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We conduct direct numerical simulations and study the evolution of a pair of
counter-rotating vortices in a stratified and turbulent environment beyond the first vortex
linking (which is due to the Crow instability). The initial position of the two vortices
is perpendicular to the direction of thermal stratification. We vary the Froude number,
the background turbulence intensity and the Reynolds number, covering strong, weak
and neutral stratification; low, moderate and high background turbulence; and low and
moderate Reynolds numbers. We observe a second vortex linking in a weakly stratified
environment for the first time. The second vortex linking is followed by turbulence bursts
that lead to the rapid decay of the residual vortices after the first vortex linking, leading to
a short-living vortex pair. This challenges the conventional view that residual vortices have
a long life span, which is true only in an unstratified environment. In addition to the second
vortex linking, we observe the following. First, strong background turbulence quickly
breaks the two vortices. Second, the two vortices induce secondary and tertiary vortices
and lose energy to gravitational waves in a strongly stratified (Fr � 0.7) environment.

Key words: stratified flows

1. Introduction

The lift force on finite-span airplane wings produces a pair of counter-rotating trailing
vortices in the wake as sketched in figure 1(a). These vortices persist for several minutes,
translating to many miles behind the airplane. To avoid hazardous vortex encounters
(McGowan 1968; Nelson 2004), the US Federal Aviation Administration has established
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Figure 1. (a) A sketch of the counter-rotating vortices behind a finite-span airplane wing. (b) A sketch of
counter-rotating vortices.

instrument flight rules that impose minimum separation distances for airplanes that land
at the same airport, limiting airport capacity. In the above context, the rapid destruction of
wake vortices is quite desirable. The same is true for the wake vortices behind submarines
and stealth airplanes. These practical needs have motivated fundamental research of the
wake vortex dynamics, and good reviews of the existing work can be found in Widnall
(1975), Spalart (1998), Gerz, Holzäpfel & Darracq (2002) and Leweke, Le Dizès &
Williamson (2016).

An extensively studied model problem is sketched in figure 1(b), where one neglects
the effects of the ground and studies the decay or the collapse of a pair of counter-rotating
vortices in a periodic domain. The vortices are assumed to be horizontal and perpendicular
to the vertical direction, and, therefore, a zigzag instability (Billant 2010; Billant et al.
2010) does not play a role. The flow is controlled by the size of the vortex, d, the distance
between the two vortices, b, the strength of the two vortices, Γ , and the fluid viscosity,
ν. Two non-dimensional numbers can be identified, and they are the Reynolds number,
ReΓ = Γ/ν, and the non-dimensional size of the vortex core, d∗ = d/b. For most flows
in the real world, the Reynolds number is high, and the size of the vortex core is much
smaller than the distance between the two vortices. Hence, d∗ is much smaller than 1,
and ReΓ is larger than 1 for practically relevant flows. There are three processes that are
responsible for the destruction of the vortices: short-wave instability, long-wave instability
or Crow instability/sinusoidal instability (Crow 1970), and viscous diffusion. Among
the three processes, viscous diffusion is the least effective – although viscous effects
are important during vortex linking and turbulence bursting. A short-wave instability,
as the name suggests, is an instability at a wavelength (usually) smaller than the initial
distance between the two vortices and does not involve any linking of the two primary
vortices (Moore & Saffman 1975; Tsai & Widnall 1976). A short-wave instability leads
to turbulence bursts within each vortex, and at practically relevant Reynolds numbers,
the vortices would go through multiple cycles of short-wave instability before long-wave
instability initiates (Leweke & Williamson 1998; Laporte & Corjon 2000) – if the vortices
are not completely destroyed by the short-wave instability (McKeown et al. 2020). Note
that when d∗ � 1, the short-wave instability is very rare (Leweke et al. 2016). A long-wave
instability (see figure 2) is an instability at a wavelength of the order of about 10 times the
initial distance between the two vortices. The exact factor depending on d∗; see Crow
(1970). A long-wave instability leads to vortex linking, which gives rise to vortex rings.

Ambient turbulence and (stable) vertical thermal stratification affect the aforementioned
instabilities. The strength of vertical thermal stratification can be quantified by the Froude
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Figure 2. A sketch of the long-wave instability. Here d0 is the wavelength, a is the amplitude, Θ is the
inclination angle and b0 is the initial distance between two vortices.

number, Fr = W0/(Nb0), where N is the Brunt–Väisälä frequency and W0 = Γ/(2πb0)
is the induced velocity at the distance b0. The strength of ambient turbulence can
be quantified by the background turbulence intensity ε∗ = (εb0)/W0, where ε is the
dissipation rate. Many have studied the effects of thermal stratification and ambient
turbulence. In the following, we review the relevant work on long-wave instabilities.
A basic theory of the long-wave instability is given by Crow (1970, 1974). Saffman
(1972) and Crow & Bate (1976) built on Crow (1970)’s work and accounted for thermal
stratification and ambient turbulence. Their work were further refined by Greene (1986),
Klein, Majda & Damodaran (1995), Crouch (1997) and Switzer & Proctor (2002). These
theories have been carefully scrutinized. Sarpkaya (1983) conducted experiments with
three delta wings and two rectangular wings and investigated the decay of the trailing
vortices in stratified and unstratified water. The author found first that thermal stratification
reduces the lifespan of the trailing vortices and second that strong thermal stratification
prevents vortex linking. van Jaarsveld et al. (2011) conducted a wind tunnel experiment
and measured the decay of trailing vortices in a turbulent environment. The authors
observed the short-wave instability, long-wave instability and vortices breakdown after
the long-wave instability. The observed behaviour is in agreement with Crow & Bate
(1976)’s theory, but the exact mechanism after the long-wave instability was not clear.
Three-dimensional numerical simulations of the flow were not reported until about 2000.
Before that, numerical simulations were mostly two dimensional (Hill 1975; Hecht,
Bilanin & Hirsh 1981; Spalart 1996; Garten et al. 1998; Holzäpfel & Gerz 1999). While
two-dimensional simulations give many insights into the descent of the trailing vortices,
they cannot capture the long-wave instability. Lewellen & Lewellen (1996) and Lewellen
et al. (1998) conducted three-dimensional large eddy simulations (LES) of aircraft wakes
at conditions that mimic the realistic atmosphere. The long-wave instability leads to a
series of vortex rings in their LES, which agree with the photographs taken from the
ground. A lot more work is put into the model problem in figure 2. The simulation
results show that weak thermal stratification accelerates vortex linking, and strong thermal
stratification prevents the vortex linking (Robins & Delisi 1998; Holzäpfel, Gerz &
Baumann 2001; Garten et al. 2001; De Visscher, Bricteux & Winckelmans 2013; Ortiz,
Donnadieu & Chomaz 2015) – although the exact Froude number that demarcates weak
stratification from strong stratification is left unspecified. The results also show that weak
ambient turbulence accelerates vortex linking, and strong ambient turbulence rapidly
destroys the vortices (Garten et al. 1998; Robins & Delisi 1998; Han et al. 2000a).
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While the long-wave instability is fairly well understood, the collapse of the residual
wake structure after the first vortex linking remains poorly understood for the following
reasons. Firstly, visualizing and measuring the residual wake structures is non-trivial in a
lab (Sarpkaya 1983; van Jaarsveld et al. 2011). Secondly, aside from a few direct numerical
simulations (DNS) (Garten et al. 2001), most simulations are LES and rely on sub-grid
scale models. Thirdly, except, for example, Misaka et al. (2012), most three-dimensional
simulations stop shortly after long-wave instability completes.

The purpose of this work is to study the evolution of a pair of counter-rotating vortices
in a stratified and turbulent environment during and, most importantly, after long-wave
instability via DNS. We vary the Froude number from Fr = 0.5 to ∞ (unstratified), the
ambient turbulence intensity from ε∗ = 0.01 to 1, and the Reynolds number from ReΓ =
942 to 3768. We will show a second vortex linking in a weakly stratified environment
followed by a rapid collapse of the residual vortices.

We distinguish this second vortex linking from the secondary vortex reconnections as
described by van Rees, Hussain & Koumoutsakos (2012), Yao & Hussain (2020) and
Hussain & Duraisamy (2011), which are results of high Reynolds numbers and can be
observed in an unstratified environment. Specifically, the second vortex linking described
here is the linking of the primary vortex ring and is a result of thermal stratification.
The secondary vortex reconnections in Yao & Hussain (2020) (and various other previous
works) manifest as turbulence bursts within the vortex tube (as evidenced in figure 7(c) in
their paper) and are not a result of thermal stratification. In fact, the phenomenon described
by Yao & Hussain (2020) has been found in many other studies with different initial
conditions. In the following, we briefly review the literature. Direct numerical simulation
studies of the reconnection process in an unstratified environment date back to Pumir &
Kerr (1987), Kerr & Hussain (1989) and Shelley, Meiron & Orszag (1993). Melander &
Hussain (1988, 1989) showed that the reconnection process has three stages, i.e. inviscid
advection, bridging and threading. Saffman (1990) argued that the reconnection time
scales vary logarithmically with ReΓ . Other works on vortex reconnection can be found
in Ji & Van Rees (2022), where the authors considered the bursting of a vortex tube
due to the initial axial perturbation; Ostilla-Mónico et al. (2021), where the authors
studied the collision of two vortex tubes at an angle; Pumir & Siggia (1990), where the
authors simulated two anti-parallel vortex tubes to find the collapsing solution to the
three-dimensional Euler equations; and Mishra, Pumir & Ostilla-Mónico (2021), where
the authors considered the collision of two vortex rings. These previous studies all consider
different set-ups. The reader is directed to the recent review by Yao & Hussain (2022) for
a comprehensive review of the literature on vortex linking/reconnection.

The rest of the paper is organized as follows. The computational set-up is summarized
in § 2, and we present the results in § 3. Conclusions are given in § 4.

2. Computational details

2.1. Governing equations
The flow is governed by the following Navier–Stokes equation with the Boussinesq
approximation (Nomura et al. 2006):

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ0

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
+ αTTgδi3, (2.2)
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∂T
∂t

+ uj
∂
(
T̄ + T

)
∂xj

= κ
∂2T

∂xj∂xj
. (2.3)

Equation (2.1) is the continuity, (2.2) is the momentum conservation and (2.3) is the
transport equation of the temperature. Here ui is the velocity in the ith Cartesian direction,
xi is the ith Cartesian direction, ρ0 is the reference density, p is the deviation of the pressure
from its hydrostatic value, ν is the kinematic viscosity, κ is the thermal diffusivity, g is
the gravitational acceleration, T̄(z) is the imposed background temperature, ∂T̄/∂t = 0,
∂2T̄/∂z2 = 0, ∂T̄/∂z = const. is the constant background temperature gradient, T is the
temperature fluctuation, the instantaneous temperature is given by T̃ = T0 + T̄(z) + T , T0
is the reference temperature, δij is the Kronecker delta, αT is the volumetric expansion
coefficient and is a constant, i.e. αT ≡ −(1/ρ0)(∂ρ̃/∂T̃). The following length and
velocity scale are used for normalization:

b0, W0. (2.4a,b)

Here b0 is the distance between the two vortices at t = 0, W0 is the advection velocity at
a distance b from the vortex core at time t = 0 and Γ0 is the circulation of one vortex at
t = 0. The flow is controlled by the following three non-dimensional parameters, namely,
the Reynolds number ReΓ , the Froude number Fr and the background turbulence intensity
ε∗. We consider two Reynolds numbers, i.e. ReΓ,1 = 942 and ReΓ,2 = 3768, five Froude
numbers, i.e. Fr = 0.5, 1, 2, 4 and ∞, and four background turbulence intensities, i.e. ε∗ =
0.01, 0.1, 0.25 and 1. We vary the Froude number and the background turbulence intensity
such that thermal stratification and background turbulence are significant at one end and
insignificant at the other. Specifically, background turbulence is negligible when ε∗ = 0.01
and is dominant when ε∗ = 1; the flow is unstratified when Fr = ∞ and strongly stratified
when Fr = 0.5. As for the Reynolds number, the results are, by and large, insensitive to
the Reynolds number – at least in the range of the Reynolds numbers considered here. This
is helpful because flows in the real world are at much higher Reynolds numbers.

2.2. Initial condition
The initial condition is a superposition of two flow fields, i.e. a forced homogeneous
flow and two vortices. We specify the initial condition as follows. First, we compute a
forced homogeneous flow at the desired Froude number in a periodic box. We follow
De Visscher et al. (2013) and force the flow at the lowest two wavenumbers, i.e. kw =
2π/Lx and kw = 4π/Lx. The forcing is adjusted until we get the ε∗ we want. Figure 3
shows the normalized energy spectrum of the forced homogeneous turbulence. We see
the familiar −5/3 scaling at the low wavenumbers – although the wavenumber range
within which the energy spectrum follows the −5/3 scaling becomes narrower as ε∗
decreases. This is expected: lower background turbulence requires forcing at a lower
magnitude, which results in a lower Reynolds number and a narrower inertial range.
Figure 4 shows contours of the x vorticity and temperature at a constant x location. We
see more vigorous turbulence at higher ε∗. Specifically, we see barely any disturbance
to the thermally stratified temperature fields in figure 4(e, f ) for ε∗ = 0.01 and 0.10,
but strong mixing of the low and high temperature fluid in figure 4(h) for ε∗ = 1.
It is worth noting that we can see the oblique pattern in figure 4(h). Similar oblique
patterns have been reported in the previous simulations, e.g. figure 5 in Chung &
Matheou (2012) and figure 18 in Agrawal & Chandy (2021). However, we did not find an
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Figure 3. Energy spectra of the forced homogeneous flow in a stratified environment with Fr = 2 and
ε∗ = 0.01, 0.10, 0.25, 1.00. The −5/3 law is plotted with a dashed line.
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Figure 4. Contours of the x vorticity and temperature T in a constant x plane. The Froude number is Fr = 2.
(a–d) Vorticity in the x-direction ωx, here the contour levels are such that they encompass the maximum and
minimum values in the domain; (e–h) (T + T̄)/�T , where �T = Lz dT̄/dz is the variation of the background
temperature in the vertical domain. Results are shown for (a,e) ε∗ = 0.01, (b, f ) ε∗ = 0.10, (c,g) ε∗ = 0.25,
(d,h) ε∗ = 1.00.

explanation for this oblique pattern and will leave this interesting phenomenon to future
investigation.

Next, we compute the flow field due to the two vortices. The locations of the vortex
cores are given by

y1(x) = y1,0 − a sin(2πnx/Lx) cos(Θ), (2.5)

z1(x) = z1,0 + a sin(2πnx/Lx) sin(Θ), (2.6)
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z

yx

Figure 5. A visualization of the two vortices. The lines are stream lines at a constant x location through the
mid-plane of the vortices.

y2(x) = y2,0 + a sin(2πnx/Lx) cos(Θ), (2.7)

z2(x) = z2,0 + a sin(2πnx/Lx) sin(Θ), (2.8)

where the subscripts 1 and 2 denote the first and second vortex, y1,0, z1,0, y2,0 and z2,0
are constants, and y2,0 − y1,0 = b0, z1,0 = z2,0. The second term adds perturbations to
the otherwise straight vortices at the least stable wavenumber kw = 2πn/Lx = 2π/(8.6b0)
(Crow 1970). The amplitude of the perturbation is a = 0.05b0, and the inclination angle
is Θ = 48◦ (Garten et al. 2001). The radius of the vortex core is σ = 0.1b0, within which
the vorticity magnitude is a constant ω0 = Γ/(πσ 2). According to the Biot–Savart law,
which is only used to construct the initial field, the two vortices give rise to the following
vorticity field:

ωx(x, y, z, t = 0) = ω0(e−ρ2
1/σ 2 − e−ρ2

2/σ 2
) cos[a cos(2πnx/Lx)], (2.9)

ωy(x, y, z, t = 0) = −ω0(e−ρ2
1/σ 2 + e−ρ2

2/σ 2
) sin[a cos(2πnx/Lx)] cos(Θ), (2.10)

ωz(x, y, z, t = 0) = ω0(e−ρ2
1/σ 2 − e−ρ2

2/σ 2
) sin[a cos(2πnx/Lx)] sin(Θ). (2.11)

Here

ρ2
i = (y − yi(x))2 + (z − zi(x))2 (2.12)

measures the distance from a generic location (x, y, z) to the ith vortex. Figure 5 is a
visualization of the two vortices. The resulting velocity field can be obtained by solving
the following Laplace equation:

∇2u = −∇ × ω. (2.13)

The initial flow field is the superposition of the forced homogeneous turbulence and the
two vortices. This way of obtaining the initial flow is similar to De Visscher et al. (2013).
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Figure 6. The Q isosurfaces, Q∗ = 1, of the initial flow fields at (a) ε� = 0.01 and (b) ε� = 1.00. The
isosurfaces are coloured by the (T̃ + T̄)/�T . The Froude number is Fr = 2 and the Reynolds number is
Re = 942.

The two velocity fields are both divergence free, so it does not lead to any numerical
difficulty, but whether the initial field is ‘physical’ is a question worth further investigation.
Figure 6 shows the isosurfaces of Q∗ = 1 of the initial vorticity at the condition Re = 942,
Fr = 2 and ε∗ = 0.01, 1.00, where Q∗ is defined as

Q∗ = 1
2
(ω∗

ijω
∗
ij − S∗

ijS
∗
ij), ω∗

ij = 1
2

(
∂u∗

i
∂xj

−
∂u∗

j

∂xi

)
, S∗

ij = 1
2

(
∂u∗

i
∂xj

+
∂u∗

j

∂xi

)
,

(2.14a–c)

and u∗
i ≡ ui/ max(

√
u2

k) is the normalized velocity. The background turbulence level is low
in figure 6(a), and the only visible vortical structures are the two counter-rotating vortices.
On the other hand, in figure 6(b) the background turbulence level is high, and we see a lot
more vortical structures than the two counter-rotating vortices.

2.3. Further details
Twenty-one DNS are conducted. The details of the DNS are tabulated in table 1. The
nomenclature of the cases is as follows: Fr[Fr]E[ε∗]Re[L/M], where Fr is 0.5, 1, 2, or 4,
ε∗ is 0.01, 0.10, 0.25 and 1, L and M stand for low and moderate. There are four groups
of DNS. In the first group, we vary the Froude number whilst keeping the background
turbulence negligible. The purpose is to study the effects of thermal stratification. In
the second group, we vary the background turbulence intensity whilst keeping thermal
stratification negligible. The purpose is to study the effects of background turbulence. In
the third group, we vary the turbulence intensity whilst keeping Fr = 2. The purpose is to
study the effects of both the background turbulence and thermal stratification. Last, in the
fourth group, we vary the Reynolds number. The purpose is to show that our results are
insensitive to the Reynolds number.

The computational domain is a periodic box. Except for Fr2.0E0.01ReM, for which
the domain size is Lx × Ly × Lz = 8.6b0 × 12.9b0 × 8.6b0, we employ a domain of size
Lx × Ly × Lz = 8.6b0 × 8.6b0 × 8.6b0. The grid spacing is uniform in all three directions,
and the resolution is slightly finer than that in Garten et al. (2001). We ensure that the
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Group Case name ReΓ Fr Pr ε� Lx/b0 Ly/b0 Lz/b0 Nx Ny Nz σ/Δy

1/3/4 Fr0.5E0.01ReL 942 0.5 1 0.01 8.6 8.6 8.6 432 432 432 5.0
1 Fr0.6E0.01ReL 942 0.6 1 0.01 8.6 8.6 8.6 432 432 432 5.0
1 Fr0.7E0.01ReL 942 0.7 1 0.01 8.6 8.6 8.6 432 432 432 5.0
1 Fr0.8E0.01ReL 942 0.8 1 0.01 8.6 8.6 8.6 432 432 432 5.0
1 Fr0.9E0.01ReL 942 0.9 1 0.01 8.6 8.6 8.6 432 432 432 5.0
1 Fr1.0E0.01ReL 942 1.0 1 0.01 8.6 8.6 8.6 432 432 432 5.0
1 Fr2.0E0.01ReL 942 2.0 1 0.01 8.6 8.6 8.6 432 432 432 5.0
1 Fr4.0E0.01ReL 942 4.0 1 0.01 8.6 8.6 8.6 432 432 432 5.0
1 Fr6.0E0.01ReL 942 6.0 1 0.01 8.6 8.6 8.6 432 432 432 5.0
1 Fr8.0E0.01ReL 942 8.0 1 0.01 8.6 8.6 8.6 432 432 432 5.0
1 Fr10.0E0.01ReL 942 10.0 1 0.01 8.6 8.6 8.6 432 432 432 5.0
1 Fr100.0E0.01ReL 942 100.0 1 0.01 8.6 8.6 8.6 432 432 432 5.0
1/2 FrInfE0.01ReL 942 ∞ 1 0.01 8.6 8.6 8.6 432 432 432 5.0
2 FrInfE0.00ReL 942 ∞ 1 0.00 8.6 8.6 8.6 432 432 432 5.0
2 FrInfE0.10ReL 942 ∞ 1 0.10 8.6 8.6 8.6 432 432 432 5.0
2 FrInfE0.25ReL 942 ∞ 1 0.25 8.6 8.6 8.6 432 432 432 5.0
2 FrInfE1.00ReL 942 ∞ 1 1.00 8.6 8.6 8.6 432 432 432 5.0
3 Fr2.0E0.10ReL 942 2.0 1 0.10 8.6 8.6 8.6 432 432 432 5.0
3 Fr2.0E0.25ReL 942 2.0 1 0.25 8.6 8.6 8.6 432 432 432 5.0
3 Fr2.0E1.00ReL 942 2.0 1 1.00 8.6 8.6 8.6 432 432 432 5.0
4 Fr2.0E0.01ReM 3768 2.0 1 1.00 8.6 12.9 8.6 1152 1728 1152 14.4

Table 1. Direct numerical simulation details.

grid is sufficiently fine for the high ε∗ cases and apply that grid to the low ε∗ cases.
Specifically, the grid resolution is Δ/η � 0.85 in all DNS, where η is the Kolmogorov
length scale. The time step size is such that CFL = 0.6.

The in-house finite-difference code AFiD is employed for the DNS. The code is second
order in space and uses the third-order Runge–Kutta scheme in time.

Further details of the numerics can be found in Ostilla-Monico et al. (2015), van der Poel
et al. (2015) and Kim & Moin (1985). The code has been extensively used for stratified
flows (Yang et al. 2015, 2020; Du, Zhang & Yang 2021; Li & Yang 2021), and we present
a validation in Appendix A.

3. Result

3.1. Basic phenomenology
Figure 7 visualizes the evolution of the vortex pair in case Fr2.0E0.01ReM. First, the two
vortices get close to each other as a result of the Crow instability. Meanwhile, they move
downward as a result of induced velocity. This is shown in figure 7(a). The dissipation is
about uniform in each vortex until the two vortex link, which happens at t∗ = 3, where t∗
is normalized time and defined as

t∗ ≡ tW0/b0. (3.1)

This is the first vortex linking, and it gives rise to a vortex ring. Large dissipation is found
at the location where the two vortices link, as shown in figure 7(b). The first vortex linking
marks the completion of sinusoidal instability. This process is very well understood (Crow
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z
Vortex linking

Vortex linking

Vortex linking

Vortex jet

Vortex jet

Vortex jet

Turbulent burst
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(b)

(a)

(c) (g)
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Figure 7. Isosurface of Q∗ = 1 at t∗ = 1, 3, 4, 5, 5.5, 6, 6.5 and 7.0 for case Fr2.0E0.01ReM. The isosurfaces
are coloured by viscous dissipation. Light blue indicates low dissipation, and dark blue indicates high
dissipation.

1970), and we leave the discussion brief. The focus of this study is the decay of the residual
vorticity after the first vortex linking, which is still poorly understood.

After the first vortex linking, the vertical position of the two vortices do not change
significantly until the second vortex linking at t∗ = 5.5. Between the first and second
vortex linking, the size of the vortex ring collapse in the longitudinal (y) direction.
Specifically, among the four ends of the vortex ring, the distance between E1 and its
opposite end decreases, whereas the distance between E2 and its opposite end increases,
as shown in figure 7(c). This process continues, leading to two wrapped semicircle-shaped
vortices in figure 7(d), followed by the second vortex linking at two locations in
figure 7(e). The second vortex linking gives rise to two small vortex rings and two
line vortices. The evolution of these residual vortices is shown in figure 7( f,g,h). The
two small vortex rings travel left and right and leave. The two line vortices collide,
leading to rapid vortex decay. In the process, we see a few weak vortex jets, which
quickly dissipate. We also see turbulence bursts, which lead to the demise of the residual
vortices.
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Figure 8. The volume integrated (a) kinetic energy 〈k〉 and (b) dissipation term 〈ε〉 as a function of the
non-dimensional time t∗. Here, k0 and ε0 are the kinetic energy and viscous dissipation at t∗ = 0.

To quantify the physics that is responsible for the decay of the vortices, we turn to the
following kinetic energy equation:

∂k
∂t

+ ∂ (uik)
∂xi

= − 1
ρ0

∂ (uip)

∂xi
+ ν

∂2k

∂x2
i

− ε + Pg. (3.2)

Here the kinetic energy k is

k ≡ uiui

2
, (3.3)

the dissipation term ε is

ε ≡ ν
∂ui

∂xj

∂ui

∂xj
(3.4)

and the gravitational term Pg is
Pg ≡ αTTgu3. (3.5)

The gravitational term represents the exchange between the gravitational potential energy
and kinetic energy. The dissipation term ε destroys kinetic energy. Figure 8 shows the
domain integrated k and ε as a function of time. We see three distinct stages in figure 8(a):
the flow loses energy quickly from t∗ = 0 to t∗ = 2.6, i.e. before the first vortex linking,
barely loses any kinetic energy from t∗ = 2.6 to t∗ = 5.4, i.e. between the first and the
second vortex linking, and quickly loses energy beyond t∗ = 5.4, i.e. after the second
vortex linking and during the bursts. Figure 8(b) shows a similar trend: the dissipation rate
dips between t∗ = 2.6 and t∗ = 5.4, i.e. between the first and the second vortex linking.

Tools like Q isosurfaces and time histories of volume integrated kinetic energy and
viscous dissipation have been extensively used in previous studies (Han et al. 2000b;
Moet et al. 2000; Holzäpfel et al. 2003; Nomura et al. 2006; Misaka et al. 2012). The Q
isosurfaces contain spatial information, but they lack temporal information. Time histories
of volume integrated kinetic energy and viscous dissipation have temporal information, but
they lack spatial information. In a lot of previous work (Garten et al. 2001; De Visscher
et al. 2013), Q isosurfaces and time histories of volume integrated kinetic energy and
viscous dissipation are shown together to complement each other. However, it would be
rather cumbersome to show Q isosurfaces and time histories of k and ε for all DNS cases.
We need a tool that contains both temporal information and spatial information. In search
of such a tool, we find that the transverse (y and z directions) integrated turbulent kinetic
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Figure 9. (a) Contour of the transverse averaged kinetic energy k̄ as a function of the x coordinate and time.
(b) Same as (a) but for ε̄′.

energy and viscous dissipation, i.e. k̄ and ε̄, are good candidates. Figure 9 shows k̄ and ε̄′
as a function of time, where

ε̄′ = ε̄ − 〈ε〉
STD(ε̄ − 〈ε〉) , (3.6)

and STD(·) is the standard deviation of the variable in the parentheses. We see first
and second vortex linking at x/Lx = 0.75, t∗ = 2.6 and x/Lx = 0.25, t∗ = 5.4, as well
as turbulence bursts. We also see the rapid decay of the kinetic energy and the surge
of viscous dissipation after the second vortex linking. Note that k̄ and ε̄′ carry similar
information. In the following subsections we will use the transverse averaged viscous
dissipation and only show Q isosurfaces and time histories of volume-averaged kinetic
energy and dissipation rate when necessary.

3.2. The second vortex linking
We observe a second vortex linking followed by turbulence bursts and the rapid decay of
the residual vortices. This directly contradicts the findings in Misaka et al. (2012), where
the residual vortices after the first vortex linking are found to persist for a long time. In
this subsection we will explain this difference.

Misaka et al. (2012) and this work differ in the following. Firstly, Misaka et al. (2012)
is an LES study, and the authors considered a higher Reynolds number. Secondly, Misaka
et al. (2012) considered vortex evolution in an unstratified environment. It is critical that we
understand what is responsible for the long life span of the residual vortices in Misaka et al.
(2012). Note that we do not doubt the reliability of LES results from Misaka et al. (2012).
In fact, a similar long-living vortex ring is reported by other researchers, e.g. Leweke &
Williamson (2011). Our unstratified case, i.e. FrInfE0.01ReL, also shows a long-living
vortex ring, as demonstrated in figure 11, Thus, we think it is hard to argue that LES is
responsible for the difference in life span.

Figure 10(a) shows ε̄′ in case Fr2.0E0.01ReL. Case Fr2.0E0.01ReL is at the same
condition as case Fr2.0E0.01ReM except that case Fr2.0E0.01ReL is at a lower Reynolds
number. We see the first vortex linking at x/Lx = 0.75, t∗ = 3.5, the second vortex
linking at x/Lx = 0.25, t∗ = 7, and the subsequent turbulence bursts; this is similar to
figure 9(b). Figure 10(b,c) shows the Q isosurfaces at t∗ = 7 and 9. We see turbulence
bursts as in figure 7(h). However, because the flow is at a lower Reynolds number than
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Figure 10. (a) Same as figure 9(b) but for case Fr2.0E0.01ReL. Isosurface of Q∗ = 0.6 at (b) t∗ = 7 and
(c) t∗ = 9.

Fr2.0E0.01ReM, we see only one bulb of eddies and fewer structures in figure 10 than in
figure 7(h). Hence, the Reynolds number cannot explain the difference between Misaka
et al. (2012) and the present work. Figure 11 shows the transverse averaged dissipation rate
ε̄′ in case FrInfE0.01ReL. Case FrInfE0.01ReL is at the same condition as Fr2.0E0.01ReL
except that FrInfE0.01ReL is unstratified. We see the first vortex linking at t∗ = 4.
Figures 11(b,c,d) show the Q isosurfaces at t∗ = 10, 20 and 30. We do not see second
vortex linking nor turbulence bursts. Instead, the vortex ring oscillates and persists for
a long time. Hence, we conclude that the unstratified environment is responsible for the
long life span of the residual vortices in Misaka et al. (2012). In other words, the stratified
environment causes the second vortex linking.

Next, we interrogate the DNS for the flow structures that are responsible for the second
vortex linking in a stratified environment. Figure 12(a) shows the contour of the y-direction
vorticity ωy at y = 0.5(Ly + b0), t∗ = 5 in Fr2.0E0.01ReM, which is slightly off centre
and at a time before the second vortex linking. The centres of the primary vortices are
at (x, z) = (0.17Lx, 0.44Lz) and (x, z) = (0.33Lx, 0.44Lz). The primary vortices induce
secondary vortices, as indicated in figure 12(a). We may roughly divide the secondary
vortices into the upper part and the lower part, whose z coordinates are above and
below that of the primary vortices. We see that the upper part is stronger than the
lower part. Consequently, the secondary vortices induce a velocity that pushes the left
primary vortex to the right and the right primary vortex to the left. This eventually
leads to the second vortex linking, as we see in figure 7(e–f ). This is consistent with
the previous studies, where the distance between two counter-rotating vortices decreases
in a stratified environment (Saffman 1972; Spalart 1996; Garten et al. 1998; Ortiz et al.
2015). Figure 12(b) shows y vortices in Fr2.0E0.01ReL before the second vortex linking.
We see, again, the secondary vortices, which have a comparably stronger upper part and
a comparably weaker lower part. Lastly, figure 12(c) shows the contours of the y vortices
in FrInfE0.01ReL after the first vortex linking. This case does not give rise to a second
vortex linking, and in figure 12(c) we see no secondary vortices. In all, we conclude that
the second vortex linking is a consequence of the secondary vortices, which are due to
flow stratification.

The generation of the secondary vortices can be attributed to the Pg term in (3.2). In
figure 13 we examine the behaviour of the term Pg. Figure 13(a) shows the evolution of
the volume integrated Pg in the Fr2.0E0.01ReL case. It first decreases, then increases and
finally decreases again. Figure 13(b,c) shows the contours of Pg before the first and second
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Figure 11. (a) Same as figure 9(b) but for case FrInfE0.01ReL. Isosurface of Q∗ = 0.6 at (b) t∗ = 10,
(c) t∗ = 20 and (d) t∗ = 30.
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Figure 12. Contours of the y-direction vorticity ωy on y = 0.5(Ly + b0) plane for (a) case Fr2.0E0.01ReM at
t∗ = 5, (b) case Fr2.0E0.01ReL at t∗ = 6 and (c) case FrInfE0.01ReL at t∗ = 7. To show secondary vortices
clearly, the contours are respectively normalized by (a) 0.1ωy,m, (b) 0.2ωy,m and (c) 0.2ωy,m. Here, ωy,m is the
maximum y-direction vorticity on each plane.

vortex linking at a constant x. We see that the term is negative between the two primary
vortices (the locations of the two primary vortices are indicated using two arrows) and
positive on the outer sides of the vortices, which subsequently leads to the secondary
vortices (as shown in figure 12a).
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Figure 13. (a) The volume integrated gravitational term
〈
Pg
〉

as a function of t∗, where 〈ε0〉 is the volume
integrated initial dissipation. (b) Contour of Pg at t∗ = 3, x = 0.75Lx. (c) Contour of Pg at t∗ = 6, y = 0.5(Ly +
b0) in case Fr2.0E0.01ReL. Here Pg,m is the maximum value of Pg in the plane, and arrows indicate the location
of the primary vortices.
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Figure 14. Transverse averaged dissipation ε̄′ in case (a) Fr0.5E0.01ReL, (b) Fr1.0E0.01ReL,
(c) Fr4.0E0.01ReL.

In the next few subsections we discuss the impacts of stratification and background
turbulence. Again, the discussion will focus on the evolution of the vortices after the first
vortex linking (at large t∗).

3.3. Thermal stratification and background turbulence
First, we vary the Froude number from 0.5 to ∞ whilst keeping the Reynolds number
ReΓ = 942 and ε∗ = 0.01 constant. The background turbulence is negligibly weak and
insignificant. As we will show, the flow is strongly stratified when Fr � 0.7, weakly
stratified when Fr > 0.7, and unstratified conditions when Fr = ∞.

Figure 14 shows the transverse averaged dissipation ε̄′ as a function of both x and t∗ for
Fr = 0.5, 1 and 4. The Fr = 2 result is shown in figure 10(a) and the Fr = ∞ result is
shown in figure 11(a). The Fr = 1, 2, 4 results are qualitatively similar. The first vortex
linking occurs at t∗ = 3.7, 3.5, 3.0 and 2.5 for Fr = ∞, 4, 2 and 1, respectively. The second
vortex linking occurs at t∗ = 8.3, 6.5 and 5.2 for Fr =4, 2 and 1, respectively, and the time
it takes for the vortices to link a second time decreases as the Froude number decreases
(as stratification becomes stronger). There is no second vortex linking when Fr = ∞. The
Fr = 0.5 result is qualitatively different from the rest, and we see no vortex linking at all.
These results are consistent with those in Garten et al. (1998, 2001), and Sarpkaya (1983):
thermal stratification accelerates sinusoidal instability until strong stratification prevents
sinusoidal instability completely. These results are also consistent with the results in § 3.1:
a second vortex linking occurs in a weakly stratified environment.
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Figure 15. Contour of normalized x-direction vorticity ωx/ωx,m at x = 0.5Lx, (a) t∗ = 1 , (b) t∗ = 2,
(c) t∗ = 3, (d) t∗ = 4. Here ωx,m is the maximum value of ωx.

In case Fr0.5E0.01ReL vortex linking is prevented completely. To get some insights into
the flow dynamics, figure 15 shows the contour of the x-direction vorticity ωx. We see
gravitational waves in (b–d). The vortex pair gives rise to secondary vortices, which, in
turn, give rise to tertiary vortices and quaternary vortices. This process would continue
indefinitely until the gravitational waves drain the kinetic energy in the vortex pair.

Quantitatively speaking, the energy loss due to gravitational waves can be obtained
by computing the energy flux at the surface of a control volume that encompasses the
primary vortices. We define the control volume as in figure 15(d). It is a rectangular box
and encompasses y/Ly ∈ [0.2, 0.8], z/Lz ∈ [0.3, 0.7]. The flux due to pressure waves is
given by

Fp ≡
∮

V

pu
ρ0

· n dS, (3.7)

where n is the normal vector pointing from the inside of the control volume to the outside.
Thus, positive Fp corresponds to the energy loss. We normalize F∗

p with W0 and b0 like
other quantities. Figure 16 shows F∗

p as a function of t∗. We see that F∗
p is positive shortly

after the initial transient period, and, thus, the primary vortices keep losing energy to
internal gravitational waves.

A question we could ask is how stratification generates secondary vortices in a strongly
stratified environment. The governing equation for vorticity is

∂ωi

∂t
+ uj

∂ωi

∂xj
− ωj

∂ui

∂xj
= ν

∂2ωi

∂x2
j

+ αTg
(

δ1i
∂T
∂y

− δ2i
∂T
∂x

)
, (3.8)
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Figure 16. The flux of the pressure term F∗
p on the control volume as the function of t∗.
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Figure 17. Contour of the normalized temperature (T + T̄)/�T at the same x/Lx and t∗ as figure 15(a).

where the last term shows that stratification generates vorticity. Figure 17 shows the
contour of the normalized temperature at the same x location and time t∗ as figure 15(a).
The primary vortex pair brings the lighter fluid among the heavier fluid. In these regions,
∂T/∂y /= 0, and vortices are generated as a result. This process, of course, will not happen
in unstratified flows.

Having discussed the effects of thermal stratification, next, we vary the background
turbulence level from ε∗ = 0.01 to 1.0 whilst keeping the Froude number at Fr = ∞ and
the Reynolds number at ReΓ = 942. The background turbulence is weak when ε∗ = 0.01
and 0.1 and strong when ε∗ = 0.25 and 1. Recall that the vortex ring, which directly
results from the first vortex linking, persists for a long time in the absence of background
turbulence. In the following, we examine the impact of background turbulence on the
vortex ring.

Figure 18 shows the time histories of the volume integrated kinetic energy and viscous
dissipation. We normalize the kinetic energy and the viscous dissipation by their values
at t∗ = 0 in case FrInfE0.01ReL. The background turbulence contributes to the kinetic
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Figure 18. The volume integrated (a) kinetic energy and (b) viscous dissipation as a function of time, where
〈k0〉 and 〈ε0〉 is the initial volume integrated value in the FrInfE0.01ReL case.
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Figure 19. Transverse integrated dissipation ε̄′ in case (a) FrInfE0.10ReL, (b) FrInfE0.25ReL and
(c) FrInfE1.00ReL.

energy and the dissipation: at t∗ = 0, the normalized kinetic energy is 22.5, 2.06, 1.14 in
cases FrInfE0.10ReL, FrInfE0.25ReL and FrInfE1.00ReL, and the normalized dissipation
is 11, 1.114, 1.007. When the background turbulence is strong, the vortex pair is a lesser part
of the flow. It should follow that the flow is less controlled by the vortex dynamics in the
presence of strong background turbulence. This is not immediately clear from figure 18: in
all cases, the kinetic energy and the dissipation decay as a function of time. To get some
insights into the flow dynamics, we examine the transverse averaged viscous dissipation.

Figure 19 shows the transverse averaged dissipation ε̄′. The FrInfE0.01ReL result is
shown in figure 11(a). Background turbulence disturbs the flow. The ε∗ = 0.10 and 0.25
results in (a,b) look qualitatively similar to the ε∗ = 0.01 result in figure 11(a). We see the
first vortex linking at t∗ = 3.3, x/Lx = 0.57 and t∗ = 1.5, x/Lx = 0.55, respectively, but no
second vortex linking. Nonetheless, the vortex ring (a result of the first vortex linking) does
not necessarily persist for a long time. In case FrInfE1.00ReL the background turbulence is
so strong that it tore the vortex pair quickly, as we can see in (c). To see what is happening
in the flow when there is strong background turbulence, we visualize the vortices in case
FrInfE1.00ReL in figure 20. We see that the background turbulence quickly dissipates the
vortex pair, and at t∗ = 2 we can no longer find the vortex pair.

So far, we varied the Froude number in a flow where there is essentially no background
turbulence. We also varied the background turbulence level in a flow with no stratification.
Now, we consider a flow with both thermal stratification and background turbulence.
Specifically, we vary the background turbulence intensity from ε∗ = 0.01 to 1.0 whilst
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Figure 20. Isosurface of Q∗ = 5 for the FrInfE1.00ReL case at t∗ = 2.
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Figure 21. Transverse averaged dissipation ε̄′ in case (a) Fr2.0E0.10ReL, (b) Fr2.0E0.25ReL and
(c) Fr2.0E1.00ReL.

keeping Fr = 2.0 and ReΓ = 942. The objective is to see if there is any nonlinear interplay
between thermal stratification and background turbulence.

Figure 21 shows the transverse averaged dissipation ε̄′ in cases Fr2.0E0.10ReL,
Fr2.0E0.25ReL and Fr2.0E1.00ReL. The Fr2.0E0.01ReL results are shown in figure 10.
When the background turbulence is at a low level, i.e. ε∗ = 0.10, there is a second vortex
linking and subsequent turbulence bursts. However, when the background turbulence is
at a high level, i.e. ε∗ = 0.25, 1.00, the two vortices rapidly dissipate, and there is no
second vortex linking. In all, we do not see any apparent nonlinear interplay between
thermal stratification and background turbulence: thermal stratification plays the dominant
role when the background turbulence level is low, and background turbulence plays the
dominant role when it is strong.
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Figure 22. Contour of ε̄′ as a function of the x coordinate and the time for case (a) Fr0.6E0.01ReL,
(b) Fr0.7E0.01ReL, (c) Fr0.8E0.01ReL, (d) Fr0.9E0.01ReL.

3.4. Critical Froude number
The second vortex linking can be observed in a weakly stratified environment but not in
a strongly stratified and unstratified environment. Therefore, there must be two critical
Froude numbers Frc1 and Frc2, and the second vortex linking can only be observed
between Frc1 and Frc2. In this subsection we try to find these two critical Froude numbers.

Figure 22 shows the contours of ε̄′ for Fr0.6E0.01ReL, Fr0.7E0.01ReL, Fr0.8E0.01ReL
and Fr0.9E0.01ReL. Figure 23 shows the Q isosurfaces for Fr0.6E0.01ReL,
Fr0.7E0.01ReL, Fr0.8E0.01ReL at the time we expect to see the vortex linkings.
Long-wave instability leads to the first vortex linking in all cases, but the second vortex
linking is found in Fr0.8E0.01ReL and Fr0.9E0.01ReL only. Hence, Frc1 is between 0.7
and 0.8. Figure 24 shows the contours of ε̄′ for Fr4.0E0.01ReL, Fr6.0E0.01ReL and
Fr8.0E0.01ReL. We see the second vortex linking in Fr4.0E0.01ReL and Fr6.0E0.01ReL
but not in Fr8.0E0.01ReL (ε̄′ does not intensify as in the other two cases). Hence, Frc2
is between 6.0 and 8.0. Further pinpointing of the two critical Froude numbers (to two
significant digits) is left for future investigation.

Next, we discuss how the Reynolds number may affect the values of the two critical
Froude numbers. Comparing Fr2.0E0.01ReL and Fr2.0E0.01ReM, we notice that the
second vortex linking leads to vortex bursts. Since the violent bursts become more
violent as the Reynolds number increases, suggesting that it is more likely to observe
the second vortex linking at high Reynolds numbers. Hence, Frc1 and Frc2 should
decrease and increase slightly as the Reynolds number increases – until the Reynolds
number is sufficiently high and these events no longer depend on the Reynolds number.

951 A47-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

90
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.905


Two counter-rotating vortices in the stratified turbulence

1st vortex linking

1st vortex linking

1st vortex linking

2nd vortex

linking

z

b0

x y

t∗ = 4, Q∗ = 2 t∗ = 6, Q∗ = 1

t∗ = 3, Q∗ = 1.5 t∗ = 6, Q∗ = 1.5

t∗ = 3, Q∗ = 3 t∗ = 6, Q∗ = 3

(a) (b)

(c) (d)

(e) ( f )

Figure 23. Isosurface of Q∗ for case (a,b) Fr0.6E0.01ReL, (c,d) Fr0.7E0.01ReL, (e, f ) Fr0.8E0.01ReL. The
Q∗ isosurfaces at the time of (a,c,e) the first vortex linking, (b,d) turbulence bursting and ( f ) the second vortex
linking.

Likewise, comparing Fr2.0E0.01ReL and Fr2.0E0.10ReL, we note that strong background
turbulence distorts the vortices and makes vortex linking (first and second) more difficult.
Hence, Frc1 and Frc2 should increase and decrease slightly as the background turbulence
increases – until background turbulence completely prevents vortex linking.

4. Conclusions

We conduct DNS to study the evolution of a vortex pair in a stratified and turbulent
environment. Direct numerical simulations continue after the long-wave instability
completes, and we study the decay of the residual vortices.

In addition to conventional tools like the time histories of the volume integrated
dissipation rate and kinetic energy, which contain only temporal information but no spatial
information, and Q isosurfaces, which contain only spatial information but no temporal
information, the transverse averaged dissipation rate is employed. The transverse averaged
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Figure 24. Same as figure 22, but for case (a) Fr4.0E0.01ReL, (b) Fr6.0E0.01ReL, (c) Fr8.0E0.01ReL. Here
ε̄′ intensifies when the second vortex linking occurs, which happens in (a,b) but not in (c).

dissipation rate contains both temporal and spatial information, and one can easily identify
dynamically important events from the plot.

The main finding of the paper is the second vortex linking, which has not been reported
before. It occurs after the first vortex linking, i.e. after the Crow instability completes, in
a weakly stratified environment when the background turbulence is not very strong. The
second vortex linking is followed by turbulence bursts and the rapid decay of residual
vortices, the latter of which is responsible for the short life span of the vortex pair. The
finding challenges the conventional view that the residual vortices have a long life span,
which is only true if the environment is not stratified.

The decay of the residual vortices after the first vortex linking is, in general, poorly
understood. In addition to the second vortex linking, our findings include the following.
The vortex ring persists for a long time in an unstratified environment in the absence of
background turbulence. In a strongly stratified environment, vortex linking is completely
prevented, and the vortex pair loses energy to gravitational waves. Background turbulence
distorts the vortex ring and helps to dissipate the large eddies in the flow. When the
background turbulence is strong, no vortex linking can be observed, and the vortex pair
is rapidly torn apart by the background turbulence. Finally, there is no apparent nonlinear
interplay between thermal stratification and background turbulence when both are present.

Figure 25 summarizes our data in the Fr–ε∗ phase space: there exists a regime with no
vortex linking (region 1), a regime with the first but not the second vortex linking (region 2)
and a regime with both vortex linking events (region 3). More DNS are certainly needed to
accurately determine the boundary of these regimes, which is left for future investigation.

We end the paper with a discussion on the practical relevance of this study. The Froude
number range investigated in this paper covers the typical flight conditions (Lewellen
& Lewellen 1996). The DNS Reynolds number, however, is much lower than the flight
Reynolds number, which is O(107) per our definition. Direct numerical simulation at
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Figure 25. Parameter space. Three regimes can be identified: a regime with no vortex linking (region 1), a
regime with the first but not the second vortex linking (region 2), and a regime with both vortex linking events
(region 3). The case with no vortex linking is coloured black; the case with the first but not the second vortex
linking is coloured red; and the case with both vortex linking events is coloured blue.

that Reynolds number is prohibitively costly and will not be possible in the foreseeable
future. The hope is that the basic flow phenomena become Reynolds number independent
for Reynolds numbers above a critical value. In this study we compared Fr2.0E0.01ReL
and Fr2.0E0.01ReM. The results suggest that the second vortex linking does not depend
on the Reynolds number for Re � 103. Hence, the second vortex linking should still
be relevant to real-world high-Reynolds-number applications. The Prandtl number effect
is not considered in the present study, and we use Pr = 1 for all cases. This value is
realistic for the atmosphere but unrealistic for the ocean. In oceans Pr maybe 7 for
thermal stratification and 700 for salt stratification, the effects of which are left for future
investigation.
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Appendix A. A validation

We present a validation study and compare our DNS to that in Garten et al. (2001) at
Fr = ∞, i.e. unstratified, and Re = 942. At this condition, the two vortices deform as a
result of the Crow instability (Crow 1970). Figure 26 is a sketch of one vortex before they
link. The other vortex is to the left of the centre plane at y = 0 and is not plotted in figure 26
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Figure 26. A sketch of one of the two vortices (red line) before reconnection. The green line is the projection
of the vortex on the y–z plane. The circle, triangle and square mark the two ends and the mid-point of the line.
Here L = 8.6b and Θ is the angle between the projection and the y axis.
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Figure 27. A sketch of the flow fields across the two hollow symbols.

for visualization purposes. The projection of the vortex on the y–z plane is approximately
a straight line. Its centre is indicated with a filled square symbol in figure 26, and the two
ends are indicated with a filled triangle and a filled circle. The triangle symbol marks the
location where the distance between the two vortices is the closest, and the circle symbol
marks the point where the two vortices are the farthest. We use Ac to denote the distance
between the triangle and the square and Af to denote the distance between the circle and
the square. Besides Ac and Af , Θ denotes the angle between the projection of the vortex
and the y axis. Figure 27 is a sketch of the flow fields across the circle and the triangle
symbols. We can compute the circulation by integrating the velocity along the y–z plane
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Figure 28. Evolution of (a) Θ , (b) Ac, Af and (c) Γr/Γf as a function of time.

where x equals a constant and y > 0, i.e.

Γ (x) =
∫ Ly/2

0

∫ Lz

0
ωx(x, y, z) dy dz. (A1)

The Crow instability leads to relatively weak circulation in the closest plane and relatively
strong circulation in the farthest plane, where two planes are shown in figure 27. We denote
the circulations on these two planes as Γf and Γc and define Γr = Γf − Γc.

Figure 28(a–c) compares the evolution of Θ , Af , Ac and Γr/Γf in our DNS and Garten
et al. (2001)’s DNS. The theoretical predictions by Crow (1970) are plotted in figure 28(a)
as references. We see that both DNS follow the theoretical predictions quite closely.
A detailed discussion of these flow quantities and their behaviours is not the purpose of
this validation study, and it is not pursued here.
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