max[D(ψ)] (blue circles)
obtained instantaneously by evaluating maximum values over all surfaces for θ ∈ [0, 2π),
and D(ψ)|Smin (red circles) computed instantaneously on S = Smin. Plots in insets show
the average values given by Max[Ēkq(S)] (blue circles) and Ēkq|Smin (red circles), where
correlation between minimal surface energy relaxation and direct topological cascade for
the case T29 and 2E after the Hopf link creation (at t = 11) is quite evident.

7. Conclusions

In this paper we have investigated geometric, topological end energy aspects of quantum
vortex knots and links under the standard GPE. The constraints posed by quantum systems
on defect localization and circulation make quantum hydrodynamics an ideal setting
to apply geometric and topological techniques to get physical insight on evolutionary
processes. In § 2 we have identified three types of possible scenarios that characterize
vortex knots interaction and evolution: direct cascade and collapse of topologically
complex structures; structural and topological cycles from simple to complex to simple
structures; inverse cascade, where topology may momentarily increase during evolution.
These three scenarios have been investigated by direct numerical simulations of the
governing equation based on a new numerical code that resolves the limits imposed by
boundary conditions on a truncated domain (§ 3). Several test cases have been analysed in
§ 4: as an example of direct topological cascade, we have reconsidered the evolution of a
Hopf link (previously investigated using an earlier code in ZR17), and explored examples
of topological collapse considering the head-on collision of quantum vortex rings by
reproducing the famous experiment of Lim & Nickels (1992), and the direct decay of
torus knot T (2, 9) (case T29). As an example of a structural cycle, we have investigated
the interaction and evolution of three colliding vortex rings (case 3R), and a topological
cycle has been realized through the creation and decay of a Hopf link starting from two
unlinked, unknotted elliptical rings (case 2E). Finally, we have provided an example of
inverse topological cascade by the creation, for the first time ever, of a trefoil knot starting
from the interaction of two unlinked, unknotted loops (case 2P).

Results on the evolution of total length, curvature, writhe, twist and helicity are
presented in § 5. As originally noted by Zuccher et al. (2012), we confirm that the length
rate of change, faster after reconnection due to the newly formed strands, breaks the
time symmetry of GPE, a clear sign of irreversibility. This is also consistent with the
observed marked picks of total curvature, as shown in plots of figure 8. Since defects admit
Seifert framing through foliation of the ambient space by their isophase surfaces, the zero
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helicity theorem 2.1 is confirmed, showing that any production of writhe is instantaneously
balanced by production of twist of opposite sign so to keep helicity always zero. Moreover,
as clearly shown by the plot of T29, the gradual nullification of writhe is further proof of
direct topological cascade of complex structures towards the production of small-scale
vortex rings. In this sense writhe measurements help to identify decaying processes.

In § 6.1 we have considered various energy contributions on isophase surfaces. By
considering the surface of least geometric area (Smin) we have demonstrated (§ 6) that
defect dynamics is actually driven by Smin. This is proven by considering the energy
associated with Smin, plotting the evolution of its minimal area Amin against time, and
showing that at each instant of time the maximal value of energy due to kinetic and
quantum contributions computed on S (Max[D(ψ)]) corresponds to the energy computed
on Smin (D(ψ)|Smin). Plots of Amin = Amin(t) (shown in figure 11) demonstrate that indeed,
for all cases tested, direct topological cascade is detected by a monotonic decrease of Amin.
The gradual decay towards the production of small, planar rings is proven by the reduction
of χ = L2/A (case T29) and it is consistent with the observed energy relaxation shown in
plots of figure 12.

All this shows that non-trivial topology can indeed occur and increase during evolution;
the occurrence of several reconnections at once can produce dramatic structural changes
with instantaneous production of small-scale vortex rings; irreversible aspects associated
with quantum hydrodynamics are well detected by time asymmetry during reconnection
through picks of total curvature, and the privileged role of minimal isophase surfaces is
demonstrated by detecting surface energy relaxation of natural decaying processes. As
recent numerical evidence seems to suggest (Iyer, Bharadwaj & Sreenivasan 2021), our
findings hint at possible interesting connections with the so-called area rule and role
of minimal surfaces in classical turbulence. The energy relaxation associated with the
evolution of minimal isophase surfaces provides clear evidence that also quantum defects
follow the classical route to turbulence (Ruelle & Takens 1971) as shown by the cascade
of complex structures towards small-scale vortex rings.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.362.
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