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Abstract

This article applies a knowledge graph-based approach to unify multiple heterogeneous domains inherent in climate
and energy supply research. Existing approaches that rely on bespoke models with spreadsheet-type inputs are
noninterpretable, static and make it difficult to combine existing domain specific models. The difficulties inherent to
this approach become increasingly prevalent as energy supply models gain complexity while society pursues a net-
zero future. In this work, we develop new ontologies to extend the World Avatar knowledge graph to represent gas
grids, gas consumption statistics, and climate data. Using a combination of the new and existing ontologies we
construct a Universal Digital Twin that integrates data describing the systems of interest and specifies respective links
between domains. We represent the UK gas transmission system, and HadUK-Grid climate data set as linked data for
the first time, formally associating the data with the statistical output areas used to report governmental administrative
data throughout theUK.We demonstrate how computational agents containedwithin theWorldAvatar can operate on
the knowledge graph, incorporating live feeds of data such as instantaneous gas flow rates, as well as parsing
information into interpretable forms such as interactive visualizations. Through this approach, we enable a dynamic,
interpretable, modular, and cross-domain representation of the UK that enables domain specific experts to contribute
toward a national-scale digital twin.

Impact Statement

There is increasing global demand for energy, and yet we must drastically cut emissions to combat climate
change. This will require significant change. In this work, we extend a web-based digital twin to integrate data
that are critical to solving these problems, including a description of the energy infrastructure, energy consump-
tion and climate in the UK. The design of the digital twin is universal—it can and will be extended to cover other
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types of data. It has the ability to update itself and to support data-driven decision making in complex
environments. For example, how much CO2 can we avoid by changing how we heat our homes, and would
this increase or decrease fuel poverty and inequality?

1. Introduction

The gas grid in the UK is responsible for the distribution of gas from intake terminals on the coast to
domestic and industrial end users. The grid has existed in a near constant state of flux since its construction
in the 19th century (National Grid, 2021a). The grid is currently used to distribute natural gas, which is
responsible for 52% of carbon dioxide emissions from the Department for Business, Energy, and
Industrial Strategy (United Kingdom) (2020, 2021). It is possible that the next evolution of the grid
may see it adapted to deliver hydrogen to mitigate carbon emissions whilst ensuring energy security
(Dodds andMcDowall, 2013; Bristowe and Smallbone, 2021). The role hydrogen may have in a net zero
UK has been outlined by the Committee on Climate Change (2018) which deems hydrogen promising in
low-regret short-term scenarios such as blending with natural gas, as well as longer term scenarios in
providing peak energy alongside heat pumps, taking advantage of the flexibility of the gas grid to smooth
out fluctuations between energy supply and demand.

Assessing how best to use the gas grid to support net zero requires models that describe the
interactions and dependencies between technologies included in the energy mix. As the energy mix
becomes increasingly varied, the scenarios considered by the models will necessarily increase in
complexity (Speirs et al., 2017). Inevitably, such analyses will build upon diverse heterogeneous data
sets and will likely include submodels that consider a range of factors, for example including more
detailed geospatial and temporal descriptions of renewables, social and environmental factors. As the
complexity increases, it is likely that modeling will transition from single-institution teams to distrib-
uted, collaborative teams, so that multiple domain experts are able to contribute to a given analysis
(DeCarolis et al., 2020; Yalew et al., 2020). O’Dwyer et al. (2020) demonstrate a Sustainable Energy
Management System (SEMS) to manage the flow of data between machine learning models, cities and
districts. However a general and scalable solution for the construction of cross-domain models remains
unrealized.

The suboptimal organization of complexmodels and data creates problems.With respect to energy, it is
important to ensure models and assumptions are clearly understood, and that data are transparent
(Pfenninger et al., 2018). The types of data particularly relevant to energy scenarios are time-series,
geographic, and tabular data (Pfenninger et al., 2018). Current energy policy research lacks open data and
modeling transparency, impeding the ability not only to reproduce results, but to adapt and combine
existing models (Pfenninger et al., 2017). The popular MARKAL and TIMES United Kingdom energy
models (Hall and Buckley, 2016) are highlighted by DeCarolis et al. (2012) as examples of models that
would benefit from increased interpretability in how they handle the large quantities of data required by
the models. The authors describe a typical workflow of entering data into a series of spreadsheets, with all
changes and edits being performed manually. The problems exemplified by this type of workflow are
widespread, where for example Delmelle (2019) notes that “fusing a multitude of types of data together in
creative ways remains a challenge” in the context of geospatial data. It is clear that future tools will have to
incorporate different types of data from a variety of domains.

Knowledge graphs are a promising technology to describe a broad range of domain specific
information in an interpretable and modular manner. The information is represented using ontologies
expressed as a directed graph, where the nodes of the graph represent concepts and instances, and the
edges between nodes represent the respective relations between nodes. By specifying the relationships
between data, the information becomes more accessible, making it easier for computational agents to
interpret, query, and update the data. TheWorld Avatar project (Eibeck et al., 2019, 2020) is exploring
the use of dynamic knowledge graphs to enable interoperability between models and data from
different domains. The dynamic knowledge graph is operated on by computational agents that read,
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manipulate, and update the nodes and edges of the knowledge graph, including adding new data, new
concepts and new relations. The computational agents are themselves described in the dynamic
knowledge graph. This forms a critical part of the design because it confers the ability to discover
agents by reading from the knowledge graph, and the ability to create new agents, for example by
combining existing agents to perform composite tasks, by writing to the knowledge graph. Each node
in the knowledge graph has a unique identifier, allowing multiple agents and data sets to refer
unambiguously to the same entity. Given a suitable ontologies, it is possible to represent anything.
Therefore, temporal, dynamic, and geospatial data can be integrated, facilitating the complex repre-
sentation of systems starting from simple sets of rules. The ability of computational agents to input
data, simulate the behavior of systems and provide output has led to the suggestion of dynamic
knowledge graph technology providing a suitable architecture for implementing a Universal Digital
Twin (Akroyd et al., 2021b).

The purpose of this article is to extend the World Avatar by developing ontologies to describe gas
transmission systems, gas consumption data and climate observations. The ontologies are used to
integrate climate observations for the first time with information relating to the UK gas transmission
system, gas consumption and statistical output areas used to report governmental administrative data into
large-scale Universal Digital Twin within theWorld Avatar. Computational agents are used to incorporate
live data so that the resulting dynamic knowledge graph remains current in time. The article is structured
as follows. Section 2 provides background about the World Avatar and the systems we represent in this
article. Section 3 details the methodology used to develop the ontologies, and to instantiate and query the
knowledge graph. Section 4 presents a use case that outlines the instantiation of the knowledge graph, and
demonstrates the use of agents to create data pipelines and query geospatial data. Finally, Section 5 draws
conclusions and discusses future work.

2. Background

2.1. Introduction to knowledge graphs

A knowledge graph expresses data as a directed graph, where the nodes of the graph are data items (either
concepts or their instances) and the edges of the graph are links between related concepts or instances. A
knowledge graphG is composed of a set of triples. Each triple t∈G contains a subject s∈C, predicate p∈P
and object o∈C where C is a set of concepts and P is the set of possible relations between concepts. The
subject and object define the nodes of the graph, and the predicates define the connections between these
nodes. Similar to how web pages are assigned URLs, subjects predicates and objects are each given
internationalized resource identifiers (IRIs). However, IRIs do not need to be informative themselves as
they are designed to be machine readable. Rather, for a human to understand triples, subjects predicates
and objects are assigned additional “label” predicates in order to provide context to human users. An
example set of triples within a knowledge graph is as follows:

<example:org=29b4667e>

<example:org=a8350827>

<example:org=75e3e506>
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Example machine�readable triple

!RDFS:label

!RDFS:label

!RDFS:label

Hartlepool005D

HasClosestNTSOfftake

Ganstead Offtake
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Respective human�readableURIlabels

where RDFS: denotes the Resource Description Framework Schema namespace http:www.w3.org/2000/
01/rdf-schema/#. For the remainder of this work we reference human-readable labels of classes and
instances unless otherwise stated. The namespaces used in the rest of this article are defined in the
nomenclature.

Knowledge graphs can be divided into two sets of triples. The first GA∈G contains assertive relations
and the second GT ∈G contains terminological relations. A set of terminological triples GT is also known
as an ontology. An ontology defines the triples that can appear within a knowledge-graph, originating
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from the philosophical idea of what is known. Typical triples within an ontology consist of the definition
of classes, relations, and the domain and ranges over which relations can take. For example:

<GasGridOfftake,Type,Class>
<HasConnectedPipeline,Type,ObjectProperty>

<HasConnectedPipeline,Domain,GasGridOfftake>
<HasConnectedPipeline,Range,GasPipeline>

defines Gas Grid Offtake as a class within the knowledge graph, stating that this represents a subject
or object of a triple, Has Connected Pipeline is defined as an object property stating that it should
relate a subject and object within the knowledge graph. Lastly, this object property is assigned a domain
and range that specifies what subjects and objects it should relate. It can be seen that by building up a
representation of the systems we wish to represent using a collection of basic triples within an ontology,
we specify precisely what is known, providing interpretability.

The second aspect of a knowledge graph GA concerns the assertional triples. This is where concrete
examples of classes such as physical entities are defined and is where data exists within the knowledge
graph. For example in the following three triples

<GansteadOfftake,Class,GasGridOfftake>
<Ganstead‐Asselby,Class,GasPipeline>

<GansteadOfftake,HasConnectedPipeline,Ganstead‐Asselby>

we specify instances of the Gas GridOfftake and GasPipelinewe specify instances of
class which are subsequently “connected” using the semantic relation previously defined. Using a logical
reasonerwe can check whether the triples defined within GA follow the rules defined in GT . If they do not,
then the knowledge-graph is deemed inconsistent. The interested reader is referred to Ehrlinger (2016)
and Hogan et al. (2021) for more detailed information.

2.2. The World Avatar project and a Universal Digital Twin

The World Avatar project seeks to investigate how a dynamic knowledge graph can be used to integrate
multiscale cross-domain knowledge to create a world model (Eibeck et al., 2019). The dynamic
knowledge graph is operated on by computational agents. The agents are themselves described in the
knowledge graph so they can be discovered by reading from the knowledge graph, and can be combined to
create new agents with composite functionality by writing to the knowledge graph. The computational
agents can perform a wide variety of tasks including updating the knowledge graph with new data,
simulating the behavior of systems described in the knowledge graph, and analyzing the results of such
simulations. These capabilities form the basis of the notion that the dynamic knowledge graph contains a
base world that provides a model of the world that remains current in time, and parallel worlds where
alternative scenarios can be hypothesized based on the current base world, and agents used to simulate the
behavior of the parallel world to perform what-if scenario analysis to support enhanced decision making
(Eibeck et al., 2020).

TheWorld Avatar is implemented using technology based on the Semantic Web (W3C, 2015). This
choice is intended to ensure that the data in the dynamic knowledge graph is findable, accessible,
interoperable and reusable as per the findable, accessible, interoperable, reusable (FAIR) Guiding
Principles for scientific data (Wilkinson et al., 2016). The expressive power of ontologies means that
the knowledge graph can represent and integrate data for almost anything. The applications of the
World Avatar to date have focused on decarbonization (Pan et al. 2015, 2016; Kleinelanghorst et al.,
2017; Zhang et al., 2017; Devanand et al., 2020, 2022), city planning (Chadzynski et al., 2021; von
Richthofen et al., 2021) and chemistry (Farazi et al., 2019; Krdzavac et al., 2019; Mosbach et al.,
2020). These examples illustrate the ability of the World Avatar to integrate models and data across
different length scales and technical domains, ranging from the subatomic length scales of quantum
chemistry calculations (Farazi et al., 2020) to the application of the results of these calculations in
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city-scale atmospheric dispersion calculations (Mosbach et al., 2020). The ability of the SemanticWeb
to support a distributed architecture and to represent and integrate heterogeneous data and models in a
form that is discoverable and queryable via a uniform interface, combined with the ability of
computational agents to input data, simulate the behavior of systems and provide output has led to
the suggestion of dynamic knowledge graph technology providing a suitable architecture for imple-
menting a Universal Digital Twin (Akroyd et al., 2021b). Recent work building on this idea has
developed a description of land use (Akroyd et al., 2021a), investigated the effect of a carbon tax on the
power system (Atherton et al., 2021), and assessed how the change in energy consumption patterns that
would arise from the adoption of heat pumps for domestic heating would affect social inequality in the
UK (Savage et al., 2022).

2.3. Domain specific knowledge

This article demonstrates the modularity of a knowledge graph-based digital twin by combining existing
sources of LinkedData (i.e., data that is already expressed in triples) with new semantic representations of
the gas transmission system, and climate throughout the UK. In this section, we outline the sources of
information we consider in the construction of a dynamic knowledge graph.

2.3.1. Office for National Statistics linked geography data
TheOffice for National Statistics (ONS) publishesGeography LinkedData (Office for National Statistics,
2019a). First issued in October 2018 (Office for National Statistics, 2019b), this collection of triples
provides a geospatial representation of output areaswithin theUK. Through the use of awithin relation,
areas of different size are related to each other. These range from the entire UK down to areas containing
on average 1,500 people, known as lower super output areas (LSOA). This relation enables data that is
associated to the smallest output areas to be easily aggregated to larger regions. Figure 1 highlights the
structure of this aspect of the knowledge graph, omitting relations that we do not make use of such as
LandHectarage and OperativeDate. For a complete list of relations within this data set see Office
for National Statistics (2019a).

Delmelle (2019) demonstrates the risks of performing data-driven geography with samples of uneven
population size. Output areas as reported by the ONS (2011) are designed in a manner to approximately
cover areas of equal population, social demographic and built environment based on census data.

onsa:E01011976

Hartlepool 005D

onst:OfficialName onsa:E02002487

pmd:within

onsa:K04000001

pmd:within

pmd:within

Hartlepool 005

England and Wales

onst:Statistical-Geography

type

onsa:E01011976/geometry

gsp:hasGeometry

POLYGON ((-1.22373354.690277,...))

gsp:asWKT

Figure 1. Representation of statistical output areas as linked data, or assertional triples GA. The example
shown is for the Hartlepool 005D output area with respective code E01011976.
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Cockings et al. (2011) outlines the methodology for the construction of the output areas utilized by
the ONS.

2.3.2. UK gas transmission system and gas consumption
The UK gas transmission system, also known within technical documents as the national transmission
system (NTS), consists of pipelines that transport high pressure gas from intakes near the coast to major
industrial users such as power stations or local distribution offtakes where gas is further distributed to low
pressure domestic gas networks. Compression stations and valves are situated throughout the NTS in
order to maintain adequate pressure across the entire system based on fluctuating supply and demand. A
key advantage of the gas transmission system is the flexibility it provides in energy supply. The quantity of
gas contained within the grid at any one time is referred to as the linepack. Short term fluctuations in
demand such as daily load changes can bemet by pressurizing the grid in the evening, therefore increasing
the total linepack. Likewise long-term seasonal changes in demand can bemet through the decompression
of liquefied natural gas (LNG) imports or the storage of gas within underground caverns.

Broadly, information regarding the NTS does not exist in a single location, and as such, key pieces of
information that define what the NTS ismust be identified to be parsed into relational triples. Apart from
physical infrastructure itself such as pipes and compression stations, we also consider statistics associated
with gas consumption, flow rates of gas at points throughout the grid, and additional knowledge regarding
infrastructure.

The sources of information relating to the NTS that we represent as linked data within the knowledge
graph are shown in Table 1.

It should be noted that the information in Table 1 is at this stage disjoint. That is, despite the gas grid site
map and instantaneous flow rate data referring to the same physical gas terminals, the information is not
cross-referenced in a consistent way. As a result it becomes increasingly difficult to keep track of sources
of information as they relate to the same physical entities. This issue is common-place in energy systems
modeling wherein systems such as gas and electricity overlap. Currently approaches are bespoke and
often complex such as the development of new management tools to support cross-domain interactions
(O’Dwyer et al., 2020). By instantiating the concept of each gas terminal as a node within the knowledge
graph, which each disjoint data set can link to, we can unify this information allowing computational
agents to infer links between sources of information, therein providing a complete representation.
Moreover, should additional information come-to-light, for example a hypothetical gas terminal operating
condition data set, this can be easily appended to the knowledge graph by referring to the original concept
of the specific gas terminal in question without requiring knowledge of existing data. Through this brief
example we demonstrate the flexibility, modularity and scalablity of a knowledge graph-based solution.

2.3.3. HadUK grid climate observations
The HadUK-Grid climate data set (Perry and Hollis, 2005; Met Office et al., 2018) created by the Met
Office, consists of values for various climate variables over a 1 by 1 km grid covering the entire of the
United Kingdom. The variables available within the data set include: minimum, maximum and mean air
temperature, precipitation, hours of sunshine, mean sea level pressure, wind speed, relative humidity,
vapor pressure, snow cover and frost cover. Values are calculated through the interpolation of measure-
ments at approximately 540 weather stations. Perry and Hollis (2005) outlines the specific regression
procedure used to generate monthly values.

Each grid point contains a discrete climate variable value for eachmonth dating back to 1862. It should
be noted that whilst the number of weather stations has changed since 1862 the grid over which
interpolated values are presented is constant.

One of the key advantages of climate data as published as a uniform grid is that “regional values can be
produced for any arbitrary area with greater accuracy and consistency” (Met Office, 2021). This
advantage in the aggregation of climate data provides a benefit when considering its addition to the
knowledge graph and subsequent linking to other, previously outlined aspects.
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3. Methodology

3.1. Ontology development

In this section, ontologies are created to ensure that entities within the knowledge graph can be described
using an appropriate vocabulary. These ontologies specify the rules as to which triples can logically exist
and which cannot. For example a pipe segment has a single input and output, if triples were created
allocating two outputs to a single pipe segment this would be reasoned as logically inconsistent within the
rules of the ontology.

A guiding principle of ontology creation is that concepts should be reused from existing ontologies as
much as possible to facilitate links across domains (Noy andMcGuinness, 2001). In this work, we define
two new ontologies that are used alongside concepts from existing ontologies including OntoCAPE
(Morbach et al., 2007), and the Ontology of Units of Measure (Rijgersberg et al., 2013).

3.1.1. OntoGasGrid
To represent the concept of a gas grid ontologically we decompose the system into its parts and the whole
they form. By decomposing a gas grid as such, we produce the set of rules that a gas grid must abide by in

Table 1. Sources of information as they relate to the UK gas transmission system including both static
and dynamic data over a variety of file formats.

Data source Description References File format Size Frequency

Gas grid route
map

Locations of all gas
pipelines throughout the
UK as well as
corresponding
information regarding
ownership

National Grid
(2021c)

.shp 5.3 MB N/A

Gas grid site map Locations of all gas
infrastructure sites
throughout the UK,
measured in million
cubic meters per day
(mcm/day)

National Grid
(2021c)

.shp 257 KB N/A

Gas grid site
information

Information regarding NTS
offtakes such as NTS
exit area and zone aswell
as linepack zone

National Grid
(2014)

.csv 25 KB N/A

Instantaneous
flow rates

Flow rate of gas entering
major gas terminals
throughout the UK

National Grid
(2021b)

.csv 30 KB 2 min

Subnational
consumption
statistics

Yearly mean and median
gas consumption across
Lower Layer Super
Output Areas (LSOAs).
Measured in kWh per
gas meter, also
containing information
regarding the number of
gas meters per LSOA

Department for
Business,
Energy,
and Industrial
Strategy (United
Kingdom)
(2020)

.csv 32.5 MB Annual
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the form of an ontology, GT . We base the ontology on the vocabulary used to describe systems, respective
subsystems and their parts defined by the OntoCAPE (Marquardt et al., 2010), an ontology to represent
chemical processes. Specifically we make use of the upper-layer ontology.

The first aspect we represent are physical gas pipelines. Figure 2 outlines how gas transmission
pipelines are represented as triples. A mereological approach is taken, that is decomposing a system into
respective parts and thewhole they form. In this case, aGridPipeline is described as a combination of
GridPipelineSegment instances. Each GridPipelineSegment is a system containing three
parts: the start of the pipe, end of the pipe and connecting tube. Figure 3 illustrates how these discrete pipe
segments are subsequently connected to form a complete grid pipeline.

As shown in Figure 3, the concept of aGasPipeConnection is introduced, allowing the end of one
GridPipelineSegment to be specified as connected to the start of another. A longitude and latitude
is assigned to eachGasPipeConnection, as opposed to specifying the coordinates of the start and end
of a pipe segment. This ensures that two pipe segments that start and end in different locations respectively
cannot be deemed “connected.”

Aside from physical gas pipelines and their connectivity, OntoGasGrid also describes connected grid
infrastructure including gas terminals and offtakes such as industrial users or power stations. The main
class within this aspect of the ontology is that of a GridComponent, which consists of four main
subclasses themselves decomposed into specific classes of infrastructure. This hierarchy is shown in
Figure 4.

The ontology contains the property isConnectedToPipeline, with domain GridComponent
and range GasPipeConnection. This property links connected infrastructure (i.e., instances of the
class GridComponent) and gas pipelines. By providing this relation we are able to link the previously
separate gas grid site map and gas grid routemap presented in Table 1. Section 4.4 outlines how geospatial
calculations are performed to identify connections between infrastructure and pipelines. The complete
description logic (DL) representation of OntoGasGrid is provided within the Supplementary Material. At
the time of writing OntoGasGrid contains 79 classes, 18 data properties which are associated to specific
classes, and 841 axioms.

gns:GridPipeline
gns:GridPipeline

Segment

gns:GasPipelineStart

gns:GasPipelineEnd

gns:GasPipelineTube

ocape:hasSubsystem gns:hasParts

Figure 2. Outline of how pipelines are decomposed into respective segments and their parts within
OntoGasGrid.

Connected
gns:GridPipelineSegments

gns:entersPipeConnection

gns:GasPipeConnection

Figure 3. Example of how two connected pipe segments are related, specifying their connection.
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Although the situation does not arise in the case of the current data set, one important question is how to
handle uncertainty. The philosophy we propose is that a digital twin should represent what is known,
including representing gaps and uncertainty that is known to exist in data. So, in the case of networks, it
should represent the known parts of the network, alongwith the source of the data, as well as represent, for
example, any uncertainty in the route, dimensions, capacity or connections in the network. In this manner,
all agents that interact with the digital twin will be able to query the full state of knowledge and make
informed decisions about how to deal with the uncertainty. The use of ontologies to represent data
provides the expressiveness required to do this. However, the best way to do it remains an open question.

3.1.2. OntoClimateObservations
OntoClimateObservations is a small ontology created to describe geospatial climate observations
semantically. The ontology defines the minimum terminology to provide a link between previously
described statistical regions and the concept of a climate measurement. Therefore, the ontology itself
makes no effort to semantically describe the generating system (i.e., climate itself) and instead focuses on
the concept of a measurement. The complete ontology is shown graphically in Figure 5.

By providing a link to statistical output areas we enable the potential unification of statistics published
throughout these areas, such as subnational gas consumption, with gridded climate data sets such as
HadUK-Grid. The complete DL representation of OntoClimateObservations is provided within the
Supplementary Material.

3.2. Computational agents

Computational agents are described in the knowledge graph using an agent ontology (Zhou et al., 2019).
When activated, the agents interact with the knowledge graph to facilitate knowledge population,
maintenance, information processing and retrieval. In this article, agents are created to instantiate domain
specific knowledge using vocabularies from OntoGasGrid, OntoClimateMeasurements and other exist-
ing ontologies. The agents exhibit three types of behavior.

• Input. Agents convert information and sources of data into new triples that extend the knowledge
graph. The input to the knowledge graph can be either static one-off information such as the location

gnc:GridComponent

gnc:CompressionStation

gnc:Intake gnc:Offtake gnc:Storage

gnc:ContinentalPipeline

gnc:GasTerminal

gnc:LNGImport

gnc:Export

gnc:IndustrialUser

gnc:LocalDistribution

gnc:PowerStation

gnc:CavernStorage

gnc:HighPressureStorage

gnc:LNGStorage

Figure 4. Hierarchy of grid infrastructure in OntoGasGrid where all arrows represent the property
SubClassOf.
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of physical infrastructure or dynamic information that is updated dynamically such as real-time flow
rates.

• Output.Agents parse data from the knowledge graph to interact with the physical world, for example
by controlling actuators or displaying data in convenient human-readable forms.

• Update. Agents query the knowledge graph, calculate new information, for example optimized
model parameters (Bai et al., 2021), and update the knowledge graph with the results, either through
the modification of existing triples or by the creation of new triples. Such agents may also perform
maintenance tasks such as the detection and deletion of invalid triples.

The agents developed in this work are described in detail in the following section.

4. Use Case

In this section, we outline the agents responsible for creating instances of classes previously outlined, such
as gas grid infrastructure and climate values. Geospatial visualizations are enabled by a series of output
agents. We conclude by presenting an example that illustrates the use of the knowledge graph in a cross-
domain query to identify assets that are at risk from flooding.

4.1. Instantiation of HadUK-Grid climate observations

When considering the addition of the HadUK-Grid data set (Perry and Hollis, 2005; Met Office et al.,
2018) into the knowledge graph there are two potential approaches.

1. Insert the HadUK-Grid data set directly within the knowledges graph by representing individual
grid points and respective climate variable values as triples.

2. Link the HadUK-Grid data set to ONS statistical regions as opposed to representing individual grid
points.

In this work, we take the second approach, first aggregating values within statistical regions and
subsequently assigning values such as mean temperature to instances of these regions as opposed to
representing grid points themselves.

When considering the compatibility between grid points and statistical regions it is noted that a
statistical region may contain multiple grid points or alternatively a single point. In the case of small
regions within urban areas a grid point may not even be enclosed within a region. This provides an
additional challenge in unifying both climate variables across the UK and the set of statistical resources
made available by the ONS, ensuring that regions are all assigned appropriate climate values.

A computational agent was created to interpret HadUK-Grid Network Common Data Form (netCDF)
files (these are commonly used in climate research and are designed to be an appendable, portable, and

onst:Statistical-Geography

oncm:ClimateMeasurement

oncm:ClimateVariable

hasClimateMeasurement

hasClimateVariable

Figure 5.Ontology, GT to describe climate measurements associated to statistical regions. An example of
assertional triples GA using this ontology is shown later in Figure 8.
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self-describing method of sharing array-orientated scientific data), in order to populate the knowledge
graph with climate data from throughout the UK as well as link to existing concepts of statistical regions.
Subsequently, the agent represents this information as linked data using the OntoClimateObservations
and Ontology of Units of Measure ontologies and uploads these triples to the knowledge graph. Grid
points are assigned to statistical regions as follows:

• If a region contains multiple grid points, take the mean of the climate variable values of respective
contained points. In the case of minimum or maximum values (such as that of minimum air
temperature or mean air temperature) take the minimum or maximum value respectively of the
set of contained points.

• If a region contains no grid points, identify the closest grid point to the region and return associated
values for climate variables of interest.

A visual demonstration of this procedure is outlined in Figure 6.
In this work, we use the mean, minimum, and maximum temperature variables, however, other

variables may be appended in the future using the same procedure. A flowchart detailing the HadUK-
Grid climate input agent is shown in Figure 7.

The reason we take this approach as opposed to representing grid points themselves is as follows:
geospatial reasoning within knowledge graphs (for example queries such as “which grid points lie within
this region?”) is not fully implemented across triple-stores. Standards such as geoSPARQL (Perry et al.,
2021) in theory allow for geospatial queries to be performed however currently the standard is not fully
adopted. Jovanovik et al. (2021) performs a GeoSPARQL benchmark across the most commonly used
triple-stores, concluding that the GeoSPARQL standard, almost 9 years after its initial release, is often
only partially supported by major triple-stores (Jovanovik et al., 2021). For this reason, inferring links
between the discrete climate grid points and statistical regions becomes temperamental and dependent on
the specific choice of triple-store. There is also the argument that specialized databases such as triple-
stores are not in-fact the appropriate location to perform geospatial reasoning such as standard set
operations, for example finding the union of two regions, the closest discrete point to a region, and so
forth (Gillies, 2007).

Geospatial calculations within the agent such as the identification of discrete points within regional
polygons were performed by loading well-known text (WKT) representations of regions stored directly
within the knowledge graph into the Shapely Python library (Gillies, 2007). The agent operates using
Python 3.7.9. An example upload query produced by the agent is demonstrated graphically in Figure 8.

(a) Area containing multiple grid points

(b) Area not containing any grid points

Figure 6.Demonstration of grid points associated to an example output area in the case that (a) the area
contains multiple grid points, and (b) the area does not contain a single grid point.
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4.2. Instantiation of gas consumption statistics

An input agent was created to represent subnational domestic gas consumption statistics within the
knowledge graph based on the respective data provided by the Department for Business, Energy &
Industrial Strategy (United Kingdom) (2020). The data are reported as annual statistics and are published
in the form of a spreadsheet. In an ideal world this data would be published as linked data, subverting
many of the issues discussed in the introduction. However, here we make the conversion to linked data to
facilitate addition to the knowledge graph. The agent links to existing instances of output areas and
associates respective gas consumption values using vocabulary from OntoGasGrid and the Ontology of
Units of Measure (Rijgersberg et al., 2013).

The agent constructs an additional seven triples for each of the LSOA annual gas usagemeasurements,
and an additional five triples to represent the number of consuming and nonconsuming gas meters per
LSOA region (not presented above). The agent is therefore responsible for the addition of 482,544 triples
to the knowledge graph for each annual data set.

4.3. Climate and gas consumption visualization agent

An output agent was created to query information from the knowledge graph and render into a human-
usable form that is, a visualization. Figure 9 shows example output from this agent for March 2019.

Load climate data

locally

Load statistical regions

and polygons from the

knowledge graph

Associate one or more grid points

to a region and

average their values.

Perform a SPARQL Update query

using OntoClimateMeasurement

representation of climate measurements.

All regions

accounted for?

No

Yes

Figure 7. UML (Unified Modeling Language) diagram describing how information from the HadUK-
Grid climate data set (Met Office et al., 2018) is instantiated in the knowledge graph using a compu-
tational agent that associates discrete grid points with statistical regions. Purple shading indicates

actions that interact with the knowledge graph.
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The agent interacts via a series of SPARQL queries, withWKTrepresentations of output areas returned
from the knowledge graph and subsequently parsed into geoJSON files containing values for mean
temperature and gas consumption. These geoJSON files are in turn visualized using Mapbox (2021)
enabling interactive output directly from the knowledge graph.

4.4. Instantiation of UK gas transmission system

An input agent was created to instantiate the UK gas transmission system within the knowledge graph.
The agent parses the grid pipeline shapefile published by the National Grid (2021c), containing
information such as pipe locations and respective diameters. Instances of pipe segments belonging to
individual pipelines were created using the vocabulary defined in OntoGasGrid (Section 3.1.1).

A separate input agent was created to generate instances of GridComponent to describe infrastruc-
ture such as local distribution offtakes, power stations, and industrial users from information in National
Grid (2014). The agent updates the knowledge graph by linking each newGridComponent to the closet
instance of GasPipeConnection to express how these are connected, based on the assumption that
this sufficiently approximates the physical connection. TheisConnectedToPipeline property then

clima:2a9de04e-68a4-4783

oncm:ClimateMeasurement

ons:E1000298

clima:tasmin "Minimum Absolute Temperature"

oncm:ClimateVariable

"2019-01-01T12:00:00"

"2019-01-31T12:00:00"

om:Temperature

clima:12a1cf47-24bc-45c6

clima:364a7367-8766-4046-808c

om:Measure

om:degreeCelcius

1.453

rdf:type

rdf:type

om:hasPhenomenon

om:hasNumericalValue

om:hasUnit

hasClimateMeasurement

rdf:type

om:hasValue

oncm:hasClimateVariable

rdf:type

gnc:hasStartUTC

gnc:hasEndUTC

rdfs:label

Figure 8. An example set of triples produced by the agent responsible for the addition of HadUK Grid
climate measurements to the knowledge graph. Specifically the set of triples describes a single climate
variable, minimum absolute temperature, for a single statistical region, E1000298, within the month of

January 2019.
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provides a semantic link between these previously disjoint information. Below are example triples from
the knowledge graph containing geospatial information, along with the connecting triple derived from
these locations.

<gnsa : AberdeenToKirriemuirone855Connection;bd : lat� lon, ' '56:7349838 � 2:726316081''
<oga : Careston;bd : lat� lon, ' '56:73503023 � 2:726519436''>

<oga : Careston;gnc : isConnectedToPipeline; gnsa : AberdeenToKirriemuirone855Connection>

4.5. Dynamic addition of live data feeds

An input agent was created in order to include dynamic data within the knowledge graph. The agent acts
autonomously. The agent receives public information regarding instantaneous flow rates into theNTS and
which is parsed into triples associated to instances of each gas terminal. A graphical example of triples
generated by the agents is seen in Figure 10.

The values of the intake gas associated with a single instance of time and gas terminal are expressed in
cubic meters per second using the Ontology of Units of Measure (Rijgersberg et al., 2013) having been
converted from published units of million-cubic meters per day. The agent is responsible for the addition

(a) Mean temperature.

(b) Total monthly gas usage per LSOA.

Figure 9. Example geospatial data from the knowledge graph showing mean temperature and gas
consumption for March 2019, both displayed in the statistical regions defined by the Office of National
Statistics (2019a). The data is queried by an output agent. The resulting geoJSON is displayed inMapbox.
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of nine additional triples for each rate measurement for each gas terminal. The flow rate data are published
at 2-min intervals (see Table 1), resulting in the addition of 2,430 triples per hour to the knowledge graph.

The flow rate, consumption and climate data have very different time scales. The time scales are
determined by the frequency and resolution with which the data is published. The intake flow rates are
reported every 2 min National Grid (2021b), whereas the consumption data (Department for Business,
Energy, and Industrial Strategy (United Kingdom), 2020) report annual statistics and the HadUK-Grid
data (Perry and Hollis, 2005; Met Office et al., 2018) reports report monthly observations, but is updated
annually. The dynamic knowledge graph accommodates data feeds with all these frequencies, and would
naturally extend to include feeds for other data, for example instantaneous consumption data from smart
meters and temperature data from weather sensors. The availability of such data (or disaggregated
monthly/annual data) would open up the possibility of estimating the instantaneous flow rate out of
the grid and the corresponding effect on the line pack (i.e., the quantity of gas stored in the gas grid by
pressuring the transmission system). The possibility of accessing such data should be considered in the
future.

4.6. UK gas grid visualization

Three output agents were created in order to visualize the UK gas transmission system and connected
infrastructure, as previously instantiated within the knowledge graph. These three agents perform
SPARQL queries for the location and property relations of pipelines, offtakes, and gas terminals,
respectively.

Query 1 demonstrates the SPARQL query used to return information about all local distribution
offtakes. A subset of the results of this query are presented in Table 2.

oga:e6e7ffc4

gnc:IntakenGas

oga:BactonUKCSTerminal "2021-07-01T17:24:00.000"

om:VolumetricFlowRate

oga:fdf05a1e

clima:364a7367-8766-4046-808c

om:Measure

om:cubicMetrePerSecond-Time

179.017245

rdf:type

rdf:type

om:hasPhenomenon

om:hasNumericalValue

om:hasUnit

gnc:hasTaken

rdf:type

om:hasValue

gnc:atUTC

Figure 10. Representation of instantaneous flow rates as linked data applying the ontology of units of
measure. Here the instance of Bacton UKCS gas terminal is instantiated with the triples describing an
instantaneous flow rate of 179m3=s at 2021-07-01 T17:24:00 UTC, a value taken from the National Grid

website by an input agent.
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The information from these queries is then reconstructed as a geoJSON (Butler et al., 2016) file that is
visualized using Mapbox (2021) as shown in Figure 11. The creation of geoJSON files based on the
knowledge graph representation of the gas grid can be performed periodically by these agents, should any
information be updated within the knowledge graph (e.g., decommissioned pipelines or the publication of
a new shapefile). An additional agent was created to query the last 24 hr of instantaneous flow data
associated with each gas terminal, which in turn is provided to the visualization as demonstrated in
Figure 12.

4.7. Flood risk

The dynamic knowledge graph approach and information models demonstrated in this article provide a
uniform method both to query and share distributed (i.e., held on different computer systems and
published by different entities) heterogeneous spatial and temporal data from different technical domains.
The value of data sharing across sector boundaries has been recognized in the UK (National Infrastructure

Query 1. SPARQL query to obtain local distribution offtakes and associated information.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX loc: <http://www.bigdata.com/rdf/geospatial/literals/v1#>
PREFIX comp: <http://www.theworldavatar.com/ontology/

ontogasgrid/gas_network_components.owl#>

SELECT *
WHERE
{

?Offtake rdf:type comp:LocalDistribution.
?Offtake rdfs:label ?Label.
?Offtake loc:lat-lon  ?Location.
?Offtake comp:hasLinepackZone ?LDZone.
?Offtake comp:hasNTSExitArea ?NTSArea.
?Offtake comp:hasNTSExitZone ?NTSZone.

}

Table 2. Output from Query 1.

Offtake Label
Location
(Lat#Lon) LDZone NTSArea NTSZone

http://www.theworldavatar.com/kb/
ontogasgrid/offtakes_abox/
ThorntonCurtis

Thornton
Curtis

53.692#-0.282 3.0 North E11

http://www.theworldavatar.com/kb/
ontogasgrid/offtakes_abox/Thrintoft

Thrintoft 54.338#-1.484 3.0 North E03

http://www.theworldavatar.com/kb/
ontogasgrid/offtakes_abox/Towlaw

Towlaw 54.783#-1.890 1.0 North E01

http://www.theworldavatar.com/kb/
ontogasgrid/offtakes_abox/Towton

Towton 53.863#-1.305 3.0 North E03

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Note: This is subsequently encoded within a geoJSON file for interactive visualization.
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Figure 11. Web-based interactive visualization of the UK gas transmission system produced by agents
operating on the knowledge graph. The panel on the right displays information about selected instances

of physical infrastructure.
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Commission, 2017) with the creation of a National Digital Twin programme (Centre for Digital Built
Britain, 2018). The vision of the programme is to develop the digital infrastructure required for
stakeholders to create a large-scale National Digital Twin that enables a data-centric approach to
managing the built and natural environments. The envisaged benefit lies in the use of a data-centric
approach to support better decision making.

Figure 13 shows one example of a cross-domain analysis that could be supported by such a large-scale
digital twin. The figure shows data from the Flood Map for Planning (Rivers and Sea) published by the
Environment Agency (2021) in the UK. The data is designed to support flood risk assessments and
provide the best estimate of land areas that have 1 in 100 (1%) or greater chance of flooding each year from
rivers, or a 1 in 200 (0.5%) or greater chance of flooding each year from the sea in the absence of flood
defenses.

The figure is overlaid by gas pipes, intakes and offtakes, and power generation assets (described
previously, see Atherton et al. (2021) queried from the knowledge graph. It is straightforward to use
spatial analysis to identify the assets within the flood zone. It is apparent that both the Teddlethorpe
gas intake terminal and the offtake from the gas transmission system that supplies the Sutton Bridge
power station are within the flood zone. Further queries (bottom row of Figure 13) show that there is
currently no intake of has via the Teddlethorpe terminal. Rather, the closest gas intake is via the Bacton
terminals to the east (see also Figure 11), so the availability of gas would probably be unaffected by a
flood. The next questions to ask are, what is the vulnerability of the offtake at Sutton Bridge and
Sutton Bridge power station to a flood?What critical infrastructure would be affected? What could be

Figure 12. Instantaneous gas flow rates are added to the knowledge graph by an input agent. The data are
assigned to the corresponding instances of physical gas terminals and queried from the knowledge graph

by output agents. Located at https://kg.cmclinnovations.com/explore/digital-twin/gas-grid.
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done to increase resilience? And how would this resilience stand up in the face of different climate
scenarios?

The development of a large-scale digital twin that uses data from across sector boundaries to answer
these types of cross-domain questions will provide an important tool to support data-centric analysis to
enable people and organizations to make better decisions. The ontologies described in this article
contribute to the ability to integrate climate data, distributed utility infrastructure and utility consumption
data, including both historic and (near) real-time data feeds into such a tool. Although a degree of initial
data processing is required, the point is that this only needs to be performed at the point of first upload.
Once this has been done, anyone querying the tool can use the data without the need to repeat the
processing. In the case of decarbonization, the availability of this data in such a tool could contribute to

Figure 13. Assets at risk from flooding in the vicinity of King’s Lynn, UK. The flood region is based on the
Flood Map for Planning (Rivers and Sea)—Flood Zone 3 (Environment Agency, 2021), which is the best
estimate of land that in the absence of flood defenses has more than a 1 in 100 (1%) of flooding each year
from rivers (a fluvial flood) or more than a 1 in 200 (0.5%) or greater chance of flooding each year from
the sea (a tidal flood). Located at https://kg.cmclinnovations.com/explore/digital-twin/flood-risk. Flood
Zone data: Environment Agency copyright and/or database right 2018. All rights reserved. Crown

copyright and database rights 2018 Ordnance Survey 100,024,198.
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understanding and analyzing patterns in energy demand, and evaluating options for how to meet that
demand whilst minimizing carbon emissions and providing sufficient resilience.

5. Conclusions

In this work, we have extended the World Avatar to describe gas supply systems and climate data, and
have demonstrated how this data could be used as part of a national-scale digital twin to support data-
centric analysis and to enable people and organizations to make better decisions.

Two new ontologies were created in order to represent these systems semantically. OntoGasGrid
defines the vocabulary and respective relations to represent gas transmission systems and associated
infrastructure. OntoClimateMeasurements allows for the representation of links between the existing
concept of the output areas specified by the ONS, with new concepts to represent climate values.

The ontologies were used to extend the World Avatar dynamic knowledge graph to include data
describing the UK gas transmission system, gas consumption statistics, real-time instantaneous intake of
gas, in addition to data derived from the HadUK-Grid climate data set (Hollis et al., 2019). The extended
knowledge graph includes links between the data and the geospatial output areas used by the ONS to
report governmental data throughout the UK, for the first time formally linking these regions to the
HadUK-Grid climate data.

A series of input agents were developed to incorporate data into the dynamic knowledge graph such
that it remains current in time. The agents demonstrate both the addition of static data describing the
physical infrastructure of the gas transmissions system, and the addition of live feeds of real-time data
describing the intake of gas into the transmission system. Output agents were created to allow visualiza-
tion of geospatial and temporal information queried from the knowledge graph.

The architecture of the World Avatar has been suggested to provide a suitable architecture for
implementing a Universal Digital Twin (Akroyd et al., 2021b). This article demonstrates the universality
of the approach both in terms of the range of geospatial and temporal data that can be semantically
represented and linked in the knowledge graph, and the ability of agents to incorporate new data, process
the data and interact with the real-world. The ability of such a Universal Digital Twin to link previously
disjoint geospatial and temporal data sets enables increased interpretability across domains, offering a
means to simplify analyses that previously would have required a bespoke and time-consuming solution
that may be prone to errors. Future work will demonstrate this in analyses of future energy scenarios that
combine the HadUK-Grid climate data with administrative data including energy consumption and social
indicators such as fuel poverty.

Nomenclature

DL description logic
FAIR findable, accessible, interoperable, reusable
IRI internationalized resource identifier
JSON javascript object notation
LSOA local super output area
netCDF network common data form
NTS national transmission system
ONS Office for National Statistics
WKT well-known text
gnc http://www.theworldavatar.com/ontology/ontogasgrid/gas_network_components.owl#
gns http://www.theworldavatar.com/ontology/ontogasgrid/gas_network_system.owl#
gnsa http://www.theworldavatar.com/kb/ontogasgrid/gas_network_system/
gsp http://www.opengis.net/ont/geosparql#
oga http://www.theworldavatar.com/kb/ontogasgrid/offtakes_abox/
om http://www.ontology-of-units-of-measure.org/resource/om-2/
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oncm http://www.theworldavatar.com/ontology/ontogasgrid/ontoclimate.owl#
onsa http://statistics.data.gov.uk/id/statistical-geography/
onst http://statistics.data.gov.uk/def/statistical-geography#
pmd http://publishmydata.com/def/ontology/foi/
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