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This paper presents a comprehensive study of flow-induced vibrations of a D-section prism
with various angles of attack α (= 0◦–180◦) and reduced velocity U∗ (= 2–20) via direct
numerical simulations at a Reynolds number Re = 100. The prism is allowed to vibrate
in both streamwise and transverse directions. Based on the characteristics of vibration
amplitudes and frequencies, the responses are classified into nine different regimes: typical
VIV regime (α = 0◦–30◦), hysteretic VIV regime (α = 35◦–45◦), extended VIV regime
(α = 50◦–55◦), first transition response regime (α = 60◦–65◦), dual galloping regime
(α = 70◦), combined VIV and galloping regime (α = 75◦–80◦), narrowed VIV regime
(α = 85◦–145◦), second transition response regime (α = 150◦–160◦) and transverse-only
galloping regime (α = 165◦–180◦). In the typical and narrowed VIV regimes, the vibration
frequencies linearly increase with increasing U∗. In the hysteretic and extended VIV
regimes, the vibration amplitudes are large in a wider range of U∗ as a result of the
closeness of the vortex shedding frequency to the natural frequency of the prism because of
the shear layer reattachment and separation point movement. In the two galloping regimes,
the transverse amplitude keeps increasing with U∗ while the streamwise amplitude stays
small or monotonically increases with increasing U∗. In the combined VIV and galloping
regime, the vibration amplitude is relatively small in the VIV region while drastically
increasing with increasing U∗ in the galloping region. In the transition response regimes,
the vibration frequencies are galloping-like but the divergent amplitude cannot persist at
high U∗. Furthermore, a wake mode map in the examined parametric space is offered.
Particular attention is paid to physical mechanisms for hysteresis, dual galloping and flow
intermittency. Finally, we probe the dependence of the responses on Reynolds numbers,
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mass ratios and degrees of freedom, and analyse the roles of the shear layer reattachment
and separation point movement in the appearance of multiple responses.

Key words: flow–structure interactions, vortex dynamics, wakes

1. Introduction

Flow-induced vibrations (FIV) of cylindrical structures have been investigated over the
past decades on account of scientific and engineering significance. Applications are
ubiquitous in engineering and nature, such as heat exchanger tubes, marine risers, offshore
platforms, skyscrapers, chemical reaction towers, crops and trees under wind or current.
The circular cross-sectional structures are the most commonly encountered and, thus,
draw the attention of academicians, researchers and engineers. Owing to the rotational
symmetry of a circular cylinder, vortex-induced vibration (VIV) turns into the only
possible response. A large number of fundamental studies on the VIV of a circular cylinder
have provided a comprehensive understanding of this crucial fluid–structure interaction
(FSI) problem. Readers can refer to reviews by Sarpkaya (2004), Williamson & Govardhan
(2004), Bearman (1984, 2011), Wu, Ge & Hong (2012) and Ali et al. (2021). Nonetheless,
based on Derakhshandeh & Alam’s (2019) classification of the cross-section shapes, in
addition to the continuous and finite curvature shape (e.g. circular cylinder), there are two
other shapes. One is the sharp-edged shape of infinitely large curvature, such as a triangular
or square prism, where the flow separation is stationary, and the other is a combination of
the continuous and finite curvature and the infinitely large curvature, such as a D-section
prism, where the flow separation is fixed or moving along a segment of the curved surface
(Alam, Zhou & Wang 2011; Alam, Abdelhamid & Sohankar 2020; Abdelhamid, Alam
& Islam 2021; Alam 2022a). A brief review of FIV of an elastically mounted prism,
especially cross-flow vibration differences caused by the streamwise freedom, is given
to provide preliminary knowledge.

Vortex-induced vibration of a circular cylinder is a mass-damping-dependent response
(Williamson & Govardhan 2004; Alam 2021). Depending on mass-damping values, the
VIV response can be two- (i.e. initial and lower branches) or three-branched (i.e. initial,
upper and lower branches) (Williamson & Govardhan 2004). In the initial branch the
vibration amplitude increases sharply with increasing reduced velocity (U∗ = U∞/fnD,
where U∞ is the incoming flow velocity, fn is the natural frequency of the cylinder or
prism and D is the cylinder diameter or prism width). In the upper branch the amplitude
is largest and the vortex shedding frequency is close to fn, especially when the mass ratio
m∗ (= m/mf ) is large, where m and mf are the cylinder mass and displaced fluid mass,
respectively. However, in the lower branch the amplitude is significantly dependent on the
mass-damping value (Khalak & Williamson 1997). At a high mass-damping value, the
amplitude rapidly decreases with increasing U∗ while at low mass-damping it maintains a
constant value for a short U∗ range before a drop (Feng 1968; Khalak & Williamson 1997).
The wake features a 2S mode in the initial branch and a 2P mode in the upper and lower
branches (Brika & Laneville 1993; Khalak & Williamson 1999; Govardhan & Williamson
2000, 2006). Here, S and P denote single vortex and paired vortex, respectively. For a
circular cylinder, the degree of freedom of the vibrations in the streamwise direction has
an insignificant influence on cross-flow vibrations, especially at high m∗ values (Moe &
Wu 1990; Sarpkaya 1995). Jauvtis & Williamson (2003, 2004) carried out a series of water
tunnel experiments with the same natural frequency in two directions and noticed evident
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influences only when m∗ < 6.0. A new branch, named ‘super-upper’ branch, is observed
for the first time, where the transverse amplitude reaches 1.5D. The wake changes into a
2T mode, with T denoting triple vortices.

For a non-circular prism, symmetry breaking of the cross-section and stationary
separation points may radically alter the FIV response. Nemes et al. (2012) at Re =
2.5 × 103–1.25 × 104, m∗ = 2.2 and ζ = 2.95 × 10−3 found that as the angle of attack
(α) increases, a transversely oscillating square prism undergoes galloping (α = 0◦–7.5◦),
a mixed mode (α = 10◦–22.5◦) and VIV (α = 25◦–45◦) successively. Here, α = 0◦
represents the configuration that one side of the square prism is perpendicular to
the incoming flow. Cui et al. (2015) at Re = 2.2 × 104 and m∗ = 2.4 studied the
transverse response of a rectangular prism with aspect ratios of 0.5 and 1.0 (square).
They found that for the aspect ratio of 1.0, galloping and VIV occur at α = 0◦ and
22.5◦–45◦, respectively. On the other hand, for the aspect ratio of 0.5, a combined VIV
and galloping response develops at α = 0◦, and pure galloping emerges at α = 90◦.
Carlson, Currier & Modarres-Sadeghi (2021) at Re = 103–4.3 × 103 and m∗ = 4.52
experimentally studied the two-degrees-of-freedom (2DOF) FIV of a square prism with
a streamwise-to-transverse natural frequency ratio of 2. Three different responses are
recognized: VIV at α = 20◦–45◦ where the lock-in narrows as α decreases; galloping
at α = 0◦–5◦ where the transverse amplitude increases gradually with increasing U∗ and
the streamwise amplitude is relatively small, albeit increasing with U∗; and a transition
response at α = 10◦–15◦ where both VIV and galloping responses occur with or without
a gap lying between them. Zhao, Cheng & Zhou (2013) numerically studied 2DOF
vibrations of a square prism at Re = 100 and m∗ = 3.0. As a result of low Re and m∗,
only the VIV response is detected for all α (= 0◦–45◦) values (Joly, Etienne & Pelletier
2012; Sen & Mittal 2011, 2015; Mao et al. 2018; Sourav & Sen 2019, 2020; Tang & Zhou
2020). At a higher Re or m∗, combined VIV and galloping responses were reported by
He, Zhou & Bao (2012), Bhatt & Alam (2018) and Li et al. (2019), irrespective of degree
of freedom (DOF). Zhao (2015) at Re = 200 and m∗ = 10 observed that both VIV and
galloping responses can appear in 2DOF vibrations of a rectangular prism with aspect
ratios of 0.3–1.25.

Seyed-Aghazadeh, Carlson & Modarres-Sadeghi (2017) experimentally studied
transverse vibrations of an equilateral triangular prism at Re = 490–2700. Three distinct
responses, i.e. no vibration at α < 25◦, combined VIV and galloping at α = 30◦–35◦
and galloping at α > 35◦ are identified. At Re = 200, Chen et al. (2020a) numerically
observed three similar responses, i.e. VIV at α = 0◦–25◦, combined VIV and galloping at
α = 30◦–40◦ and galloping at α = 45◦–60◦. Furthermore, they compared the responses
in the one-degree-of-freedom (1DOF) (only the transverse direction) and 2DOF cases and
noted that the streamwise freedom has a significant influence on the vibration competition
in the combined regime.

Studies on the FIV of a D-section prism are scarce. Based on the investigation methods
employed in the literature, we may divide the studies into three clusters. In the first cluster,
wind tunnel experiments were done with large m∗ values, of the order of 102 (Lanchester
1907; Brooks 1960; Parkinson 1963; Feng 1968; Novak & Tanaka 1974; Weaver &
Veljkovic 2005; Sirohi & Mahadik 2012). These studies focused on configurations of
α = 0◦ (reversed D-section) and 180◦ (D-section). However, as a result of the higher
m∗, no vibration is observed for a reversed D-section prism while narrow-ranged VIV
or galloping occurs for a D-section prism if initial disturbances are added. In the second
cluster, water tunnel experiments were performed with small m∗ values, of the order
of 1 or 10 (Zhao, Hourigan & Thompson 2018; Chen et al. 2021). Zhao et al. (2018)
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experimentally investigated the transverse vibrations of a D-section prism in a water flume
at m∗ = 6.0 and Re = 1080–9000. They found that at α = 180◦, galloping occurs without
initial disturbances, while VIV dominates at α = 0◦, comprising the upper and lower
branches, similarly to a circular cylinder case. Recently, Chen et al. (2021) experimentally
studied the transverse responses of a D-section prism at m∗ = 11.35 and α = 0◦–180◦.
Seven types of responses are reported: typical VIV, first transition, small-amplitude
VIV, combined VIV and galloping, second transition and pure galloping. In the third
cluster, direct numerical simulations were used (Kumar et al. 2020; Chen et al. 2022b;
Sharma, Garg & Bhardwaj 2022). Kumar et al. (2020) and Sharma et al. (2022) examined
vibrations of a D-section prism with m∗ = 5.0–12.7 and Re = 100 at α = 0◦ and 180◦.
They observed VIV and galloping at α = 0◦ and 180◦, respectively. Chen et al. (2022b)
investigated the transverse response of a D-section prism with α = 0◦–180◦. After a
careful examination, they identified six different types of responses, including typical
VIV, extended VIV, combined VIV and galloping, narrowed VIV, transition response
and galloping. These studies showed that a D-section prism undergoes several response
patterns because of the prism’s symmetry breaking and combinations of stationary and
non-stationary separation points.

The above review confirms the disparities in cross-flow vibrations owing to the addition
of streamwise freedom. Along with meticulous numerical simulations of a D-section prism
with 2DOF, the impacts of adding the streamwise freedom are discussed in the present
study. Following the work of Chen et al. (2022b), we home in on three critical issues: (1)
possible types of responses, (2) spectral contents of each response and (3) flow physics
of several critical response behaviours, which offer a comprehensive understanding of
2DOF FIV of a D-section prism. Furthermore, we provide a summary of possible FIV
responses at different parameter combinations and explain the roles of the shear layer
reattachment and separation point on identified responses. The remainder of this paper is
structured as follows. In § 2 the adopted numerical methodology and validation cases are
presented. In § 3 the vibration and spectral details of each response are provided. In § 4
the wake modes in the U∗–α plane and flow physics for special behaviours are given. In
§ 5 statistics and spectral features of the fluid forces and phase lags between the lift and
transverse displacement are displayed. In § 6 classifications of possible FIV responses of
a D-section prism at various conditions and explanations of how the identified responses
occur under the impacts of shear layer reattachment and separation point movement are
discussed. In § 7 the main findings of this paper are summarized.

2. Numerical methodology and validations

2.1. Numerical methodology
The FSI is simulated using the immersed boundary (IB) method that was first introduced
by Peskin (1972) to simulate the blood flow around the flexible leaflet of a human heart. In
the framework of the IB method, the flow governing equations are discretized on a fixed
Cartesian grid, which generally does not conform to the geometry of moving solids. As a
result, the boundary conditions on the fluid–cylinder interface, manifesting the interaction
between the fluid and the structure, cannot be imposed directly. Instead, an extra body
force is added to the momentum equation using interpolation and distribution functions
to take such interaction into account. Compared with conventional numerical methods,
the IB method has significant advantages, particularly in FSI simulations with topological
changes. Another merit of the IB method lies in its parameterized and fast implementation
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for a large number of simulations with different geometric configurations compared with
conventional methods using body-conformal grids.

The dynamics of the elastically supported D-section prism is simplified as a
mass-damper-spring system. In this study the prism is free to oscillate in both the
streamwise and transverse directions and the governing equations of prism motion are

Ẍ + 4πFnζ Ẋ + (2πFn)
2X = 4CD

πm∗ , (2.1)

Ÿ + 4πFnζ Ẏ + (2πFn)
2Y = 4CL

πm∗ , (2.2)

where m∗ (= 8m/πρD2, m is the prism mass per unit length, ρ is the fluid density and D is
the prism diameter) is the mass ratio, ζ is the structural damping ratio, Fn (= fnD/U∞, fn is
the natural frequency of the prism and U∞ is the incoming flow velocity) is the normalized
natural frequency of the prism, X (= x/D, x is the streamwise displacement) and Y (=
y/D, y is the transverse displacement) are the normalized streamwise and transverse
displacements, and CD (= 2FD/ρU2∞D, FD is the drag force) and CL (= 2FL/ρU2∞D,
FL is the lift force) are the dimensionless drag and lift coefficients, respectively. The
governing equations of prism motion are based on Newton’s second law and solved by
applying the standard Newmark-β method – a method of numerical integration used to
solve differential equations, which is widely used in numerical evaluations of structural
responses. More details of the present methodology can be found in our previous works
(Ji, Munjiza & Williams 2012; Chen et al. 2015, 2019, 2022b).

The streamwise and transverse lengths of the computational domain are 100D, as
shown in figure 1(a). The prism is placed at the centre of the computational domain.
The domain is discretized by a non-uniform Cartesian grid with the largest resolution
of 2304 × 1536. To improve the accuracy of numerical results, a rectangular region
of 30D × 20D, enclosing the prism, is meshed uniformly, with a non-dimensional grid
spacing of 1/64 in both directions. A stretched mesh is adopted out of the region to keep the
total grid number within an affordable range. The same mesh configuration was adopted
in our previous simulations (Chen et al. 2015; Chen et al. 2018; Chen et al. 2020b, 2022b).
A Dirichlet-type boundary and a Neumann-type boundary are adopted at the inflow and
outflow, respectively. The top and bottom boundaries are set as free-slip boundaries. The
number of IB points for the prism is selected as 506 to ensure at least one IB point in each
grid cell.

The angle of attack (α) is varied from 0◦ to 180◦, where α = 0◦ and 180◦ correspond
to the configurations with the flat surface pointing downstream and upstream, respectively
(figure 1b). The reduced velocity U∗ is varied from 2.0 to 20.0, with m∗ = 2.0 and ζ = 0.
To keep the effective Reynolds number constant for α = 0◦–180◦, we define the Reynolds
number as Re = U∞De/ν = 100, where effective diameter De = 0.5(1 + | cos α|)D and
ν is the fluid kinematic viscosity. The intervals of α and U∗ are as small as �α = 5◦ and
�U∗ = 0.1, which lead to more than 1000 simulation cases.

The C̄D or C̄L and C′
D or C′

L are the time-mean and root-mean-square (r.m.s.) values
of the corresponding forces, respectively. The non-dimensional streamwise and transverse
amplitudes are defined as A∗

x = √
2yrms/D and A∗

y = √
2yrms/D, where xrms and yrms are

the r.m.s. values of the streamwise and transverse displacements, respectively. The lift,
drag and vibration frequencies are obtained through the fast Fourier transform, and the
phase lag between the lift and displacement is obtained through the Hilbert transform.
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1
0
0
D

Uniform mesh region

100D

O

De

α

(b)(a)

Figure 1. (a) Computation domain for the 2DOF FIV of a D-section prism and (b) a sketch for the
angle of attack (α).

(U∗, α) �tU∞/D C̄D C′
D C̄L C′

L A∗
x A∗

y Fx Fy

(5, 15◦) 0.004 2.561 0.153 0.443 0.337 0.114 0.641 0.168 0.168
(5, 15◦) 0.002 2.595 0.154 0.449 0.328 0.115 0.640 0.168 0.168
(8, 50◦) 0.004 1.686 0.118 0.381 0.115 0.306 0.679 0.127 0.127
(8, 50◦) 0.002 1.691 0.117 0.379 0.114 0.307 0.679 0.126 0.126
(12, 70◦) 0.004 1.058 0.097 0.334 0.180 0.616 1.234 0.063 0.063
(12, 70◦) 0.002 1.061 0.098 0.336 0.181 0.620 1.239 0.062 0.062
(4, 120◦) 0.004 1.355 0.060 −1.074 0.044 0.055 0.205 0.243 0.243
(4, 120◦) 0.002 1.359 0.060 −1.085 0.045 0.055 0.204 0.243 0.243
(10, 160◦) 0.004 2.613 0.213 −0.752 0.377 0.393 1.498 0.085 0.085
(10, 160◦) 0.002 2.619 0.212 −0.764 0.374 0.399 1.507 0.085 0.085
(12, 180◦) 0.004 2.622 0.152 0.011 0.109 0.161 1.697 0.176 0.089
(12, 180◦) 0.002 2.619 0.150 0.009 0.107 0.160 1.697 0.176 0.089

Table 1. Comparison of the results of 2DOF FIV of a D-section prism at different non-dimensional time
steps. Here, Fx (= fxD/U∞) and Fy (= fyD/U∞) are the normalized vibration frequencies in the streamwise
and transverse directions, respectively.

2.2. Convergence analysis and validation cases
Both the convergence analysis and validation cases for the present numerical methodology
have been presented in Chen et al. (2022b) for the FIV of a D-section prism. For the sake
of conciseness, in this paper we check only the non-dimensional time step (�tU∞/D) for
the 2DOF FIV of a D-section prism. As shown in table 1, the variations in the fluid forces,
vibration amplitudes and frequencies are insignificant when the non-dimensional time step
�tU∞/D is reduced from 0.004 to 0.002. It suggests that �tU∞/D = 0.004 is enough for
the present simulations.

3. Structural responses

The vibration responses of a D-section prism oscillating in streamwise and transverse
directions are presented for α = 0◦–180◦ and U∗ = 2–20. Based on the characteristics of
A∗

x , A∗
y , f ∗

x (= fx/fn) and f ∗
y (= fy/fn), vibration responses are classified into nine regimes:

i, typical VIV at α = 0◦–30◦; ii, hysteretic VIV at α = 35◦–45◦; iii, extended VIV at α =
50◦–55◦; iv, first transition from extended VIV to dual galloping at α = 60◦–65◦; v, dual
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Figure 2. Non-dimensional vibration amplitudes A∗
x (a) and A∗

y (b) and vibration frequencies f ∗
x (c) and f ∗

y
(d) versus reduced velocity U∗ (= 2−20) and angle of attack α (= 0◦–180◦). Regimes i–ix denote typical VIV,
hysteretic VIV, extended VIV, first transition, dual galloping, combined VIV and galloping, narrowed VIV,
second transition and transverse-only galloping, respectively. The border between two consecutive regimes is
identified with the midpoint between two adjacent simulated α where one regime transitions to another.

galloping at α = 70◦; vi, combined VIV and dual galloping at α = 75◦–80◦; vii, narrowed
VIV at α = 85◦–145◦; viii, second transition from narrowed VIV to transverse-only
galloping at α = 150◦–160◦ and ix, transverse-only galloping at α = 165◦–180◦. The
vibration and frequency responses for each regime are presented in figure 2. According
to the underlying physics, we classify these regimes into three groups: the first is VIV,
including regimes i–iii and vii, which is excited by the lock-in (or synchronization) of
the prism vibration and vortex shedding (Williamson & Govardhan 2004); the second is
galloping (or combined galloping), including regimes v, vi and ix, which is a quasi-steady
phenomenon and driven by the mean fluid forces (Païdoussis, Price & De Langre 2010);
and the third is the galloping-like response (or large-amplitude vibration), including
regimes iv and viii, in which the synchronization between the prism large-amplitude
low-frequency oscillation and the vortex shedding formation becomes loose (Stansby
& Rainey 2001; Yogeswaran & Mittal 2011), caused by multiple vortices shedding in
one vibration period. The borders of galloping-like and galloping responses are further
confirmed through the quasi-steady analysis and intrinsic features of the two responses.
The quasi-steady approach assumes that the instantaneous driving force on a moving
body is nearly equal to the static force obtained at the instantaneous angle of flow
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incidence, which has been demonstrated to be a useful method to predict the transverse
galloping instability (Naudascher & Rockwell 2005; Païdoussis et al. 2010). According
to the quasi-steady analysis of the D-section prism in Chen et al. (2022b), the galloping
occurs at 70◦ ≤ α ≤ 85◦ and 160◦ < α ≤ 180◦, which suggests that the response at α =
60◦–65◦ and 150◦–160◦ is not a galloping type. We further investigate the large-amplitude
vibrations at α = 60◦ and 160◦ (not shown here). The vortex shedding frequency is two or
three times the vibration frequency and the synchronization of the prism motion and fluid
fluctuations disappears. Therefore, these vibrations belong to galloping-like responses.
Lock-in is sometimes defined as when the vibration frequency equals the natural frequency
of the prism, i.e. f ∗

y = 1.0 (Blevins 1990; Zhang et al. 2015). However, depending on the
magnitude of the prism density (or mass ratio), the constant f ∗

y may be smaller or greater
than 1.0 (Khalak & Williamson 1997; Sarpkaya 2004; Williamson & Govardhan 2004;
Prasanth, Premchandran & Mittal 2011; Alam 2022b,c).

The characteristics of the responses of the three groups are discussed in the following
subsections.

3.1. Group 1: VIV
In the typical VIV regime, both A∗

x and A∗
y exhibit a similar behaviour to the VIV

of a circular cylinder (Singh & Mittal 2005; Leontini, Thompson & Hourigan 2006b;
Prasanth & Mittal 2008). They first increase and then decrease mildly with increasing U∗
(figure 3a). Similar to that in the 2DOF VIV of a circular cylinder, A∗

x is much smaller
than A∗

y (Jauvtis & Williamson 2004; Bourguet 2020). The maximum A∗
y is obtained at

U∗ = 5.0, regardless of α. Compared with the 2DOF VIV of a circular cylinder, A∗
y of the

D-section prism is comparable for U∗ ≤ 7.5 but significantly higher for U∗ > 7.5. On the
contrary, A∗

x for α = 15◦ and 30◦ is relatively higher for U∗ < 8.5, but comparable to that
of a circular cylinder for U∗ ≥ 8.5. This suggests that the symmetry breaking (α /= 0◦) of
the D-section prism exerts distinct impacts, i.e. significantly promoting A∗

x in the large A∗
y

region and enlarging A∗
y for U∗ > 7.5. The hysteretic VIV regime is characterized by the

appearance of a hysteresis loop as U∗ increases and decreases. As shown in figure 3(c), A∗
x

and A∗
y rapidly increase up to U∗ = 5.0–6.0 and then slowly decrease before plunging to

smaller values at U∗ = 8.0–10.0. After the plunge, A∗
x becomes very small and A∗

y keeps
declining slowly, being smaller at a higher α. Before the plunge, A∗

x and A∗
y are higher

at larger α but independent of α for U∗ ≤ 4.5. In the extended VIV regime the prism
vibration starts at the smallest U∗ examined, and the amplitudes become small after a
critical U∗, i.e. U∗ = 13.0 at α = 50◦ and U∗ = 13.5 at α = 55◦ (figure 3e). Compared
with the typical VIV, the large-amplitude vibration appears in a wider range of U∗. In the
narrowed VIV regime, A∗

x and A∗
y first increase and then decrease slowly with increasing

U∗, with significant growth as α increases (figure 3g). The large-amplitude vibration exists
in a narrow range of U∗.

The spectral results provide further insights into the characteristics of these VIV
regimes. In the typical VIV, three different branches are recognized based on the features
of f ∗

x and f ∗
y (Khalak & Williamson 1996), as shown in figure 3(b). At 2.0 ≤ U∗ < 3.5,

A∗
x and A∗

y are marginal, and f ∗
y closely follows the vortex shedding frequency (St) of the

stationary D-section prism, indicating a desynchronization region. At 3.5 ≤ U∗ ≤ 5.0, A∗
y

increases sharply and f ∗
y remains at 0.8, signifying the initial branch. This constant f ∗

y
below the St line in the initial branch, known as soft lock-in, has been reported in Mittal
& Kumar (1999), Singh & Mittal (2005) and Prasanth et al. (2006). After U∗ > 5.0, A∗

x
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Figure 3. Dependence of non-dimensional vibration amplitudes (A∗
x and A∗

y ) and frequencies ( f ∗
x and f ∗

y ) on
reduced velocity U∗ and angle of attack α. (a,b) Typical VIV, (c,d) hysteretic VIV, (e, f ) extended VIV and
(g,h) narrowed VIV. The results of the 2DOF VIV of a circular cylinder at Re = 100 are superimposed in (a,b).
The open circles denote the results of the 1DOF case. The inclined dashed lines in (b,d, f,h) with the same
colour as that of the streamwise amplitude represent the vortex shedding frequency (St) of the corresponding
stationary D-section prism. Same for figures 7 and 11.

and A∗
y decrease gradually, and the lower branch appears. However, unlike the circular

cylinder counterpart, f ∗
y for the D-section prism linearly increases with increasing U∗ due

to the fixed shear layer separation at the prism corners (Chen et al. 2022b). Owing to the
asymmetric vortex shedding (especially at larger α), f ∗

x /f ∗
y changes from 2 to 1 (Chen et al.

2022a,c). In the hysteretic VIV regime the response exhibits four branches (figure 3d).
At 2.0 ≤ U∗ < 3.0, A∗

x and A∗
y are relatively small, and f ∗

x and f ∗
y closely follow the St

line. It is, therefore, a desynchronization region. However, at 3.0 ≤ U∗ ≤ 3.5, A∗
x and A∗

y
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Figure 4. Power spectral density (PSD) of the displacements in the streamwise and transverse directions at
U∗ = 2–20 and selected α cases. For each U∗, the PSD is normalized by its maxima. (a,b) Typical VIV at
α = 15◦, (c,d) hysteretic VIV at α = 40◦, (e, f ) extended VIV at α = 50◦ and (g,h) narrowed VIV at α = 105◦.
In each plot the inclined dashed line represents the St of the stationary D-section prism. Same for figures 8
and 12.

rapidly increase, and f ∗
x and f ∗

y remain constant around 0.6, deviating from the St line. This
corresponds to the initial branch. In the third region, i.e. 3.5 < U∗ ≤ U∗

p , the amplitudes
are large, and f ∗

x and f ∗
y increase slowly with increasing U∗, deviating from the St line.

Here, U∗
p is defined as the reduced velocity at which the amplitude plunges, which strongly

depends on α. Similar to that in the VIV of a circular cylinder (Prasanth & Mittal 2008;
Zhang et al. 2015; Navrose & Mittal 2016), lock-in occurs and the lower branch takes
place. After U∗ > U∗

p , f ∗
x and f ∗

y increase linearly, approximately following the St line,
which leads to the desynchronization region. Similarly, in the extended VIV regime, three
different branches are recognized based on the characteristics of f ∗

x and f ∗
y (figure 3f ).

At small U∗ (2.0 ≤ U∗ < 3.5), A∗
x and A∗

y rapidly increase, and f ∗
x and f ∗

y closely follow
the St line, indicating a desynchronization region. At 3.5 ≤ U∗ < 13.5 for α = 50◦ and
3.5 ≤ U∗ < 13.0 for α = 55◦, A∗

x and A∗
y are relatively large, and f ∗

x and f ∗
y increase slowly

from a value smaller than 1.0 to higher than 1.0, deviating significantly from the St line. It
is the lock-in region. At U∗ > 13.0–13.5, A∗

x and A∗
y are small and invariant, while f ∗

x and
f ∗
y increase linearly, being slightly smaller than St. It is thus a desynchronization region. In

the narrowed VIV regime, f ∗
x and f ∗

y are identical (figure 3h). With increasing U∗, f ∗
x and

f ∗
y linearly increase, approximately following the St line, which is related to the fixed shear

layer separation point on the upper side of the prism.
The power spectral density (PSD) functions of the displacements in these VIV regimes

are shown in figure 4. In the typical and hysteretic VIV, only one frequency is observed
in the transverse vibration, while both the fundamental and harmonic frequencies emerge
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2DOF flow-induced vibrations of a D-section prism
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Figure 5. The trajectories of the streamwise and transverse displacements versus reduced velocity U∗ and
angle of attack α. (a) Typical VIV, (b) hysteretic VIV, (c) extended VIV and (d) narrowed VIV. The
displacements are of a figure-‘8’ (blue), irregular (grey), quasi-periodic (olive) or raindrop (red) shaped
trajectory. The lilac region represents the prism moving downstream at the extremes of the transverse oscillation
(CW) while the light green region represents the prism moving upstream at the extremes of the transverse
oscillation (CCW). Same for figures 9 and 13.

in the streamwise vibration, with the former having a comparable amplitude to that of
the latter, especially at higher U∗ (figure 4a–d). As shown in figure 5(a), at α = 0◦,
the symmetric vortex shedding from the prism is maintained and a figure-‘8’ trajectory
dominates the entire simulated U∗ range. However, at α = 15◦–30◦, the displacement
trajectories change from figure-‘8’ to figure-‘o’ as U∗ increases, due to the augmentation
of the second harmonic component. In the hysteretic VIV, although f ∗

x and f ∗
y are identical,

the trajectories of the displacements change from figure-‘o’ (U∗ = 2.0–5.5) to figure-‘8’
(U∗ = 6.0–7.0), then to figure-‘o’ (U∗ = 7.5–8.0) and figure-‘8’ (U∗ > 8.0) as a result
of the variation in the amplitude at the second harmonic frequency (figure 5b). In the
extended VIV regime the second harmonic frequency is apparent only in the lock-in
region with large amplitudes (figure 4e, f ). Additionally, the third harmonic frequency in
the streamwise vibration becomes visible in the range of 6.5 < U∗ < 13.5. As shown in
figure 5(c), the trajectories of the displacements are figure-‘o’ shaped for most U∗ cases,
which is consistent with the identical f ∗

x and f ∗
y . However, due to the augmented component

of the second harmonic frequency, the figure-‘8’ shaped trajectory is observed in the
range of U∗ = 6.0–7.5. In the narrowed VIV regime the dominant frequencies linearly
increase with increasing U∗ (figure 4g,h). The second harmonic frequency is noticeable
only in the streamwise displacement as a result of the shear layer reattachment on the
flat part of the prism. As shown in figure 5(d), except at α = 105◦, the trajectories are
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Figure 6. Time histories of the streamwise and transverse displacements at different U∗ and α values.
(a–d) Typical VIV, (e–g) hysteretic VIV, (h–j) extended VIV and (k,l) narrowed VIV.

mostly figure-‘o’ shaped. Because of the intensified amplitude of the second harmonic
frequency, the figure-‘8’ trajectory is dominant at α = 105◦ and several small U∗ cases at
α = 120◦–135◦.

As shown in figure 6(b–d), the prism vibrations in the typical VIV are usually
periodic. However, an exception is observed at U∗ = 3.5 where the prism vibration
is quasi-periodic, involving a beat-like phenomenon (figure 6a). At this U∗, two
incommensurate frequencies are identified in the displacements, one corresponding to
the vibration frequency while the other corresponding to the natural frequency of the
prism, and they have comparable amplitudes (Navrose et al. 2014; Kumar, Singh & Sen
2018; Chen et al. 2022b). Cheng et al. (2022) observed that with this trait, the two
frequencies compete with each other in a balanced way. In other three VIV regimes, the
prism vibrations are periodic (figure 6e–l). Within the hysteresis loop, the vibrations in the
increasing and decreasing cases are significantly different (figure 6e, f ).

3.2. Group 2: galloping or combined galloping
At α = 70◦, both A∗

x and A∗
y increase synchronously with increasing U∗, and there is no

sign of amplitude convergence (figure 7a). As shown later, both f ∗
x and f ∗

y show galloping
characters, i.e. constant values. Accordingly, the vibrations in both directions display a
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Figure 7. Dependence of non-dimensional vibration amplitudes (A∗
x and A∗

y ) and frequencies ( f ∗
x and f ∗

y )
on reduced velocity U∗ and angle of attack α. (a,b) Dual galloping, (c,d) transverse-only galloping and
(e, f ) combined VIV and galloping.

galloping behaviour, which is referred to as dual galloping. The ‘dual’ is derived from
Dahl et al. (2007, 2010) who first introduced the concept of ‘dual resonance’ in the 2DOF
VIV of a circular cylinder, where the circular cylinder is resonant simultaneously in both
streamwise and transverse directions. However, unlike Dahl et al. (2007) where the ratio
(fxn/fyn) of the natural frequencies in the streamwise and transverse directions is 2 : 1, it is
1 : 1 in the present study. This is the first observation of dual galloping in the 2DOF FIV
of a non-circular prism. In the response there are several kinks, e.g. at U∗ = 18.0, resulting
from the lock-in of higher harmonic frequencies (Bearman et al. 1987; Nemes et al. 2012;
Zhao et al. 2014; Chen et al. 2022b). At α = 165◦–180◦, A∗

y generally increases with
increasing U∗, indicating the transverse galloping (figure 7c). However, as U∗ increases,
A∗

x initially augments before being constant, no galloping in the streamwise direction.
Thus, this response is named transverse-only galloping. The A∗

x at α = 165◦–170◦ is
slightly larger than that at α = 175◦–180◦, while A∗

y is smaller at α = 165◦–170◦ than
at α = 175◦–180◦ for U∗ > 7.0. Hysteresis prevails and its corresponding U∗ range varies
significantly with α. The hysteresis loop exists at 17.2 < U∗ < 19.2 and 18.7 < U∗ < 19.5
for α = 165◦ and 170◦, respectively, while at 13.2 < U∗ < 14.5 and 12.7 < U∗ < 15.0 for
α = 175◦ and 180◦, respectively. As shown in figure 7(e), at α = 75◦–80◦, the response can
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Figure 8. The PSD of the displacements in the streamwise and transverse directions at U∗ = 2–20 and selected
α cases. (a,b) Dual galloping at α = 70◦, (c,d) transverse-only galloping at α = 180◦ and (e, f ) combined VIV
and galloping at α = 80◦.

be divided into two regions: VIV and galloping (Sen & Mittal 2011; Cui et al. 2015; Bhatt
& Alam 2018). In the VIV region, A∗

x and A∗
y are very small, while in the galloping region

they monotonically increase for α = 80◦ but non-monotonically for α = 75◦ where A∗
x and

A∗
y locally peak at the same U∗.
In the dual galloping regime, f ∗

x and f ∗
y are identical (figure 7b). At small U∗, i.e. 2.0 ≤

U∗ < 3.0, f ∗
x and f ∗

y closely follow the St line, indicating desynchronized vibration. For
U∗ ≥ 3.0, f ∗

x and f ∗
y are constant at ≈0.75, which is a characteristic feature of galloping

(Nemes et al. 2012; Zhao et al. 2014; Chen et al. 2022b). In the transverse-only galloping
regime, f ∗

y initially linearly increases, closely following the St line, before reaching a
constant value of approximately 1.0, regardless of α (figure 7d). In the hysteresis region
there is a small discrepancy in f ∗

y between the increasing and decreasing cases due to the
modification of vortex dynamics. At α = 165◦–170◦, except at U∗ = 8.0 and α = 165◦,
f ∗
x is identical to f ∗

y . However, owing to the symmetry recovery of the cross-section to the
incoming flow, f ∗

x is twice f ∗
y for some U∗ cases at α = 175◦ while for all examined U∗ at

α = 180◦. In the combined VIV and galloping regime, f ∗
x and f ∗

y closely follow the St line
in the VIV region, thus, no lock-in, while in the galloping they are constant at around 0.65
for α = 75◦ and 0.5 for α = 80◦ (figure 7f ).

The PSD results of the displacements shown in figure 8 provide additional information.
In the dual galloping regime, in addition to the fundamental frequency, the second
and third harmonic frequencies become noticeable as U∗ increases (figure 8a,b). The
appearance of higher harmonic frequencies is related to the increased nonlinearity of
the force at higher amplitude and relative motion of shed vortices with respect to the
body motion. The trajectories in the dual galloping regime are mostly figure-‘o’ shaped,
indicating relatively lower amplitudes of higher harmonic frequencies compared with
the fundamental frequency (figure 9a). At U∗ = 19.0 and 20.0, multiple frequencies
appear in both streamwise and transverse displacements, resulting in chaotic trajectories.
Similarly, in the transverse-only galloping regime, higher harmonic frequencies appear,
especially in the streamwise displacement, as U∗ increases (figure 8c,d). Incommensurate
frequencies identified at U∗ = 6.0 and 13.0 lead to chaotic responses. As the symmetry
of the cross-section with respect to the incoming flow recovers, the trajectories are
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Figure 9. The trajectories of the streamwise and transverse displacements versus reduced velocity U∗ and
angle of attack α. (a) Dual galloping and combined response and (b) transverse-only galloping.
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Figure 10. Time histories of the streamwise and transverse displacements at different U∗ and α values.
(a,b) Dual galloping, (c–f ) transverse-only galloping and (g,h) combined VIV and galloping.

of figure-‘8’ for most U∗ cases, while figure-‘o’ shaped trajectory only exists at
U∗ = 4.0–4.5 (figure 9b). However, at α = 165◦, although the cross-section remains
asymmetric, figure-‘8’ shaped trajectory becomes dominant, particularly at large U∗. In the
combined VIV and galloping regime, the PSD features differ between the VIV and
galloping regions (figure 8e, f ). In the VIV region the dominant frequency has a much
higher amplitude, while the other frequencies are trivial. In the galloping region the
fundamental frequency is accompanied by the second and third harmonic frequencies
in both directions. In the combined regime the trajectories of the displacements indicate
figure-‘o’ shaped responses (figure 9a), indicating identical frequencies in both directions.
The influences of higher harmonic frequencies are noticed only at U∗ = 4.0.
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x and A∗

y ) and frequencies ( f ∗
x and f ∗

y ) on
reduced velocity U∗ and angle of attack α. (a,b) First transition and (c,d) second transition.

The displacements in the dual galloping regime deviate from a sinusoidal shape due to
the appearance of harmonic frequencies, although they remain periodic (figure 10a,b). In
the transverse-only galloping regime the displacements can be irregular, quasi-periodic or
periodic (figure 10c–f ). At U∗ = 6.0, the response shows intermittent behaviour where
the vibration alternates between periodic and irregular (figure 10c,d). In the hysteretic
region the prism vibrations are relatively regular in both increasing and decreasing
cases (figure 10e, f ). In the combined regime the prism vibrations are rather regular
(figure 10g,h), but the presence of higher harmonic frequencies makes the vibrations in
the galloping region deviate from a pure sinusoidal shape.

3.3. Group 3: galloping-like response
At α = 60◦–65◦, the response exhibits a galloping-like behaviour, but with complicated
dependence on U∗ (figure 11a). At α = 60◦, the response can be divided into three
branches. In the first region (2.0 ≤ U∗ ≤ 11.5 for the increasing case or 2.0 ≤ U∗ ≤
11.3 for the decreasing case), A∗

x and A∗
y initially increase with increasing U∗ and then

gradually decrease. However, this behaviour does not persist at higher U∗. In the second
region (11.5 < U∗ < 16.0 for the increasing case or 11.3 < U∗ < 14.2 for the decreasing
case), A∗

x and A∗
y jump and decrease gradually with increasing U∗. In the third region

(16.0 ≤ U∗ ≤ 20.0 for the increasing case or 14.2 ≤ U∗ ≤ 20.0 for the decreasing case),
A∗

x and A∗
y are very small. The transitions between adjacent regions are hysteretic, with

the hysteresis loop between the second and third regions being wider than the other. At
α = 65◦, the variation in amplitudes with increasing U∗ is similar to that at α = 60◦,
but the first region extends to a higher U∗, resulting in only two regions in the examined
U∗ range. Hysteresis is observed between the two regions. Based on f ∗

x and f ∗
y , the first

region can be divided into desynchronization and lock-in regions (figure 11b). For both
α cases, f ∗

x and f ∗
y at U∗ < 3.5 closely follow the St line, i.e. desynchronization region.
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2DOF flow-induced vibrations of a D-section prism

In the remaining U∗ range of the first region, f ∗
x and f ∗

y are approximately constant
but lower than 1.0, i.e. lock-in region. The extension of the first region is a result of
the widening lock-in as α increases from 60◦ to 65◦. This response can be considered
as a transition from extended VIV to dual galloping. Furthermore, at α = 60◦ and
U∗ = 12.5–15.5, the vortex shedding frequency is two or three times the vibration
frequency, suggesting the absence of synchronization between the prism vibration and
vortex formation. Therefore, this transition response belongs to the galloping-like response
(Stansby & Rainey 2001; Yogeswaran & Mittal 2011). At α = 150◦–160◦, A∗

x and A∗
y

are highly contingent on U∗ (figure 11c). Depending on α, the response can be divided
into three or four regions. At α = 150◦, three regions are identified. In the first region,
i.e. 2.0 ≤ U∗ ≤ 5.4 (the increasing case) or 2.0 ≤ U∗ ≤ 4.4 (the decreasing case), A∗

x and
A∗

y gradually increase. In the second region, i.e. 5.4 < U∗ ≤ 6.6 (the increasing case) or
4.4 < U∗ ≤ 6.6 (the decreasing case), A∗

x and A∗
y are almost constant. For U∗ > 6.6, the

third region is characterized by small amplitudes. The variation of f ∗
x and f ∗

y shown in
figure 11(d) provides additional information. In the first region, demarcated by U∗ = 3.0,
the vibration can be either desynchronized or lock-in, while that is lock-in in the second
region and becomes desynchronized again in the third region. At α = 160◦, the response
is also divided into three regions. However, in the third region, i.e. 16.0 < U∗ ≤ 20.0 (the
increasing case) or 15.0 < U∗ ≤ 20.0 (the decreasing case), A∗

x and A∗
y are significantly

large, and f ∗
x and f ∗

y are approximately constant, indicating the lock-in. At α = 155◦, the
response is classified into four regions. The features of the former two regions are similar
to those at α = 150◦, except for U∗ = 8.3–8.6, where the amplitudes are significantly
large. As shown later, the wake mode in this region is the 3S+2S mode while the 2S
mode is in the near region. In the third region, i.e. 10.4 < U∗ < 14.5 (the increasing case)
or 9.8 < U∗ < 14.5 (the decreasing case), A∗

x and A∗
y are large again, and f ∗

x and f ∗
y are

approximately constant at 1.0. Thus, lock-in occurs. Hysteresis loops are observed between
some adjacent regions. In the fourth region, i.e. U∗ ≥ 14.5, A∗

x and A∗
y are much smaller,

and f ∗
x and f ∗

y follow the St line again. Overall, the response at α = 150◦–160◦ behaves like
a transition from narrowed VIV to transverse-only galloping. Similar to the first transition,
the vortex shedding frequency is also several times the vibration frequency in the region of
U∗ ≥ 9.5 for α = 160◦, and the synchronization between the prism vibration and vortex
formation loses. Therefore, this transition also belongs to the galloping-like response.

The PSD results of the displacements for the galloping-like response are shown in
figure 12. In the first transition the fundamental frequency is accompanied by the second
harmonic frequency in the lock-in region. At 12.0 < U∗ < 15.0, other frequencies are
observed in the displacements in both directions, suggesting complex interactions between
the prism vibration and vortex shedding. The trajectories of the displacements are
mostly figure-‘o’ shapes (figure 13a), primarily caused by significantly asymmetric vortex
shedding. Incommensurate frequencies in the displacements lead to chaotic trajectories
at U∗ = 13.0 and 14.0. At U∗ = 7.5–9.0, the trajectories are figure-‘8’ or figure-‘8’ like,
which may be caused by the increasing streamwise amplitude at the second harmonic
frequency. In the second transition several frequencies are observed in the displacements,
including the dominant frequency and its higher harmonics (figure 12c,d). However, for
some U∗ cases, such as U∗ = 9.0, incommensurate frequencies are observed, resulting
in a chaotic response. The trajectories of the displacements at α = 155◦ exhibit all
three types of vibrations: periodic, quasi-periodic and chaotic (figure 13b). At U∗ < 6.5,
the trajectories are figure-‘o’ shaped, with some cases showing slight irregularity. At
U∗ = 7.0–10.0, except U∗ = 8.5 where the trajectory is periodic figure-‘8’ shaped, the
trajectories become chaotic due to the emergence of incommensurate frequencies, as
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angle of attack α. (a) First transition and (b) second transition.

indicated in figure 12(c,d). When U∗ > 10.0, the trajectories change into the figure-‘8’
shape.

As shown in figure 14(b–e), the prism vibrations within the hysteresis loop are relatively
regular. Out of the hysteresis, the vibrations in the first transition are periodic (figure 14a),
but not periodic in the second transition, as indicated in figure 14( f –h).

4. Flow physics

4.1. Overview of wake modes
To some extent, the vortex dynamics behind the prism can be understood from the
wake modes. It is worth investigating the connection between wake modes and vibration
responses. Over the past decades, several different wake modes were recognized in the
VIV of a circular cylinder, such as the 2S mode, P+S mode, 2P mode and 2T mode
(Williamson & Roshko 1988). These wake modes are linked to vibration and frequency
responses (Williamson & Roshko 1988; Govardhan & Williamson 2000; Leontini et al.
2006a). However, because of the changing asymmetry of the cross-section with α, distinct
responses from the classical VIV are observed and, hence, may be accompanied by distinct
wake modes. Figure 15 shows how the wake modes are dependent on U∗(= 2−20) and
α (= 0◦–180◦). The wakes are categorized into a number of types; some of them are
noticed in the VIV of a circular cylinder. Galloping responses involve more vortices
shed from the D-section prism, especially when the amplitude is large. A special mode,
i.e. mS+nS mode (m and n are positive integers; m ≥ 3, n ≥ 2), is introduced for the

971 A5-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

63
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.634


2DOF flow-induced vibrations of a D-section prism

2.4

1.6

0.8

3.6

2.7

1.8

2.0

1.0

2400 2450 2500 2550 2650

6.0

5.5

5.0

4.0

3.0

2.0

4.5

4.0

3.5

2.0

1.0

3.6

2.7

1.8
2350230022502200

600 650 700 750 800

2400

1600 1700 1800 1900 2000

1200 1250 1300 1350 1400

1200 1250 1300 1350 1400

800 850 900 950 1000

800 850 900 950 1000

x/
D

x/
D

x/
D

(a) (b)

(c) (d )

(e) ( f )

x/
D

(g) (h)

y/
D

y/
D

y/
D

y/
D

1.0

–1.0
0

2.0

–1.0

1.0
2.0

0

2.0

0

2.0

–2
–4

0

–2.0

0
1.0

–2.0
–1.0
0

1.0

1.0

–1.0

–1.0

–2.0

0

–2.0

–4.0

0

t∗ t∗

α = 60°, U∗ = 8.0

α = 155°, U∗ = 12.0 α = 160°, U∗ = 12.0

α = 155°, U∗ = 8.5α = 155°, U∗ = 6.0 (decreasing U∗ case)

α = 60°, U∗ = 11.5 (decreasing U∗ case) α = 155°, U∗ = 6.0 (increasing U∗ case)

α = 60°, U∗ = 11.5 (increasing U∗ case)

Figure 14. Time histories of the streamwise and transverse displacements at different U∗ and α values.
(a–c) First transition and (d–h) second transition.

2

0

30

60

90

α
 (

d
eg

.)

120

150

180

2S 2PP +S

5S + 4S

3S + 2S 3S + 3S

5S + 5S 6S + 6S 7S + 7S 8S + 8S

4S + 3S 4S + 4S

6S + 5S

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

i

ii

iii

iv

v

vi

vii

viii

ix

U∗

Figure 15. Wake modes in the (U∗, α) parameter plane for the 2DOF FIV of a D-section prism at Re = 100
and m∗ = 2.0. Two regions marked by inclined lines represent the zones where the mS+nS mode appears and
the region marked by straight lines denotes the intermittency response.

971 A5-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

63
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.634


W. Chen, M.M. Alam, Y. Li and C. Ji

(a) (b)

0

0

4

–4

0

4

–4

0

4

–4

0

4

–4

0

4

–4

0

6

–6

0

6

–6

0

4

–4

0

4

–4

5 10 15 20

P

P
Top Bottom

P
S

S
S

S
S

S

S

Coalescence

Coalescence

P

2

2

1

1
4

3

2′

3′

4′
2′

1′

1′

S

x/D

y/D

y/D

y/D

y/D

25 30 0 5 10 15 20

x/D
25 30

0 5 10 15 20 25 30 13.5 23.5 33.5 18.5 28.5

0 5 10 15 20 25 30 0 5 10 15 20 25 30

0 4 8 12 16 20 24 28 4 8 12 16 20

–1.0 –0.5

ωz
0.5 1.00

24 28 32

(d )(c)

(e)

(g) (h)

( f )

Figure 16. Selected vorticity contours for the wake modes shown in figure 15. (a) The 2S mode at α = 15◦ and
U∗ = 5.0, (b) the 2S mode at α = 40◦ and U∗ = 17.0, (c) the 2S mode at α = 50◦ and U∗ = 6.0, (d) the P+S
mode at α = 160◦ and U∗ = 4.5, (e) the 2P mode at α = 155◦ and U∗ = 5.0, ( f ) the 4S+4S mode at α = 180◦
and U∗ = 19.0 and (g,h) the P+S/2P mode at α = 165◦ and U∗ = 5.5. In ( f ), ‘top’ and ‘bottom’ denote that
the prism is at the top and bottom, respectively.

large-amplitude response (Seyed-Aghazadeh et al. 2017; Chen et al. 2020a, 2022b). Also
following Williamson & Roshko (1988), m and n are the numbers of vortices shed from
each side of the prism in one vibration period. In general, the 2S mode dominates a major
part of the examined parametric plane, linked to the typical, hysteretic and narrowed VIV
regimes and some other regimes with small amplitude and small U∗. However, owing to
the asymmetric cross-section (α /= 0◦, 180◦), the arrangement of two vortices in the 2S
mode is significantly different. As shown in figure 16(a), when the transverse distance
between the separation points at two sides is large, vortices are arranged in two parallel
rows alternately, generating the parallel vortex street at x/D ≤ 12.0. The parallel vortex
street transmutes into the secondary vortex street (Cimbala, Nagib & Roshko 1988; Inoue
& Yamazaki 1999; Kumar & Mittal 2012; Thompson et al. 2014; Zafar & Alam 2018; Jiang
& Cheng 2019; Zheng & Alam 2019; Shi, Alam & Bai 2020; Jiang 2021). As shown in
figure 16(b), at a higher α, the transverse distance between the separation points on the
two sides becomes small, as does the lateral distance between the two rows of the vortices
in the wake. For a further larger α and large amplitude, although vortex shedding occurs
in the 2S mode, streamwise distances between two successive counter-rotating vortices are
unequal in the near wake and tend to be equal downstream (figure 16c). The arrangement
of vortices looks symmetric in the near wake but asymmetric in the far wake. The mutation
from the symmetric to asymmetric arises from the difference in the convective velocities
in the upper- and lower-row vortices, given that the lower-row vortices, lying on the wake
centreline, have smaller convective velocity than the upper-row vortices.
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2DOF flow-induced vibrations of a D-section prism

Compared with the 2S mode, the P+S mode usually appears in the region with higher
amplitudes. The P+S mode in the hysteretic and extended VIV regimes occurs at relatively
large U∗(= 9.0−10.0) and in the transition, combined and pure galloping regimes, at small
U∗(= 4.0−5.5). That is, the P+S mode requires a stronger oscillation to make sure a shear
layer rolls into two or more times in one oscillation cycle (Leontini et al. 2006a; Govardhan
& Williamson 2000). As shown in figure 16(d), when the prism is at the bottom, one
positive vortex shed from the lower side pairs with the negative vortex shed from the upper
side of the prism, which generates a vortex pair P. The positive vortex in the pair is small
and weak, while pushed toward the free-stream side by the strong rotation of the large
negative vortices. The small positive vortex thus decays rapidly and loses its identity
downstream. When the prism is at the top position, only one positive vortex is shed from
the lower side of the prism. The vortex shedding thus occurs in the P+S mode. During the
downstream evolution of the vortices, the two negative vortices coalesce and the single
vortex grows in size, which in turn generates symmetric vortices.

The 2P mode prevails only in the transition, combined and galloping regimes. The U∗
for the 2P mode is generally higher than that for the P+S mode, which is consistent with
the requirement of a higher amplitude to make sure more vortices shed from the prism
(Govardhan & Williamson 2000). As shown in figure 16(e), in the 2P mode two vortices
are shed from each side of the prism in one vibration period in a similar fashion to the
paired vortex described above. The weak vortex of each pair rapidly dissipates while other
vortices rearrange themselves downstream.

The multi-vortex mode, namely mS+nS mode, is observed in the transition and galloping
(including galloping region of the combined regime) regimes. In the transition regime the
mS+nS mode occurs around the peak amplitude, while in the galloping region the number
of vortices increases with increasing amplitude. As shown in figure 16( f ), when the prism
moves from the bottom to the top, four vortices, i.e. two positive (vortices 1 and 2) and two
negative (vortices 1’ and 2’) vortices, shed from the prism. Similarly, another four vortices
shed during the other half-cycle of the oscillation (vortices 3, 3’, 4 and 4’). It leads to
the 4S+4S mode. However, it should be pointed out here that the galloping instability is
related to specifics of what is happening to the shear layer, not to vortex shedding modes.
The dominant frequency has no relationship with the number of vortices being shed in the
wake. If one is to define an axis pointing the prism forward motion, the wake would just
appear to be a slowly wavering 2S mode, as described in Li et al. (2019), Yao & Jaiman
(2017) and Nemes et al. (2012).

Besides the abovementioned wake modes, there is another intermittent mode where
different wake modes appear alternately at some combinations of α and U∗. The
occurrence of this special mode is a result of the significant fluctuations of the
displacement. As shown in figure 16(g,h), within different periods, the number of vortices
shed from the prism can be three or four, signifying a P+S or 2P mode. This intermittent
wake mode has also been noticed in the transverse-only FIV of a D-section prism in Chen
et al. (2022b). However, to positively identify the (U∗, α) range for this wake mode in the
examined parametric plane, a large number of consecutive snapshots are required, which is
outside the scope of this paper. Therefore, the intermittent mode is not marked in figure 15.

4.2. Mechanisms for the identified responses
The physical mechanisms for some responses have been thoroughly explained in Chen
et al. (2022b) for a D-section prism allowed to vibrate in the transverse direction only.
The freedom to move in the streamwise direction shows no intrinsic modification of
the mechanisms. In this section the focus is given to the mechanisms of several crucial
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Response U∗ − α space Factors for the sustenance of hysteresis

Hysteretic VIV α = 35◦, 8.2 < U∗ < 8.5;
α = 40◦, 7.6 < U∗ < 8.5;
α = 45◦, 7.2 < U∗ < 10.2

Shear layer reattachment and
separation point movement

First transition α = 60◦, 11.3 < U∗ < 11.6 and
13.6 < U∗ < 16.0; α = 65◦,
14.6 < U∗ < 15.0

Shear layer reattachment and
separation point movement

Second transition α = 150◦, 4.4 < U∗ < 5.2;
α = 155◦, 5.0 < U∗ < 6.4 and
9.8 < U∗ < 10.4; α = 160◦,
15.0 < U∗ < 16.5

Shear layer reattachment

Transverse-only galloping α = 165◦, 17.2 < U∗ < 19.2;
α = 170◦, 18.7 < U∗ < 19.5;
α = 175◦, 13.2 < U∗ < 14.5;
α = 180◦, 12.7 < U∗ < 15.0

Shear layer reattachment

Table 2. A summary of hysteresis observed in the 2DOF vibrations of a D-section prism at Re = 100
and m∗ = 2.0.

phenomena identified exclusively in the 2DOF FIV responses, which will deepen our
understanding of this FSI problem.

4.2.1. Mechanisms for the sustenance of hysteresis
Bistability is a well-known phenomenon in dynamic systems, characterized by the
coexistence between two stable states. The hysteresis with one loop is a mode of bistable
states that are mutually connected (Guidi & Goldbeter 1997). The solution states are
different when the control parameter (U∗ in the present study) is continously increased
and decreased. As shown in figures 3, 7 and 11, when U∗ is increased, the system jumps
from one branch of the steady states to another branch after a limit point. However, when
U∗ is then decreased, the system jumps back at a different point. Depending on the initial
conditions, i.e. increasing or decreasing U∗, the prism responses may be significantly
different. For a vibration system without structural damping, the prism energy extracted
from the fluid equals the energy dissipation caused by the viscosity in one vibration period.
Therefore, the net energy input is zero. Intrinsically, hysteresis can be thought of as a
system that can sustain at two different stable states by extracting different amounts of
energy. Take the hysteresis at α = 40◦ for example. In the increasing case, the prism’s
initial energy equals the dynamic energy of the prism at the lower U∗. However, in the
decreasing case the initial energy equals the dynamic energy of the prism at the higher U∗,
which is significantly smaller than that in the increasing case. Table 2 shows the observed
hysteresis and factors for its sustenance in different responses. It can be divided into
two: hysteresis at α < 90◦ associated with shear layer reattachment and separation point
movement while that at α > 90◦ only relates to shear layer reattachment. To elucidate the
associated flow physics, we select two cases: (1) α = 40◦ and U∗ = 8.0 and (2) α = 180◦
and U∗ = 14.0, representing hysteresis with different factors.

The work done by the fluid is an indicator of how the prism oscillation is sustained (Qin,
Alam & Zhou 2017, 2019). As the transverse vibration of the prism is sustained by the lift
force, our attention is paid to the lift coefficient in phase with the prism velocity. Note
that the time-averaged lift (C̄L) and transverse position (Ȳ) are not zero in the asymmetric
case (α /= 0◦, 180◦). Therefore, the prism oscillation with respect to the mean position,
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Figure 17. Time histories of the fluctuating lift coefficient (C̃L, dashed line), lift coefficient in phase with the
velocity (CL,V , solid line), displacement (y/D and y′/D) and vorticity contours at marked instants at α = 40◦
and U∗ = 8.0. (a,b) For the increasing U∗ case and (c,d) for the decreasing U∗ case. The grey vertical lines in
(a,c) denote the borders of the half-period.

i.e. Y ′ (= Y − Ȳ), depends on the energy exchange between the prism and fluid. Following
the definition in Bourguet & Lo Jacono (2014), the energy transfer is valued by the lift

coefficient in phase with the prism velocity, which is defined as CL,V = √
2C̃LV/

√
V2,

with C̃L = CL − C̄L and V = Ẏ . Positive and negative CL,V indicate the fluid exciting
and damping the oscillation, respectively. Consequently, physical mechanisms for the
excitation and inhibition caused by the fluid can be analysed through the variations of
vorticity fields and the lift coefficient in phase with the prism velocity.

As shown in figure 17(a,c), in the increasing and decreasing cases, the vibration
amplitudes and frequencies at α = 40◦ and U∗ = 8.0 are different. The same is observed
for the streamwise vibration. More evidence regarding the differences is displayed in
figures 3(c,d) and 6(e, f ). As shown in figure 17(a), when the prism moves from the
top to the bottom, CL,V is first positive and then negative. On the other hand, when the
prism moves back from the bottom, CL,V changes twice, i.e. positive → negative →
positive → negative, which suggests significantly different vortex dynamics. Additionally,
the magnitude of CL,V in the second half-period is much smaller than that in the first
half-period. Especially, when the prism velocity grows (instant i), the lower shear layer
remains attached to the curved surface and rolls over the flat surface while the upper shear
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layer separating from the upper corner rolls away from the prism. The pressure on the
lower side is thus lower than that on the upper side, making positive CL,V . After the prism
passes through the mean position, the prism velocity decreases gradually. At instant ii, the
upper shear layer is attached on both curved and flat surfaces while the lower shear layer
rolls behind, which yields negative CL,V . At instants iii and iv, the prism moves towards
the mean position with growing velocity magnitude. The upper shear layer closely follows
the upper curved and flat surfaces and the stagnation point shifts toward the upper corner.
The lift force thus changes from positive to negative between instants iii and iv, resulting
in positive and negative CL,V , respectively.

In the decreasing case, however, the variation in CL,V becomes more regular (figure 17c).
The CL,V is positive when the prism moves towards the mean position while negative when
the prism moves away from the mean position. At instant i, as the prism moves toward
the mean position, the lower shear layer is attached on the curved surface while the upper
shear layer separates from the upper corner owing to the growing transverse velocity in the
downward direction. The CL,V is thus positive. When the prism is below the mean position
(instant ii), the upper and lower shear layers separate from the upper and lower corners,
respectively, almost symmetrically. The lift force is positive, largely due to the negative
pressure on the flat surface, resulting in negative CL,V . In the following half-period,
i.e. bottom → top, a similar change is observed. However, due to the influences of the
separation (instant iii) and entrainment (to the flat part, instant iv) of the shear layer on
the lower side, the magnitude of CL,V is larger than that in the former half-period (top →
bottom).

From the above discussion, it is understood that in the increasing case, the upper shear
layer largely reattaches onto the flat surface and the lower shear layer follows the curved
surface (instants ii–iv). In the decreasing case only weak reattachments of the lower shear
layer onto the flat part are observed (instants i, iv). In addition, the separation locations
of the lower shear layer show discrepancies between the increasing and decreasing cases
(figure 17b,d). These factors are essentially responsible for the sustenance of the hysteresis.
Furthermore, we note that the prism vibration is synchronized with the vortex formation.
The excitation and inhibition caused by the fluid are closely related to dynamic changes
in the shear layers, such as reattachment, entrainment and separation. We can infer that
the lock-in in the increasing case is largely associated with the shear layer reattachment,
upholding our statement in § 3 for the occurrence of lock-in.

The second hysteresis discussed here is in the transverse-only galloping regime where
the wake in both the increasing and decreasing cases is the 4S+4S mode and two distinctive
states are related to the dynamic changes of shear layer reattachment. As shown in
figure 18(a,b), CL,V is repeatable in each half-period, signifying that the vibration period
is four times that of the lift responsible for the response. However, for the two states, the
variations in CL,V are significantly different. In the increasing case, CL,V is firstly negative
when the prism moves upward from the bottom and then positive as the prism is around the
mean position (figure 18a). It changes into negative before the prism approaches the top.
As shown in figure 18(c), the positive and negative CL,V are reflected by the shear layer
reattachment modifications. For example, at instant ii, when the prism is moving toward
the mean position, the upper shear layer closely follows most of the curved surface while
the lower shear layer separates from the lower corner. Consequently, the pressure at the
upper side is lower than that at the lower side, and the resultant lift is in phase with the
prism velocity. The vibration is promoted by the energy extracted from the fluid. However,
in the decreasing case the variation in CL,V is roughly opposite to that in the increasing
case, suggesting distinct vortex dynamics relative to the prism motion from those in the
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Figure 18. (a,b) Time histories of the fluctuating lift coefficient (C̃L, dashed line), lift coefficient in phase with
the prism velocity (CL,V , solid line) and the displacement (y/D), and (c,d) vorticity contours at the instants
marked in (a,b) at α = 180◦ and U∗ = 14.0. (a,c) For the increasing case and (b,d) for the decreasing case. In
this case, the prism symmetry recovers and the mean displacement position (Ȳ) is zero. The grey vertical lines
in (a,b) denote the borders of the half-period.

increasing case. As shown in figure 18(d), when the prism moves back from the top, the
lower shear layer remains attached on the entire curved surface (instant i), yielding positive
CL,V . However, when the prism is near the mean position (instant ii), the lower shear layer
separates from the curved surface and there is an initiation of the upper shear layer rolling
close to the upper corner. It corresponds to positive lift force and negative CL,V , given that
the prism velocity is negative. From the description, we can see that the two states are
caused by the dynamic changes of shear layer reattachment.

4.2.2. Mechanism for the intermittency in the transverse-only galloping
An intermittent response is noted at α = 165◦–180◦ and U∗ = 5.7–7.5, as marked by the
straight lines in figure 15. In this section we aim to unearth the physical mechanism for the
intermittent behaviour with the help of dynamic mode decomposition (DMD) and wavelet
transform (WT). Dynamic mode decomposition is an effective method to capture flow
modes of different frequencies (Rowley et al. 2009; Schmid 2010; Jovanovic, Schmid &
Nichols 2014). Therefore, DMD can provide flow modes with pure frequency contents.
In this paper we use the codes for the DMD analysis provided by Jovanovic et al. (2014).
In each DMD analysis, 400 snapshots are collected with a non-dimensional time interval
of 0.2. Details of WT can be found in Chen et al. (2015). Figure 19(a) shows the time
histories of the streamwise and transverse displacements. We can see that the vibration
changes intermittently between two different states. In state I the vibration is regular but
with a smaller amplitude in the streamwise direction. The figure-‘8’ trajectory of the
displacements shown in figure 19(b) further supports this fact. However, in state II the
vibration is chaotic, as suggested by the chaotic trajectory of the displacements shown in
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Figure 19. (a) Time histories of the streamwise and transverse displacements, (b,c) instantaneous vorticity
contours and trajectories of the displacement for states I and II, (d,e) WT results of the streamwise and
transverse displacements and ( f,g) DMD modes of states I and II, respectively, at α = 165◦ and U∗ = 6.0.

figure 19(c). The wake modes in the two states are the P+S and 2P modes, respectively
(figure 19b,c).

More information is provided by the WT analysis. In state I the streamwise vibration
is dominated by the second harmonic frequency (Fx = 0.304), with its amplitude much
higher than that of the fundamental frequency (Fx = 0.152), while the transverse vibration
has only the fundamental frequency, which agrees well with the periodic response
(figure 19d,e). In state II the dominant frequency (Fy = 0.132) of the transverse vibration
is slightly lower than that in state I, while other frequencies are still insignificant. The
fundamental frequency Fx = 0.132 appears for the streamwise vibration, in addition to a
lower frequency Fx = 0.052 at the transition between states I and II. The DMD modes
corresponding to the frequencies observed in WT analysis are shown in figure 19( f,g).
In state I the mode at fDMD = 0.152 clearly shows the typical Kármán vortex street.
However, owing to the asymmetry of the cross-section shape to the incoming flow,
vortices shed from the upper side of the prism are stronger than those from the lower
side. Correspondingly, the extracted mode is asymmetric. The mode at fDMD = 0.304 is
of the second harmonic frequency, which is featured by doubled vortices in the wake.
In state II, owing to the irregular arrangement of vortices, the mode at fDMD = 0.132
dominated in the streamwise and transverse vibrations exhibits a Kármán-like vortex
street; the mode at fDMD = 0.052 is significantly different. As shown in figure 19(g), in
this low-frequency mode the vorticity energy is stronger at x/D � 7.0, which positively
suggests that it comes from unstable vortex interactions in a relatively far wake. This is
not surprising when considering the irregular vortex arrangement in state II. Since the
vortex interactions are not stable, the developed low-frequency component can impact
the vortex shedding through the feedback mechanism (Ho & Huerre 1984; Huerre &
Monkewitz 1990), which leads to vortex street modification gradually. That is, because
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Figure 20. (a,b) Time histories of the fluctuating drag coefficient (C̃D), the drag coefficient in phase with
the streamwise velocity (CD,U), the streamwise displacement (x′/D), the fluctuating lift coefficient (C̃L), the
lift coefficient in phase with the transverse velocity (CL,V ) and the transverse displacement (y′/D), and (c,d)
vorticity contours at instants marked in (a,b) at α = 70◦ and U∗ = 8.0. The time-averaged streamwise and
transverse displacements are X̄ = 1.075 and Ȳ = 0.271, respectively, which are not removed in the vorticity
fields shown in (c,d). (e, f ) The fluctuating pressure coefficient (Cp − C̄p, where Cp = ( p − p∞)/0.5ρU2∞ is
the instantaneous pressure on the surface and C̄p is the time-averaged pressure on the surface) along the curved
surface (θ = 0◦ ∼ 180◦) and flat surface (yi = −0.5 ∼ 0.5) at instants marked in (a,b). Here, θ = 0◦ and 180◦,
rotating counterclockwise, are at the upper (P2) and lower (P1) intersection points, while yi = −0.5 and 0.5,
positive upward, are at the lower (P1) and upper (P2) intersection points, respectively; see the subplot in ( f ).

of the unstable vortex interactions, the two states are neutrally unstable, and accordingly,
they appear intermittently.

4.2.3. Mechanism for the dual galloping
As discussed in § 3.3, the prism at α = 70◦ displays galloping responses in both
streamwise and transverse directions. In this section we aim to uncover the physical
mechanism for this dual galloping. The case at α = 70◦ and U∗ = 8.0 is selected. Here, it
should be mentioned that due to the strong asymmetry of the cross-section to the incoming
flow, the instantaneous pressure Cp on the prism surface is not appropriate for evaluating
the work done by the fluid, rather the time-averaged pressure C̄p must be subtracted from
Cp.

As shown in figure 20(a,b), both the streamwise and transverse displacements are
relatively periodic, with large amplitudes, and the vibrations of the two directions show
a strong coupling. Firstly, we focus on the streamwise galloping. When the prism moves
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upstream (instant i), the streamwise velocity increases gradually and the upper shear layer
remains reattached on the flat surface before separating from the lower corner. Therefore,
the fluctuating pressure Cp − C̄p on the flat surface is much lower than that on the curved
surface (figure 20e). The CD,U is thus highly negative. After the prism crosses the mean
streamwise position (instant ii), the prism velocity reduces and the lower shear layer
separates earlier, which leads to Cp − C̄p on the curved surface decreased at θ < 62◦. The
upper shear layer elongates and rolls behind the lower vortex, leading to a higher Cp − C̄p
on the flat surface (figure 20c,e), and hence, a small positive CD,U until the prism reaches
the upstream position (figure 20a). However, when the prism moves downstream (instant
iii), the intensity of the lower shear layer reaches roughly the peak, and because of the
decreased transverse velocity, a small part of the lower shear layer is entrained onto the flat
surface (figure 20c). Accordingly, the upper shear layer is forced to separate from the upper
corner. The Cp − C̄p on the flat surface is thus further increased continuously while that on
the curved surface decreases, especially at θ < 40◦. Therefore, CD,U changes into a small
negative. As the prism crosses the mean position (instant iv), the prism velocities in both
directions decrease, and the lower shear layer partly moves further toward the flat surface
and partly goes downstream. Therefore, the Cp − C̄p on the flat surface notably increases
for yi > −0.21 while that at the curved surface goes significantly lower, especially at
θ < 45◦ and θ > 135◦, thus resulting in a positive CD,U .

Then, we look at the transverse galloping. As shown in figure 20(b), when the prism
moves toward the mean position (instant v), the transverse velocity rapidly increases and
the upper shear layer remains attached on the flat surface. The lower shear layer covers a
major part of the curved surface; therefore, the Cp − C̄p is relatively weak, especially at
45◦ < θ < 150◦ (figure 20f ), thus leading to a negative CL,V . When the prism crosses the
transverse mean position (instant vi), the upper shear layer goes weaker while the lower
shear layer develops (figure 20d). Accordingly, the Cp − C̄p on the flat surface increases for
yi < 0.15 while that on the curved surface significantly decreases at θ < 45◦ and increases
at 45◦ < θ < 180◦ (figure 20f ). The CL,V becomes positive. At instant vii, the prism moves
back from the top position and the lower shear layer is entrained onto the flat surface, which
leads to Cp − C̄p being roughly zero. The Cp − C̄p on the curved surface remains positive
in a wider region, i.e. 50◦ < θ < 135◦, which is opposite to the prism transverse velocity,
thus, CL,V being negative. As the prism moves downstream (instant viii), the Cp − C̄p
on the flat surface increases further for yi > −0.25 while the lower shear layer decreases
greatly for θ > 90◦. As a result, CL,V becomes strongly positive.

The above analysis indicates that galloping in both directions is associated with
the dynamics of shear layer development, attachment and entrainment, which leads to
significant pressure fluctuations and are responsible for the sustenance of large-amplitude
vibrations. This is different from the dynamics in the transverse-only galloping where
multiple shear layer reattachments appear along with manifold vortices (Chen et al.
2022b). To illuminate the modifications of the prism oscillation in sustaining the growing
amplitude, figure 21 shows the dependence of the vibration amplitude on the phase
lag (ϕxy) between the streamwise and transverse displacements. The phase lag was
calculated directly using the Hilbert transform of the displacements in the streamwise and
transverse directions (Khalak & Williamson 1999; Prasanth & Mittal 2008). Generally,
the dependence can be divided into four regions. When the vibration amplitude is small
(region i), ϕxy shows significant variations. However, when the amplitude is intermediate
(region ii), ϕxy decreases gradually. At the two regions (regions iii and iv) with large
amplitudes, ϕxy is approximately constant. In region iv the amplitude is significantly large
and ϕxy displays strong fluctuations, signifying a modulation to sustain higher amplitudes.
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Figure 21. Dependence of the phase lag (ϕxy) between the streamwise and transverse displacements on (a) A∗
x

and (b) A∗
y at α = 70◦ for the dual galloping.

4.3. Dependence of wake modes on vibration amplitudes and frequencies
In this section we explore the dependence of wake modes on vibration amplitudes and
frequencies. As discussed in § 3, in some U∗ cases, the transverse amplitude is comparable
to the streamwise amplitude, such as in the transition response and dual galloping regimes.
There may exist influences of the streamwise vibration on the wake modes. However, it is
rather difficult to quantify the coupled impacts. In this study, A∗

y and f ∗
y are applied to

explore the dependence. For comparison, the dependence of wake modes in the 1DOF
case is superimposed.

According to the compiled map of the circular cylinder wake for low Reynolds numbers
given by Williamson & Govardhan (2004), the 2S mode can persist up to the amplitude
of 0.6 and beyond which the P+S mode dominates. Leontini et al. (2006a) demonstrated
that the critical amplitude for the transition from the 2S to P+S mode depends on Re.
Govardhan & Williamson (2000) showed that the shear layers of a circular cylinder
with a higher amplitude are easier to be stretched and split into small parts, because
of the intense strain rate field. In other words, more vortices shed from a vibrating
circular cylinder require a higher amplitude. However, in the FIV of a non-circular prism,
the wake dependence becomes different, due to the change of the cross-section shape
to the incoming flow (Chen et al. 2020a, 2022b). As shown in figure 22(a), the 2S
mode occurs in a wide frequency range, depending on maximum A∗

y , which is similar
to that of the 1DOF case. As the amplitude increases, the frequency range rapidly
narrows and finally collapses to f ∗

y ≈ 0.9, falling inside the lock-in region. However,
the largest amplitude for the 2S mode is 0.9, which is 50 % higher than that for a
circular cylinder, suggesting the cross-section influences on the critical amplitude for the
2S mode.

For the P+S mode, Williamson & Govardhan (2004) believed it does not appear in the
VIV of a circular cylinder for the reason that it does not deliver positive energy to excite
a free vibration. However, owing to the symmetry breaking of the cross-section, the P+S
mode is frequently encountered in the FIV of a non-circular prism (Nemes et al. 2012;
Wang et al. 2015; Zhao 2015; Seyed-Aghazadeh et al. 2017). As shown in figure 22(b),
similar to that of the 1DOF case, the amplitude for the P+S mode varies in the range of
0.25–1.3, slightly larger than that for the 2S mode. In the 1DOF case, the P+S mode occurs
in a slightly wider amplitude range. The corresponding frequency varies around 0.6–1.2,
significantly narrower than that for the 2S mode. This indicates that the P+S mode largely
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Figure 22. Dependence of the wake modes on A∗
y and f ∗

y . The modes in (d) belong to the mS + nS mode where
m and n are positive integers and m + n ≥ 5. The open circles denote the wake distributions of the 1DOF case.

occurs in the lock-in region. As shown in figure 22(c), the dependence of the 2P mode
is similar to that for the P+S mode. The amplitude for the 2P mode varies in the range
of 0.25–1.36 while most of the cases are located at the region in which the amplitude is
larger than 0.85. The occurrence of the 2P mode at the small amplitude (<0.6) indicates
that the asymmetry could lower the amplitude requirement. The frequency of the 2P mode
is always around 1.0, resting in the lock-in region.

The multi-vortex mode, i.e. mS+nS mode, occurs only in the transition response and
three galloping regimes. As shown in figure 22(d), similar to the 1DOF case, the amplitude
for the mS+nS mode covers a wide amplitude range of 0.16–2.85. The frequency for the
mS+nS mode can be mainly separated into two, i.e. one is f ∗

y ≈ 0.7 while the other is
f ∗
y ≈ 1.0, both falling inside the lock-in region. The former is in the dual galloping regime

while the latter is in the transverse-only galloping regime. Although the amplitude in the
region of f ∗

y ≈ 0.7 is smaller than that in the region of f ∗
y ≈ 1.0, the number (m,n) of

vortices is higher.

5. Fluid forces

In this section we present variations of fluid forces with α and U∗, spectral analyses of the
lift and drag coefficients, and the phase lags between the lift and transverse displacement.
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Figure 23. Dependence of the force coefficients on U∗(= 2−20) and α (= 0◦–180◦): (a) C̄D, (b) C′
D, (c) C̄L

and (d) C′
L.

5.1. Statistics of fluid forces
Figure 23 shows the dependence of the fluid forces on U∗ and α. As shown in figure 23(a),
there are two regions where the mean drag coefficient C̄D is relatively large. The first
region is in the typical and hysteretic VIV regimes where the curved surface points
upstream, while the second region is in the second transition response and transverse-only
galloping regimes where the flat surface faces upstream. The C̄D values in the second
region are much higher than those in the first region. This is expected as the flow velocity
goes to zero when the flow encounters the flat surface and the pressure at the flat surface
becomes higher, thus leading to a higher C̄D. A significant difference between these two
regions is that in the first region the C̄D value is amplitude dependent, the higher the
amplitude, the higher the C̄D. However, in the second region the dependence of C̄D on
the amplitude is not straightforward, decreasing with U∗ (>6.0) although the amplitude
enhances. With α increasing from 30◦ to 90◦ where the bluffness of the cross-section
reduces, C̄D for regimes ii–vii decreases, not much linked with the amplitude. As shown in
figure 23(c), the mean lift coefficient C̄L can be positive or negative, separated by α ≈ 95◦.
At α ≈ 180◦, C̄L is small and negative but still not zero, which stems from the asymmetric
vortex shedding, as also reported by Wang et al. (2015) and Chen et al. (2020a). The
positive C̄L is more evident in the region where the amplitude is large, indicating the
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Figure 24. Dependence of (a) drag ( f ∗
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L ) frequencies on U∗(= 2−20) and α (= 0◦–180◦). The
star symbols represent the location of the phase lag between the lift and displacement jumping from 0◦ to 180◦.

amplitude dependence. The negative C̄L becomes significant at α = 125◦–145◦, resting in
the narrowed VIV regime. To some extent, C̄L is largely α dependent as expected.

As shown in figure 23(b,d), the variations in C′
D and C′

L are alike. There are two
remarkable regions where C′

D and C′
L are large. The first region (U∗ = 2.5–5.0; α ≈

0◦–65◦) lies in regimes i–iv, while the second region is at U∗ = 2.5–6.5 and α =
135◦–180◦, lying in regimes viii–ix. The large C′

D and C′
L correspond to the initial branch

of VIV. Similar dependence was observed in the 1DOF case (Chen et al. 2022b). The
distributions of C′

D and C′
L show significant dependencies on U∗ but trivial dependencies

on α. The larger C′
D and C′

L occur at U∗ ≈ 4.0–7.5 and 2.5–5.5, respectively, while smaller
C′

D and C′
L appear roughly in the narrowed VIV regime, as a result of the smaller amplitude

and weaker fluctuation of shear layers. The galloping regimes are accompanied by small
C′

D and C′
L. This indicates that the excitation of the galloping is different from VIV, upheld

by the results of Nemes et al. (2012), Zhao et al. (2014, 2018) and Chen et al. (2022b).

5.2. Spectral analysis of fluid forces
Figure 24 shows the contours of dominant frequencies f ∗

D (= fD/fn) and f ∗
L (= fL/fn)

obtained from PSD functions of C′
D and C′

L, respectively. Generally, f ∗
D and f ∗

L are
identical in most cases except in the typical VIV regime where f ∗

D is two times f ∗
L

(Bearman 1984; Naudascher 1987; Jauvtis & Williamson 2004; Bourguet 2020). As
shown in figure 25(a,b), in the hysteretic VIV regime, both f ∗

D and f ∗
L increase linearly

with increasing U∗, being f ∗
D = 2 × f ∗

L except at U∗ ≈ 6.0 where the third harmonic
lift frequency is dominant. At a higher α, f ∗

D and f ∗
L are identical. An exception is

discerned around the location where the phase lag shifts from 0◦ to 180◦. As shown in
figure 25(c–h), the second harmonic lift frequency becomes energetic but still weaker than
the fundamental one, i.e. the fundamental drag frequency is more energetic than the second
harmonic frequency, although several harmonic frequencies appear. The f ∗

D and f ∗
L are thus

predominantly identical.
In the dual galloping and combined response regimes, the identical f ∗

D and f ∗
L still stand,

but multiple harmonic frequencies are detected (figure 25i–l). In the second transition
response and transverse-only galloping regimes, the identical f ∗

D and f ∗
L are observed at

the small U∗ while the relationship between f ∗
D and f ∗

L at large U∗ is complex, due to
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Figure 25. The PSD of the drag and lift coefficients at U∗ = 2–20 and selected α values. (a,b) Typical VIV at
α = 15◦, (c,d) hysteretic VIV at α = 40◦, (e, f ) extended VIV at α = 50◦, (g,h) first transition at α = 60◦, (i,j)
dual galloping at α = 70◦, (k,l) combined VIV and galloping at α = 80◦, (m,n) narrowed VIV at α = 105◦,
(o,p) second transition at α = 155◦ and (q,r) transverse-only galloping at α = 180◦.

complicated vortex interactions in the near wake. As shown in figure 25(o–r), multiple
frequencies emerge in the spectra of the drag and lift forces. In the transverse-only
galloping regime, higher harmonic frequencies are noted as U∗ increases, owing to the
growing number of vortices shed from the prism in each vibration cycle (Zhao et al. 2014,
2018; Seyed-Aghazadeh et al. 2017; Chen et al. 2020a, 2022b).
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Figure 26. Phase lags (ϕ) between the lift and displacement in the 2DOF FIV of a D-section prism at examined
(U∗, α) plane. The grey and lime regions denote that the phase lag is approximately 0◦ and 180◦, respectively.
The grey dashed line represents the phase lag variation in the 1DOF case.

5.3. Phase lags between the lift and transverse displacement
For a vibration system without structural damping, the phase lag changing from 0◦ to
180◦ occurs at the position where the vibration frequency (f ∗

y ) passes through the unity
(Sarpkaya 2004). This way is adopted in the present study to confirm the location of the
phase lag jump from 0◦ to 180◦, the same means adopted by Bourguet & Lo Jacono (2014).
Figure 26 shows the variation of the phase lag between the lift and transverse displacement
at different α cases. For comparison, the result of the 1DOF case is provided. It is seen
that the variations in phase lag are very similar for the 1DOF and 2DOF cases. In the
typical VIV regime the jump in phase lag occurs at a constant U∗. In the following three
regimes, the phase lag jump appears at a higher U∗ as α increases. In the dual galloping
regime the phase lag maintains around 0◦, which has also been reported by Bourguet & Lo
Jacono (2014), Zhao et al. (2014) and Chen et al. (2022b). However, in the combined VIV
and galloping regime, the phase lag jump occurs at the VIV region. As α increases, the
VIV dominates a wider U∗ region and the U∗ at which the phase lag jump occurs decreases
gradually. The decreasing trend continues until α ≈ 90◦, and then the critical U∗ increases
slowly with increasing α. In the second transition response regime, the critical U∗ at
which the phase lag jump occurs successively increases as α grows. In the transverse-only
galloping the phase lag remains around 0◦.

The position of the corresponding U∗ at which the phase lag jump occurs is marked in
figure 24. As shown in figure 24(b), the phase lag changing from 0◦ to 180◦ always occurs
at the U∗ where the higher harmonic frequencies, such as the second or third harmonic
frequency, are dominant. This indicates that the phase lag jump is associated with the
appearance of higher harmonic frequencies (Prasanth & Mittal 2008; Chen et al. 2020a,
2022c).

6. Discussion

In this section we first provide a comprehensive summary of possible FIV responses of
a D-section prism at different conditions, such as varied Re numbers, mass ratios and
degrees of freedom, and then shed light on the roles of the separation point movement and
shear layer reattachment in determining the observed responses.
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6.1. Summary of FIV responses of D-section prism and effects of Re and streamwise
vibration

Although the pioneering work of Lanchester (1907) can be traced to one hundred years
ago, studies on the FIV of a D-section prism are still scarce. Based on the results in
the literature, we provide a summary of the FIV responses of a D-section prism and
their corresponding α ranges in table 3. It is seen that most of the studies were at
α = 0◦ and 180◦ only. The method used by Kumar et al. (2020), Chen et al. (2022b)
and Sharma et al. (2022) was direct numerical simulations, while others used water
or wind tunnel experiments. In the water tunnel experiment by Zhao et al. (2018) and
Chen et al. (2021), the mass ratio is of the order 1, which is about two orders of magnitude
smaller than that in wind tunnel experiments. To positively exhibit the details of the
identified responses, we also offer a classification of the FIV responses in figure 27 with
the amplitudes and vibration frequencies of each type included. At α = 0◦, depending on
the mass ratio, there are two types of response, i.e. VIV and no vibration (figure 27a).
Brooks (1960) reported no vibrations because of the higher mass ratio (∼O(102)), while
Zhao et al. (2018), Sharma et al. (2022) and Chen et al. (2021, 2022b) all with the
mass ratio ∼O(1) presented typical VIV. Figure 27(a) further shows that a moderate
increase in the mass ratio results in a decreased amplitude and narrowed vibration region.
Owing to the absence of a major part of the afterbody, the response of the D-section
prism at α = 0◦ is different from that of a circular cylinder. In the laminar-flow case
the shear layers separate from the prism corners and VIV is sustained even without an
afterbody. By decomposing the lift force into pressure and viscous parts, Chen et al.
(2022b) and Chen & Li (2023) demonstrated that its sustenance comes from the positive
work done by the viscous part. This mechanism is contrastingly different from the VIV
of a circular cylinder where the pressure part exerts a positive role in the response while
the viscous part always dampens the vibration (Menon & Mittal 2021). The variation in
vibration frequencies also provides deep-going information. As shown in figure 27(a),
in the laminar-flow cases (Chen et al. 2022b; Sharma et al. 2022; and present study)
the dominant vibration frequency increases almost linearly with increasing U∗. On the
other hand, in the turbulent-flow cases (Zhao et al. 2018; Chen et al. 2021) the vibration
frequency remains unity for intermediate vibration amplitudes, indicating lock-in. This
discrepancy is closely related to the movement of the separation points at high-Re turbulent
flow. However, out of the lock-in region, the vibration frequency closely follows the St line.

At α = 180◦, the response is also divided into two subtypes. When the mass ratio is
small, the galloping response is characterized by the increased amplitude and constant
frequency with U∗. For a high mass ratio, the galloping can be excited only when strong
disturbances are applied, and otherwise, VIV appears. In the VIV the prism vibration
generally exists in a narrow U∗ range (Brooks 1960; Parkinson 1963; Weaver & Veljkovic
2005). As shown in figure 27(i), the amplitude in the galloping increases with increasing
U∗, and the vibration frequency maintains around 1.0 for the entire U∗ range, irrespective
of the mass ratio. Comparing the amplitudes in experiments and numerical simulations,
we can see that a higher Re, to some extent, enhances the prism vibration, which may be
associated with the energetic shear layers in the turbulent flow. Compared with the 1DOF
counterpart, the streamwise freedom leads to a lower amplitude, which is in contrast to
the circular cylinder counterpart where the amplitude is slightly amplified by adding the
streamwise freedom (Jauvtis & Williamson 2004). A special feature in the galloping noted
here is the hysteresis for increasing and decreasing U∗. A similar behaviour was reported
in the galloping of a square cylinder, such as by Luo, Chew & Ng (2003), Barrero-Gil,
Sanz-Andres & Alonso (2009) and Liu et al. (2022).
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Figure 27. Non-dimensional vibration amplitudes and frequencies of a D-section prism versus U∗ at different
α. (a) Typical VIV at α = 0◦, (b) hysteretic VIV at α = 45◦, (c) extended VIV at α = 50◦, (d) first transition
response at α = 60◦, (e) (dual) galloping at α = 70◦ for the present study, α = 75◦ for Chen et al. (2021) and
α = 69◦ for Chen et al. (2022b), ( f ) combined VIV and galloping at α = 80◦ for Chen et al. (2022b) and the
present study and α = 90◦ for Chen et al. (2021), (g) narrowed VIV at α = 120◦, (h) second transition response
at α = 160◦ and (i) (transverse-only) galloping at α = 180◦. The cross-symbols in (b,d,h,i) denote the results
of the decreasing U∗ cases. Note that the non-dimensional maximum amplitude (A∗

max) is applied in Sharma
et al. (2022) and Kumar et al. (2020), while the average (A∗

10) of the top 10 % amplitudes is adopted in Chen
et al. (2021) and Zhao et al. (2018).
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Studies at 0◦ < α < 180◦ are much less. However, as listed in table 3, seven different
types of responses are identified in this α range, indicating significant influences of α on
D-section prism vibrations. Owing to the disparities in Re number, mass ratio and degree
of freedom, the variations in the α range for each identified response are not explained
here. However, it should be mentioned here that in Chen et al. (2021) the increment of
α is relatively large, and some of the responses observed in Chen et al. (2022b) and the
present study are not detected, such as hysteretic and extended VIV. Firstly, we focus on
the hysteretic VIV. As shown in figure 27(b), there is a hysteretic loop in the hysteretic
VIV. At the same α, the hysteretic loop in the 2DOF case is much wider than that in the
1DOF case, suggesting a promoting role of the streamwise vibration on the hysteresis.
Then, the focus is on the extended VIV. As shown in figure 27(c), in this response, the
amplitude first increases and then decreases rapidly before attenuation. Compared with the
typical VIV, lock-in occurs at a wider U∗ region. The addition of the streamwise freedom
widens the large-amplitude region, similar to that in the hysteretic VIV. Thirdly, in the first
transition response noted at a higher α, the amplitude first increases and then decreases
with increasing U∗ before attenuation (figure 27d). The increase or decrease in amplitude
with U∗ is not monotonic.

Next is the galloping. As shown in figure 27(e), at α ≈ 70◦, the amplitude increases with
increasing U∗, thus, the galloping dominates. However, it should be pointed out here that
the increment of �α = 5◦ adopted by Chen et al. (2022b) is not fine enough, no galloping
response is reported by them. Here, we further checked the response at 65◦ < α < 70◦
with an increment of �α = 1◦ and confirmed the occurrence of galloping at α = 69◦.
In the laminar flow the amplitudes of the 1DOF and 2DOF cases are approximately
identical at U∗ < 6.0 but distinct at U∗ > 6.0. This difference is expected because of the
significantly amplified streamwise amplitude. As explained in § 4.2.3, the coupling of the
vibrations in the two directions is strong, especially when U∗ is large, which is a benefit
to the enlarged transverse amplitude. Compared with the turbulent-flow counterpart, the
vibration in the laminar flow begins at a smaller U∗ but the amplitudes are higher. This
is largely associated with smaller mass ratios and zero structural damping adopted in the
two laminar-flow cases. The vibration frequencies are constant around 0.7, which is almost
independent of Re and degree of freedom. In the combined VIV and galloping response
(figure 27 f ), the VIV usually appears at low U∗ with small amplitudes. The galloping
occurs at high U∗ where the amplitude gradually increases with increasing U∗. In the
laminar flow the amplitudes of the 1DOF and 2DOF cases are similar and the discrepancy
becomes perceivable only after U∗ > 10. Compared with the laminar-flow counterpart,
the VIV amplitude in the turbulent flow is slightly larger, while the galloping amplitude
is significantly smaller, even when U∗ is very high, as shown in the zoomed-in plot
of figure 27( f ). The vibration frequencies of two laminar-flow cases are approximately
identical. In the VIV the vibration frequency follows the St line, while maintains at 0.6
in the galloping. Although the variation of vibration frequency in the turbulent flow is
similar to that in the laminar flow, one noticeable difference is the occurrence of lock-in in
the turbulent VIV as a result of the intense shear layer reattachment.

The narrowed VIV dominates in the α range of approximately 90◦–150◦. As shown
in figure 27(g), the VIV amplitude is much smaller as the prism orientation in this α

range is more streamlined. Compared with the laminar-flow counterpart, the vibration
in the turbulent flow is much weaker and appears in a narrower U∗ range. Depending
on Re and mass ratio, the second transition response appears at α around 150◦–160◦.
As shown in figure 27(h), this response can also be divided into several regions, with
the hysteresis appearing in the transition of adjacent regions. Although the variations
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2DOF flow-induced vibrations of a D-section prism

of the amplitude in the laminar and turbulent cases are similar, we still notice several
evident discrepancies, such as a significantly lower amplitude in the turbulent case. In the
2DOF case the amplitude is higher than that in the 1DOF case, especially at high U∗.
At 165◦ ≤ α < 180◦, the galloping recovers again, with its vibration and spectral features
being similar to those of the galloping at α = 180◦.

From the above, we know that the influencing factors, e.g. Re, m∗ and structural
damping, are significant for the presence of some responses. However, up to now, the
studies are rather scarce. We still have some conclusive points: (1) irrespective of Re, the
prism responses with increasing α are similar at low (∼O(1)) or intermediate m∗ (∼O(10));
(2) in contrast to the laminar case, lock-in always occurs when the prism vibration in the
turbulent flow commences; and (3) with a significantly high m∗, the prism vibration may
become insignificant, regardless of Re. Moreover, in the present study the simulations were
conducted only at Re = 100 where the flow is two dimensional. Therefore, it is expected
that there are some limitations of the response features identified here to universally apply
for the three-dimensional (3-D) geometry at high-Re turbulent flow. The differences in the
occurrence of lock-in between the laminar and turbulent flows positively indicate the more
complex physics of 3-D prisms. A thorough study should be conducted in the future.

By adding the streamwise vibration, we note strong similarities and some disparities
between the 1DOF and 2DOF FIV cases. The similarities are summarized as follows.
(1) Within α = 0◦–180◦, some response regimes are observed in the two cases, such as
typical VIV, extended VIV, narrowed VIV, galloping and transition response, and the
corresponding α range for each regime is very close. (2) All three groups of the response
are reported in the two cases and underlying flow physics exhibit no differences. (3) The
wake modes in each regime are alike, such as the dominating 2S and P+S modes for VIV
and mS+nS mode for galloping and galloping-like responses. (4) The dominant vibration
frequencies exhibit similar behaviours with increasing U∗, although the amplitude is
relatively higher in the 2DOF case. (5) The variations of fluid forces with U∗ and α

are approximately the same, although the values are slightly different. Furthermore, some
disparities, although not significant, are identified between the two cases. Firstly, compared
with the 1DOF case, the peak amplitude is higher and the large-amplitude vibration exists
in a wider U∗ range for the group of VIV. Secondly, the hysteresis loop is widened in the
2DOF case. Thirdly, the amplitude is much higher, especially at large U∗, for the galloping.
Finally, the mean lift C̄L in the 2DOF case is significantly lower for α < 90◦.

6.2. Roles of separation point movement and shear layer reattachment in identified
FIV responses

As discussed above, although the responses of a D-section prism are impacted by several
factors, such as Re number, mass ratio and degree of freedom, the physical mechanisms
of the responses remain the same. According to the mechanisms, the FIV responses are
largely divided into three groups: VIV, galloping-like and galloping responses. In the VIV
the vortex shedding frequency is always identical to the prism vibration frequency, and
the resonant response is induced by the fluctuating lift and drag resulting from vortex
shedding. In contrast to the self-limited VIV, the amplitude in galloping generally increases
with increasing flow velocity (or reduced velocity), showing no limitation; the vortex
shedding frequency is usually higher than the prism vibration frequency. Additionally, the
galloping is driven by the shear layer reattachment, which produces strongly asymmetric
pressure distribution on the prism surface (Nemes et al. 2012; Zhao et al. 2014; Chen
et al. 2022b). In the galloping-like response there are several regions where the amplitude
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is large, i.e. A∗
y ∼ 1. This large-amplitude response is associated with multiple vortices

shed in each vibration period, such as 3S+2S and 3S+3S modes. Multiple vortices lead
to a high-frequency oscillation of the forces that are superimposed on the low-frequency
vibrations. Therefore, the synchronization between the prism large-amplitude vibration
and vortex shedding formation disappears (Stansby & Rainey 2001; Yogeswaran & Mittal
2011; Bourguet & Lo Jacono 2014). Here, we look deep into how the separation point
movement and shear layer reattachment work in the 2DOF FIV of a D-section prism.

In the typical VIV regime (α = 0◦–30◦), the wake is the 2S mode and the prism
vibration and vortex formation are synchronized. At most U∗ cases of α = 0◦, the shear
layers separate from the corners, and the afterbody is zero (figure 28a). However, owing to
the intensified streamwise vibration, in some U∗ cases, especially when the amplitude is
large, the shear layers separate from the curved surface (figure 28b), and a small part of the
curved surface turns into an afterbody where the pressure variation is insignificant. Thus,
the work done by the pressure force is negligible. At α = 15◦–30◦, as the cross-section is
asymmetric with respect to the incoming flow, the shear layer on the upper side persistently
separates from the prism corner or from the curved surface, depending on the amplitude.
As stated by Chen et al. (2022b), the vortex formation process in the typical VIV is largely
determined by the fixed separation point on the upper side, with the vibration frequency
following the St line (figure 3b). It is noted that at some U∗ cases with higher amplitude,
especially for α = 30◦, the shear layer on the upper side may reattach onto the flat surface
(figure 28c), and this could lead to the vortex shedding frequency slightly deviating from
the St line. In the hysteretic VIV regime (α = 35◦–45◦), the prism is more streamlined
to the incoming flow and the shear layer on the upper side is easier to reattach onto the
flat surface. As shown in figure 28(d), when the prism moves downward, the shear layer
on the upper side of the prism closely reattaches onto the flat surface while that on the
lower side separates from the curved surface. When the prism moves upward (figure 28e),
the shear layer on the lower side is largely entrained onto the flat surface. Along with a
wider afterbody, the shear layer reattachment and entrainment show significant influences
on the vortex shedding, and the vibration frequency significantly deviates from the St line
(figure 3d). As α increases, the vibration frequency approaches the natural frequency of
the prism. In the hysteretic region the prism vibration in the decreasing case is weak and
the shear layer on the upper side does not reattach on the flat surface and the vibration
frequency closely follows the St line. However, in the increasing case the shear layer on
the upper side closely reattaches onto the flat surface when the prism moves upward and
the vibration frequency is very close to the natural frequency of the prism, signifying the
occurrence of lock-in. At α = 50◦–55◦, the shear layer reattachment occurs even when the
amplitude is mild, and hence, the VIV extends significantly. Moreover, the shear layer on
the lower side of the prism moves back and forth along a longer segment of the curved
surface, thus contributing to the further closeness of the vibration frequency to the natural
frequency of the prism. However, when the vibration is negligible, the shear layer on the
upper side does not reattach onto the flat surface (figure 28f ). Accordingly, the vibration
frequency follows the St line.

In the first transition response regime (α = 60◦–65◦), movements of the shear layer
reattachment and separation point occur at high U∗. As shown in figure 28(g), when the
prism moves upward, the upper side shear layer closely reattaches onto the flat surface
while the lower side shear layer moves back and forth along a wide segment of the
curved surface. Moreover, hysteresis detected in this transition regime, as explained in
§ 4.2.1, comes from the dynamic movements of the shear layer reattachment and separation
point.
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Figure 28. Instantaneous vorticity contours at different α and U∗: (a) α = 0◦ and U∗ = 10.0, (b) α = 0◦ and
U∗ = 5.0, (c) α = 30◦ and U∗ = 5.0, (d) α = 35◦ and U∗ = 5.0, (e) α = 45◦ and U∗ = 6.0, ( f ) α = 50◦
and U∗ = 2.5, (g) α = 60◦ and U∗ = 12.0, (h) α = 75◦ and U∗ = 2.5, (i) α = 90◦ and U∗ = 5.0, (j) α = 120◦
and U∗ = 5.0, (k) α = 160◦ and U∗ = 12.0 and (l) α = 180◦ and U∗ = 14.0 (increasing). The positions of
selected instants are marked in the trajectories by a red dot superimposed on the vorticity fields.

Dual galloping is observed at α = 70◦ where both streamwise and transverse amplitudes
gradually increase with U∗. The sustenance of dual galloping is also strongly associated
with the shear layer reattachment. As explained in § 4.2.3, multiple vortices shed from
the two sides of the prism alternately can generate significant fluctuations of pressure
distribution on the prism surface. In the combined VIV and galloping response (α =
75◦–80◦), the response is divided into two regions. In the VIV region (figure 28h), the
upper shear layer separating from the upper corner flows over the flat surface while
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the lower side shear layer separates from the curved surface. Accordingly, the vibration
frequency approximately follows the St line. In the galloping region the amplitude
increases monotonically with increasing U∗, and the physical mechanism is the same
as that of dual galloping. The narrowed VIV can be thought of as an extension of
the VIV region in the combined response as a result of increasing α. According to
the dynamics of the shear layers, we divide this regime mainly into two sub-regimes,
i.e. one is at α = 85◦–95◦ and the other is at α = 100◦–145◦. In the first sub-regime
the flat surface is approximately parallel to the incoming flow and the upper shear layer
moves downstream along the flat surface. As shown in figure 28(i), the upper shear layer
separates from the downstream corner while the lower side shear layer separates from the
curved surface. Therefore, the response is similar to the VIV in the combined response.
In the second sub-regime the afterbody extends as α increases (figure 28j). The upper
shear layer separates from the upper corner and then reattaches onto the curved surface,
while the lower shear layer oscillates strongly before separating from the prism (not
shown here). As α increases, the fluctuation of the pressure distribution enhances and the
amplitude increases gradually. However, as indicated by figure 3(h), although the shear
layer separation point on the lower side somewhat moves back and forth, the vibration
frequency linearly increases with increasing U∗.

In the second transition response regime, i.e. α = 150◦–160◦, the transverse amplitude
increases significantly with increasing α, which is associated with the enlarged afterbody
and stronger shear layer reattachments on the two sides of the prism (figure 28k).
The reattachment leads to the lock-in in a wider U∗ range, especially for α = 160◦.
The transverse-only galloping occurs at α = 165◦–180◦. In this regime the transverse
amplitude monotonically increases while the streamwise amplitude remains small. The
sustenance is related to the shear layer reattachment (Nemes et al. 2012; Zhao et al. 2014;
Seyed-Aghazadeh et al. 2017).

7. Conclusions

We numerically studied FIV of an elastically mounted D-section prism in the parametric
space of α = 0◦–180◦ and U∗ = 2.0–20.0. The prism is allowed to freely vibrate in both
streamwise and transverse directions. First, we shed light on the details of the vibration
amplitudes and frequencies and uncovered the flow physics for the identified responses.
Then, we carefully examined the dependence of the fluid forces and spectral frequencies on
α and U∗. Finally, we provided a classification of the FIV responses of a D-section prism
at various conditions and discussed the influences of the shear layer reattachment and
separation point movement on the appearance of multiple responses. The major findings
of this study are summarized as follows.

(a) Nine different types of responses depending on the angle of attack: according to
the characteristics of the vibration amplitudes and frequencies, the responses are
classified into nine different regimes, i.e. typical VIV at α = 0◦–30◦, hysteretic
VIV at α = 35◦–45◦, extended VIV at α = 50◦–55◦, first transition response at α =
60◦–65◦, dual galloping at α = 70◦, combined VIV and galloping at α = 75◦–80◦,
narrowed VIV at α = 85◦–145◦, second transition response at α = 150◦–160◦ and
transverse-only galloping at α = 165◦–180◦. Based on the physical mechanisms,
they are classified into three different groups: VIV, galloping-like and galloping
responses. Table 4 shows the details of the response, fluid forces and wake modes
in each regime. In the typical and narrowed VIVs, the vibration frequencies
linearly increase with increasing U∗. In the hysteretic and extended VIVs, the
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vibration amplitudes are large in a wider U∗ region as a result of lock-in. Dual and
transverse-only galloping are different in terms of the variation in the streamwise
amplitude with increasing U∗. In the combined VIV and galloping, the vibration
amplitude is relatively small in the VIV region while drastically increasing with U∗
in the galloping region. In the two transition responses, the vibration frequencies are
galloping like but the divergent amplitude cannot persist at higher U∗.

(b) Several wake modes in the examined parametric space: a partition map of the wake
modes in the U∗–α plane is offered with the smallest increments of �U∗ = 0.1 and
�α = 5◦. The 2S mode dominates the major part of the parametric plane, covering
roughly the whole range of the typical, hysteretic and narrowed VIV regimes. The
P+S mode usually appears at the region with a slightly higher amplitude. In the
hysteretic and extended VIV regimes, the P+S mode occurs at U∗ = 9.0–10.0 while
largely appearing at U∗ = 4.0–5.5 in the transition, combined and pure galloping
regimes. The 2P mode is recognized only in the transition, combined and galloping
regimes, which require a higher amplitude than those of the 2S and P+S modes.
The mS+nS mode is observed only in the transition response and galloping regimes.
However, in the transition regime the values of m and n are usually small while in the
galloping region they generally increase with increasing amplitude. Furthermore, the
dependence of the wake modes on vibration amplitudes and frequencies is examined.

(c) Flow physics for several crucial response behaviours: hysteresis is observed in
the hysteretic VIV, transition response and transverse-only galloping regimes. The
hysteresis can be a combined effect of shear layer reattachment and separation point
movement or induced only by dynamic changes of the shear layer reattachment. The
intermittent behaviour where two different states compete with each other is induced
by the low-frequency component because of the unstable vortex interactions in the
near wake. Dual galloping is for the first time observed in the FIV of a non-circular
cylinder and its emergence is related to the shear layer reattachment and entrainment.
The fluctuating pressure on the prism surface is essentially induced by multiple
vortices shed in each vibration period. This is contrastingly different from that for
the transverse-only galloping where the asymmetric pressure distribution is caused
by multiple shear layer reattachments along with the formation of multiple vortices.

(d) Statistics and spectral contents of the fluid forces with variations in α and U∗: the
C̄D is more likely α dependent and the high C̄D mainly appears in two regions:
one is the curved surface facing upstream while the other is the flat surface facing
upstream. The C̄L can be positive or negative, roughly separated by α = 95◦. The
positive C̄L is more evident in the region where the amplitude is large, indicating
that C̄L is, to some extent, amplitude dependent. The distributions of C′

D and
C′

L are rather similar. Generally, there are two important regions: one at U∗ =
2.5–4.5 and α ≈ 0◦–65◦ corresponds to the region where the amplitude increases
sharply, covering regimes (i)–(iv), while the other is at smaller U∗ and higher α,
approximately covering regimes (viii)–(ix). The dominant f ∗

D and f ∗
L are identical

in most cases. However, multiple frequencies are present, such as in the transition
response and galloping-related regions, which can be thought of as a mirror of
complex vortex-prism interactions.

(e) Finally, we classified the FIV responses of a D-section prism at different conditions
and explained how the movements of shear layer reattachment and separation point
determine the categorized responses. Although the factors, such as Reynolds number
and mass ratio, display a certain amount of influence, most of the FIV responses
identified in the present study are confirmed with higher Re, moderate mass ratio
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or the addition of streamwise freedom. Successive transformations of nine types
of responses with α are strongly dependent on the shear layer reattachment and
separation point movement. The two processes that significantly impact the pressure
distribution on the prism surface and vortex formation process. Along with the
vortex formation, the shear layer reattachment could lead to strong fluctuations in the
pressure distribution. Besides, owing to the reattachment, the rhythm of shear layer
development is modified accordingly, and the vortex shedding frequency deviates
from the St line. The movement of the separation point can also alter the vortex
formation. This is why we find that, in the VIV of a circular cylinder, the lock-in
occurs where the separation points on both sides of the circular cylinder oscillate
along the surface significantly while in the desynchronization region the oscillation
of the separation points is relatively small (Cagney & Balabani 2019). Together
with the alternate vortex shedding, the separation points on the two sides of the
prism move back and forth and, as a result, the pressure distribution on the prism
surface displays significant changes during the vibration, which is responsible for
the sustenance of the response.
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