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In this paper we give a classification up to isomorphism of Jordan nilalgebras whose lattices of subalgebras
are modular when the ground field is algebraically closed.
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0. Introduction and preliminaries

Several authors have worked on the problem of finding out the consequences on the
structure of an algebra of imposing classical lattice conditions on its lattice of
subalgebras. Modularity is maybe the most popular of these conditions and we can find,
for example, several papers on the structure of Lie and Malcev algebras whose lattices
of subalgebras are modular or semimodular (see [1, 4, 5, 8]) and, recently, on the same
problem for Jordan algebras (see [2] and [3]).

In [3] it was shown that over algebraically closed fields Jordan algebras with
modular lattices of subalgebras have nilradicals of codimension not bigger than two. In
this paper we will extend the properties given in [2] for nilpotent Jordan algebras to
Jordan nilalgebras and use such properties, when the field is algebraically closed, for
obtaining a classification up to isomorphism of these nilradicals.

We will suppose that the reader knows the usual terms in lattice theory: sublattice,
chain, lattice isomorphism, length of a lattice (the supremum of the lengths of all the
chains, where the length of a chain is its cardinality minus one),...

A lattice (L, g)=(L, A, v) is said to be modular when one of the three following
equivalent conditions holds:

(1) If x^z then x A (y v z)=(x A y) v z.
(2) x A (y v z)=x A [{y A (x v z)) v z] ("shearing identity")
(3) L does not contain a pentagon (as a sublattice).

Given a,b in a lattice L, we define the closed interval between a and b and put [a,b]
for the sublattice of L given by \
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In a lattice (L, ^ ) = (L, A , v) we put x- <y and say x,y are consecutive when x^y,
and \_x,y] = {x,y}.

A lattice (L, ^)=(L, A , v) is said to be semimodular if:

a— <b=>a v c— <b v c or a v c=ft v c for all c in L.

It is well known that a modular lattice is always semimodular and also:

Theorem 0.1. (Jordan-Holder chain condition). In a semimodular lattice with finite
length all maximal chains have the same lenght.

See Gratzer [6], for the terms and results mentioned on lattice theory.)
Let J be an algebra over a field. We will put L(J) for its lattice of subalgebras, where

^ , A , v are naturally defined (^ is the inclusion relation). We define the length of J
(and put l(J)) as the length of L(J).

It is very easy to prove:

Proposition 0.2. Let J be a F-algebra, F afield. Then l(J)^dimFJ. If J is solvable,
then l(J) = dimFJ.

Definition 03. An algebra J is called modular (semimodular), if L(J) is modular
(semimodular).

The easiest examples of modular algebras are trivial algebras since the lattice of
submodules of a module is a modular lattice.

Having in mind that closed intervals inherit the properties of modularity and
semimodularity from the lattice where they are included, its immediate to prove the
following result:

Proposition 0.4. For any algebra J we have:

(i) / / J is modular then it is semimodular.
(ii) If J is modular (semimodular), then all of its subalgebras and quotients are modular

(semimodular).

In a power associative algebra we define the order of a nilpotent element x (and put
o(x)) as the number n such that x" = 0 and x""1 #0.

Given X a subset of an algebra J, we will put (X) for the subalgebra of J generated
by X and <.Y> for the vector space spanned by X.

" ^ " will mean "is a subalgebra of' when we deal with algebras.
" + " will mean sum of vector subspaces when we deal with vector spaces.
" -j-" will mean direct sum of vector spaces.
"©" will mean direct sum of ideals.

Throughout this paper we will deal with algebras over fields of characteristic not two.
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We will also suppose that the reader knowns the usual definitions and properties
concerning Jordan algebras which can be found in [7] and [9].

1. Modular Jordan nilalgebras: the ideal T

In [3] it was proved:

P r o p o s i t i o n 1.1. Let J be a power associative algebra. If J is semimodular then it is
algebraic and for any nilpotent element x in J, we have o ( 5

Corollary 1.2. / / a Jordan nilalgebra is semimodular, then it is locally nilpotent.

Theorem 13. Let N be a Jordan nilagebra. Then the following are equivalent:

(i) N is modular.
(ii) N is semimodular.

(iii) Given any pair of subalgebras of N, S and T, S+T is always a subalgebra of N.

We will use characterization (iii) instead of the very definition of modularity when we
deal with Jordan nilalgebras. In particular, when N is a modular Jordan nilalgebra and
a, b are elements in N, the subalgebra (a,b) = (a) v (b) generated by a and b is exactly
( )

If N is a nilpotent modular algebra, T(N) — {xeN\x2 = 0} is the biggest trivial
subalgebra of N and it is also and ideal of N (see [2]). Since these facts can be written
in terms of pairs of elements, and using (1.2), the following is clear:

Proposition 1.4. Let N be a modular Jordan nilalgebra. Then T(N) = {xeN\x2=0} is
an ideal of N, and it is also the biggest trivial subalgebra of N.

Now, for N any modular Jordan nilalgebra, we can construct inductively a chain of
ideals of N, T^N), in the following way:

It is clear that we obtain an ascending chain of ideals with the property:

With the same proofs as those given in [2] for nilpotent algebras and using (1.2) we
obtain:

Theorem 1.5. Let N be a modular Jordan nilalgebra. Then N=T3(N).
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Corollary 1.6. Let N be a modular Jordan nilalgebra. Then the third solvable power of
N is zero.

Proposition 1.7. Let N be a modular Jordan nilalgebra. Then (N3)2=0.

We will also point out a Lemma, used in the proof of (1.4), which will be explicitly
used in the next section.

Lemma 1.8. Let N be a modular Jordan nilalgebra. Let a, y be elements in N such
that y2=0. We have:

ifo(a) = 3 then y a = 0,

if o(a) = 4 then y a e <a3 >,

ifo(a) = 5 then y ae(a3,a4}.

2. Modular Jordan nilalgebras over algebraically closed fields

Throughout this section N will be a modular Jordan nilalgebra over F, an
algebraically closed field.

Lemma 2.1. Let a, b be elements in N, with o(a) = o(b) = 3. Then

where X is in F* = F-{0} and s is in T(N).

Proof. We know (a) = {a,a2>, (b) = <M2>.

Case 1. if (a)=(ft), then b = Xa + fia2 with A#0 and fia2 is obviously in T(N).
Case 2. If dimF((a) n(b)) = 1, then it is clear that (a) n(fc) = <a2> = <fc2>. Since F is

algebraically closed we can suppose, changing a or b if necessary, that

From (1.3), ab belongs to (a) + (b) = (a,b,a2y and has no component in a or b since
(a,b) is nilpotent from (1.2). That is to say ab = ya2, where y is in F. Now we have for all
x in F:

(a + xb)2={l+2yx + x2)a2.

Let *i, x2 be the roots of the polynominal \ + 2yx + x2. If these roots are different,
then <a + x1i>>, <a + x2fc> are subalgebras of N, (a,b) = (a+x1b} v
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>, which is a contradiction since we are supposing that (a,ft) =
(a)+(ft) has dimension three. Hence xt =x2 and y = 1 or — 1.

Thus, taking — a instead of a if necessary we can suppose ab = a2.
Now (a—b)2=0, that is to say a—b is in T(N), which is what we wanted to prove (A

would appear from the changes we may have done).

Case 3. If (a) n (b)=0, then (a, ft) = (a) v (6)=(a)+(ft) = <a, a2, ft, ft2 > has dimension
four (using (1.2)). From (1.8) we know:

If aft=0, then (a + b)2 = a2 + b2=(a-b)2, (a + b)3=(a-b)3 = 0. Hence, using (1.3),
(a, ft)=(a + ft) v (a—ft)=(a + ft)+(a—b) = (a + b,a—b,a2 + b2}, which is a contradiction
since we are supposing that (a, b) has dimension four.

If afc#0, since ab belongs to {a,b,a2,b2} and has no component in a or ft using (1.2),
we can put without loss of generality

ab = a2 + \ib2, where pi is in F.

Now (a-l/2ft)2 = (l/4-/x)ft2, (a-l/2ft)3 = 0 using (1.8) and the subalgebra (a,b) =
{a—l/2ft) v (ft) = (a-l/2ft) + (ft) = <a-l/2ft,ft,ft2>, which is a contradiction since (a, ft) is
supposed to have dimension four. •

Corollary 2.2. Let N have elements all of which have order less than or equal to three.
Then either N is trivial or N^(a)@S with o(a) = 3 and S a trivial algebra.

Proof. If N is not trivial then there exists a, an element in N such that o(a) = 3.
Using (2.1), N = <a> + T(N). From (1.8) aT(N)=0. Let us take B a basis of T(N)
containing a2. Take S = <B-{a2}>. •

Lemma 23. Let a, ft be elements in N such that o(a) = 4, o(ft) = 3. Then the elements
ft2 and ab are in <a3>.

Proof. Case 1. Suppose (a) n(ft)#0. In (a) there is no element of order three, hence

(a)n(ft) = <ft2>.

Thus b2 = Xa2+fia3.
If A#0, we can put
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instead of a and suppose, without loss of generality that a2 = b2 (use (1.8)). Now ab is in
(a, b)=(a)+(b) = (a,a2,a3,by (from (1.3)) and has no component in either a or b because
(a,b) is nilpotent. Put ab = ka2 + fM3, where X,\i are in F. Hence (a + xb)2 =
(l+2Ax + x2)a2+2fixa3, for all x in F. Take xt one of the roots of l+2Ax + x2 and
b'=a + x1b. Using (1.8) it is easy to check that b'3=0. If o{b') = 2, then (a,b)=(b',b) =
(b')+(b) = (b',b,b2y, which is a contradiction since (a,b) has at least dimension four. If
o(b') = 3, then b and b' are elements of order three and b' — eb has square different form
zero for any element e in F; this contradicts (2.1).

We have proved A = 0 and b2 = \ia3. Using that F is algebraically closed we can
change b if necessary and suppose with loss of generality b2 = a3.

Put ab=ya2 + 5a3, using (a,b) is nilpotent. Now, if y#0, then

b' = a-—b
2

satisfies b'2 = aa3,b'3 = 0 and (a,b)=(b',b)=(b')+(b) = (b,b2 = a3,b">, which is a contra-
diction since (a,b) has dimension at least four. We have proved y=0 and afce<a3>.

Case 2. Suppose (a)n(b) = 0. From (1.8), <a3> is an ideal in (a,b). In the quotient
(a,fc)/<a3>, the elements a + (a3} and fe + <a3> have order three and the subalgebras
generated by them have zero intersection. This contradicts (2.1). •

Corollary 2.4. Let a, V be elements in N such that o(a) = 4,o(b') = 3. There exists b, an
element in N such that {a,b')=(a,b) = (a,a2,a3 = b2,b}, o{b) = 3, ab = a2b = a3b = 0.

Proof. We have proved in (2.3) that b'2 = Xa3 where A is in F*.

Take

From (2.3) ab"=\ia3. Now b = b"—fia3 is the element we wanted (to check that, use
(1.8)). •

Lemma 2.5. Let a, b be elements in N such that o(a) = o(b)=4. Then (a)=(b) or

Proof. If (a)n(b) = 0 then, considering <a3,fc3>, which is an ideal in {a,b)=(a)+(b)
by (1.8), we get the quotient (a, fc)/<a3, b3 >, where the elements a + <a3,fc3> and
b + (a3,b3y generate subalgebras with zero intersection, contradicting (2.1).

Thus (a)n(fc)#O. Let us see that dimF((a)n(fc)) = l is impossible. It is clear that
one-dimensional subalgebras of (a) are <a2 + /wi3> = <(a+5jza2)2>, where \i is in F, and
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<a3). Making changes of the form a+^/m2 instead of a, permuting a and b, and
multiplying by elements in F* if necessary, the possibilities can be reduced to:

Casel. (a)n(h) = <a2> = <b2>, where a2 = b2. The product ab is in (a) v (b) =
(a)+(b) and has "zero component" in a and b, since (a) v (b)=(a,b) is nilpotent. That is
to say ab — <xa2 + Pa3 + yb3, where a,P,yeF.

We have (a+xi»)2=(l + lax + x2)a2 + 2pa3 + 2yxb3 for all x in F.
Let x| be a root of the polynomial l+2ax + x2 (in particular x^O) . Take

b^a + x^. The element b'2 belongs to <a3,fc3> and b'3=0, since ab3 = ba3=0
(ab3 = a(bb2) = a(ba2) = (ab)a2=O using the Jordan identity and the fact that ab and b2

are in T(N)). If b'2 = 0 then {a)+(b) = {a,b) = (b',b)=(b')+(b) = (b',b,b2,b3}, which is a
contradiction since we are supposing (a)+(b) has dimension five. If fe'2#0 then o(b') = 3
and using (2.3) b'ae(a3} and b'be(b3). But b'a = a2+x1ab and thus afte<a2,a3>.
Similarly b'b = ab + x1b

2 and abe(b2,b3). We know <a2,o3> n <fc2,fc3> = <fc2>. Hence
ab e <a2 >, afe = aa2 and fe'2 = 0, which is a contradiction.

Case 2. (a)n(6) = <a2> = <b3> and a2 = b3. Using (1.8), <a3,fc3> = <a2,a3> is an ideal
of (a,b). In the quotient {a,b)/(a3,b3}, the elements a + <a3,b3>, and fc + <a3,63> have
orders two and three respectively. From (1.8) abe<a3,f>3>. Put ab = kb3+fia3 =

Let us note that (b-fia2)2 = b2, (b~na2)3 = b3, a(b-\ia2) = Xa2. Considering b-fia2

instead of b, we can suppose:

If A/0 then

Using Case 1, either

or

has dimension at least two; in either case,
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has dimension four, which contradicts our assumption. Hence ab=0.
Now (a + b)2 = b2 + b3 =(b + l/2b2)2.
It is clear that (b)=(b + l/2b2). Hence (a,b)=(a + b) v {b + l/2b2)=(a

(b + l/2b2) = <a + b,(a + b)2,(a + b)3,b + l/2b2,(b+l/2b2)3} (orders of a + b and b+l/2b2

are clearly less than or equal to four). From our assumption, the dimension of (a, b) is
five and thus (a + b)3i=Q. Now, the existence of elements a+b and b+l/2b2 contradicts
Case 1.

Case 3. (a) n(fr) = <a3> = <&3>. Evidently <a3> is an ideal in {a,b). In the quotient
(a,Z?)/<a3>, the elements a + (a3} and ft + <fc3> have order three and generate sub-
algebras with zero intersection, contradicting Lemma (2.1).

We have shown that (a) n (b) has dimension 2 or 3, which proves the Lemma since
for any element c of order three the only 2-dimensional subalgebra of (c) is <c2, c3 >.

•
Corollary 2.6. Let a, b be elements in N such that o(a) = o(b) = 4. Then either (a)=(b)

or (a,b)=(a,c) where c is an element in N such that o(c)^3.

Proof. Let us suppose (a) J=(b). From (2.5) <a2, a3 > = <b2, b3 >.

If a3 = Xb2 + yb3 and A^O (A,y in F), replacing b by

we can assume that a3 = b2 and b3 = oca2+pa3, where a, /? are in F and a#0 . Now the
products

are never zero, which is impossible since (a, b) is nilpotent.
We have shown that a3=yb3. Consequently a2 = Sb2+eb3, where 5, e are in F and

<5#0. Putting

instead of b, we can suppose:

The product ab is in (a,b) = <a,fe,a2,a3> and has zero component in a and ft since
(a, b) is nilpotent. We can write ab = <\>a2+ r\a3.
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In these conditions (a + xb)2=(l +2<j>x + x2)a2 + 2rixa3 for all x in F.
Take c = a + xtb for x, some root of the polynomial 1+2</>X + X2. •

Corollary 2.7. / / all elements in N have order less than five and there is some element
of order four, then N is isomorphic to one of the following algebras:

(i)
(ii) (b,b2,b3,a}@S,

where S is trivial, o(fc)=4 and, in (ii), o(a) = 3, a2 = b3, ab = ab2 = ab3=0,

Proof. If we cannot find elements of order three, then, from the previous result,
N=(a)v T1(N) = (a) + T1(N), where o(a) = 4. Let {a2,a3,sf|ie/} be a basis of Ti(JV). We
know from (1.8) that a st=fifi3, where //,eF. Define s'i=si—^iia

2 for all i in /. Taking
S = <si|ie/>, we get (i).

Suppose x, b are elements in N such that o(x) = 3, o{b) = 4. From (2.6), TV is generated
by B and some elements of order less than or equal to three. Using (2.1) all elements in
N of order less than or equal to three are in (x) v T^N). Thus N=(b) v (x) v T^N)^
(b,x) + T1(N). The subalgebra (b,x) is equal, using (2.4), to (b,a)= <a,a2,a3 = b2,b},
where b is an element in N such that o(b) = 3, ba = ba2 = ba3 = 0, dimF(a,b) = 4. Consider
{a2,a3,st;iel} a basis of T^N) and proceed as above to get S such that aS = Q. bS=O
(from (1.8)) and we get (ii). •

Lemma 2.8. / / N possesses elements of order five then it does not possess elements of
order four.

Proof. Let a,b be elements in N such that o(a) = 5, o(b) = 4. Since o(a2) = 3, from
Lemma (2.3), we know that a* = {a2)2 is in <b3>. It is clear that, in these conditions,
<04> = <fe3> is an ideal of (a,b)=(a)+(b). In the quotient (a,fe)/<a4>, the elements
a + (aAy, fc + <a4> have orders four and three respectively. Using Lemma (2.3) it is
readily seen that (a + <a 4 »n(b + <a4» = <ft2 + < a 4 » = <a3 + <a 4 » , which can be lifted
to (a)n(fc) = <fe2,fc3> = <a3,a4>, and [a + <«4>][fc + <a4>] is in <a3 + <a 4 » , which leads
to ab is in <a3,a4>.

We can suppose a* = b3, since F is algebraically closed.
Now, a3 = kaA + a.b2, where a, ksF, <x=£0. Using (2.3) again we know a2b = 5b3=5a*,

deF. For all x in F we can write the following identities where the Greek letters
represent elements in F:

(a+xb)2 = a2 + x2b2 + 2xab = a2 + ea3 + no*,

(a+xb)3 = a3+pa\ since a3be<63>, by (1.8), and a4b = b3b=0,

(a + xbf = a4+xba3 = a*+xabb2 = a4 + xab3 = a4+xaa4=(1+ xa)a4.
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Taking xl = — I/a, we get o(a + x1b) = 4 and so a + xtb is in T2(N). But b is also in
T2N) and we get that a is in T2(N), which is a contradiction since o(a) = 5 and

2 2 = 0. •

Proposition 2.9. / / N possesses an element a of order five then N is one of the
following algebras:

(i) (a)
(ii) [(a)

where S is a trivial ideal, o(t) = 2, ta = a3, ta2 = ta3 = ta*=0.

Proof. Using (2.8) we know that there is no element in N of order four. Besides that
a2 is an element of order three and, using (2.1), all the elements of order three are in

In the quotient N/T^N), a + T^N) is an element of order three and, from (2.1), we
obtain that N/T1(N)=(a + T1(N)) + T1{N/T1(N))=(a + T1(N)) + T2(N)/Tl(N). Thus N =
(a) + T2(N). We proved above that T2(N) (which consists of the set of elements of order
less then five) is contained in (a2) + 7;(JV). We obtain that N=(a) + T1(N).

Let {a3,a\si\iel} be a basis of T^N). We know (see (1.8)) that sia = (iia
3 + }.ia

4,
where /*,- and A, are in F. Define s'i=si—XflA. We get another basis {a3,a4,s||iel}, of
Ti(JV). The elements sj satisfy sl

ia = nia
3.

If sja = O for all i in /, we are in the situation described in (i), taking S = <{sj| ie/}>,
since Sa2=0 using (1.8).

Otherwise there exists i0 in / such that s'ioa = nioa
3 where /*(<,# 0. Without loss of

generality we can suppose s'ioa = a3. Define tj=Sj—Hjs'io for all j in / different from i0,
t=s'io and S = ({tj\j^io,jel}y. It is clear that St = Sa=0. Besides that Sa2 = 0 using
(1.8) and Sa3 = Sa4=0 since S, a3 and a* are in T^N). Using the definition of t,
ta=s"ioa = a3, ta2 = 0 (use (1.8)) and ta3 = ta4=0, since t, a3, a4 are in T^N). We are in
the situation described in (ii).

Proposition 2.10. Let M be a modular Jordan nilagebra. Let S be a trivial algebra.
Then M@S is modular. (Of course it is a Jordan nilalgebra.)

Proof. We just need to check (1.3) (iii), since M(&S is clearly a Jordan nilalgebra.
This is equivalent to proving that abe(a)+(b) for any pair of elements a, b in M(&S.

Put a = m+s, b = n + t, where m, n are in M, s, t are in S. Now ab = mn.
M is a modular Jordan nilalgebra, hence (m) v (n)=(m)+(n) is a nilpotent algebra

and it is not difficult to see that mn is in <m2,m3,...,n2,/i3,...>, which is an ideal in
(m)+(n). Thus ab=mn is in <m2,m3,...,n2,n3,...> = <a2,a3,...,fc2,&3,...> which is
contained in (a)+(ft). •
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Theorem 2.11. Modular Jordan nilalgebras over an algebraically closed field F are, up
to isomorphism, the following commutative, power-associative algebras:

MUk = S, where S2=0, dimFS = k,

^2,*=(a) © S, where a is nilpotent, o(a) = 3,S2=0, dimF S = k,
M3,*=(a) © S, where a is nilpotent, o(a)=4, S2=0, dimFS = Jfc,
M* k = (a,a2,a3,by @ S, where dimF<a,a2,a3,fc>=4, a, b nilpotent, o(a)=4, o(b) = 3,

b2=a'3,ba = ba2=ba3 =0, S2 = 0, dimF S = k,
M5,k=(a) © S, where a is nilpotent, o(a) = 5, S2=0, dimFS = fc,
W6,t = [(fl) + <t>]©S, where a, t nilpotent, o(a) = 5, o(t) = 2, ta = a3, ta2 = ta3 = ta* = 0,

S2=6,dimFS = k

(k could be an infinite cardinal number).

Moreover Mik^Mjtr if and only if i=j,k = r.

Proof. Use (2.2), (2.7), (2.9) and (1.1) to see that all modular Jordan nilalgebras must
be isomorphic to one of the models described in the theorem.

To see all the algebras Mik are Jordan nilalgebras is straightforward. Using (2.10) the
task of checking that they are modular is reduced to seeing that Muo is modular for
j = 2, 3, 4, 5, 6, which is also straightforward.

The following properties are immediate:

M l t does not possess elements of orders 3, 4, or 5.
M2,k does not possess elements of orders 4 or 5, but it does possess elements of

order 3.

M 3 t does not possess elements of orders 3 or 5, but it does posses elements of
order 4.

M4k does not possess elements of order 5, but it does possess elements of
order 3 or 4.

M5tt possesses elements of order 5 and dimF(r1(MJjk)M5jk) = dimF<a4> = l.
M6Jk possesses elements of order 5 and dimF(T1(M6it)M6tJk)=dimF<a3,a4> = 2.

From these properties it is clear that MUk^MJr implies i=j. But now k must be
equal to r, since dimFAfipt=dimFMIir. •

Corollary 2.12. A modular Jordan nilalgebra over an algebraically closed field is
nilpotent (of order five).

Corollary 2.13. A modular Jordan nilalgebra over an algebraically closed field is
special.
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Proof. Use Shirshov's Theorem (see [9]) since Mf>0 for I'G{1,2,3,4,5,6} is generated
by two elements and M M is the direct sum (of ideals) of M, 0 and a trivial algebra.

•
Note. It would be interesting to know if (2.12) and (2.13) can be generalized to the

case of arbitrary ground fields (of characteristic not two). A direct proof of (2.12) and
(2.13), without going through the classification obtained in (2.11) would be useful to
provide ideas to attack the same problem in arbitrary fields.

On the other hand, as it was mentioned in the introduction, in [3] it is shown that all
modular Jordan algebras are extensions of dimension two of their nilradicals. It could
be interesting to get a classification of modular Jordan algebras (not necessarily nil)
over algebraically closed fields, extending (2.11).
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