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Abstract. We study the existence of solutions for a class of nonuniformly
degenerate elliptic systems in �N , N ≥ 3, of the form{

− div(h1(x)∇u) + a(x)u = f (x, u, v) in �N,

− div(h2(x)∇v) + b(x)v = g(x, u, v) in �N,

where hi ∈ L1
loc(�

N), hi(x) � γ0|x|α with α ∈ (0, 2) and γ0 > 0, i = 1, 2. The proofs
rely essentially on a variant of the Mountain pass theorem (D. M. Duc, Nonlinear
singular elliptic equations, J. Lond. Math. Soc. 40(2) (1989), 420–440) combined with
the Caffarelli–Kohn–Nirenberg inequality (First order interpolation inequalities with
weights, Composito Math. 53 (1984), 259–275).

2000 Mathematics Subject Classification. 35J65, 35J20

1. Introduction. This paper deals with the existence of solutions to the
nonuniformly degenerate elliptic systems in �N , N � 3, of the form{

− div(h1(x)∇u) + a(x)u = f (x, u, v) in �N,

− div(h2(x)∇v) + b(x)v = g(x, u, v) in �N .
(1.1)

Note that in the case when h1(x) ≡ h2(x) ≡ 1 in �N , system (1.1) was studied by D. G.
Costa [7]. In that paper, using variational methods the author proved the existence of
a weak solution in a subspace of the Sobolev space H1(�N, �2). This was extended by
N. T. Chung [6], in which the author considered the situation that hi ∈ L1

loc(�
N),

hi(x) � 1 for a.e. x ∈ �N with i = 1, 2. Then, system (1.1) now was nonuniformly elliptic
and an existence result was obtained by using a variant of the Mountain pass theorem
in [8]. We also find that in the scalar case, the degenerate elliptic problem of the form

− div(|x|α∇u) = f (x, u) in �N,

where N ≥ 3, α ∈ (0, 2) and the nonlinearity term f has special structures, was
studied in many works (see [4, 9, 10, 12–14]). Such problems in anisotropic media
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can be regarded as equilibrium solutions of the evolution equations. For instance,
in describing the behaviour of a bacteria culture, the state variable u represents the
number of mass of the bacteria.

In the present paper, we extend the results in [6, 7, 10, 12, 13] to a class of
nonuniformly degenerate semilinear elliptic systems in �N . In order to state our main
theorem, we first introduce some hypotheses.

Assume that the functions a, b : �N → � and hi : �N → [0,∞), i = 1, 2, satisfy
the following hypotheses:
(A − B) a(x), b(x) ∈ L∞

loc(�
N), there exist a0, b0 > 0 such that a(x) � a0, b(x) � b0 for

all x ∈ �N .
(H) hi ∈ L1

loc(�
N), i = 1, 2, and there exist constants α ∈ (0, 2), γ0 > 0 such that

hi(x) � γ0|x|α for all x ∈ �N .
Next, we assume that the functions F, f, g : �N × �2 → � are of C1 class, ∂F

∂u =
f (x, w), ∂F

∂v
= g(x, w), ∇F(x, w) = (

∂F
∂u , ∂F

∂v

)
for all x ∈ �N and all w = (u, v) ∈ �2. In

addition, the following hypotheses are satisfied:
(F1) f (x, 0, 0) = g(x, 0, 0) = 0 for all x ∈ �N .
(F2) There exist nonnegative functions τ1, τ2 with τ1 ∈ Lr0 (�N) ∩L∞(�N),

τ2 ∈ Ls0 (�N) ∩L∞(�N), where r, s ∈ (
1, N+2−α

N−2+α

)
, r0 = 2N

2N−(r+1)(N−2+α) , s0 =
2N

2N−(s+1)(N−2+α) , α ∈ (0, 2) such that

|∇f (x, w)| + |∇g(x, w)| � τ1(x)|w|r−1 + τ2(x)|w|s−1

for all x ∈ �N, w = (u, v) ∈ �2.
(F3) There exists a constant μ > 2 such that

0 < μF(x, w) � w · ∇F(x, w)

for all x ∈ �N and w ∈ �2\ {(0, 0)}.
Let E and H be the spaces defined as the completion of C∞

0 (�N, �2) with respect
to the norms

‖w‖2
α =

∫
�N

[|x|α|∇u|2 + |x|α|∇v|2 + a(x)|u|2 + b(x)|v|2] dx

and

‖w‖2
H =

∫
�N

[h1(x)|∇u|2 + h2(x)|∇v|2 + a(x)|u|2 + b(x)|v|2] dx

for w = (u, v). Then, it is clear that E and H are Hilbert spaces with respect to the
inner products

〈w1, w2〉α =
∫

�N

[|x|α∇u1∇u2 + |x|α∇v1∇v2 + a(x)u1u2 + b(x)v1v2] dx

for w1 = (u1, v1), w2 = (u2, v2) ∈ E and

〈w1, w2〉H =
∫

�N

[h1(x)∇u1∇u2 + h2(x)∇v1∇v2 + a(x)u1u2 + b(x)v1v2] dx
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for w1 = (u1, v1), w2 = (u2, v2) ∈ H. Moreover, by the condition (H), the embedding
H ↪→ E is continuous.

DEFINITION 1.1. We say that w = (u, v) ∈ H is a weak solution of system (1.1) if

∫
�N

[h1(x)∇u∇ϕ1 + h2(x)∇v∇ϕ2 + a(x)uϕ1 + b(x)vϕ2] dx−

−
∫

�N

[f (x, u, v)ϕ1 + g(x, u, v)ϕ2] dx = 0

for all ϕ = (ϕ1, ϕ2) ∈ C∞
0 (�N, �2).

Our main result is given by the following theorem.

THEOREM 1.2. Assume that the hypotheses (A − B), (H) and (F1) − (F3) are satisfied.
Then system (1.1) has at least one non-trivial weak solution.

Note that by hypothesis (H), the problem which was considered here contains the
situations in [6] and [7]. We also do not require the coercivity for the functions a(x)
and b(x) as in [12]. Theorem 1.2 will be proved by using variational techniques based
on a variant of the Mountain pass theorem [8]. But the key in our arguments is the
following lemma which can be obtained essentially by interpolating between Sobolev’s
and Hardy’s inequalities (see [3, 5]).

LEMMA 1.3 (Caffarelli–Kohn–Nirenberg). Let N ≥ 2, α ∈ (0, 2). Then there exists
a constant Cα > 0 such that

⎛
⎝ ∫

�N

|ϕ|2∗
α dx

⎞
⎠

2
2∗
α

≤ Cα

∫
�N

|x|α|∇ϕ|2dx

for every ϕ ∈ C∞
0 (�N), where 2� = 2N

N−2+α
.

2. Proof of the main result. Let us define the functional I : H → � given by

I(w) = 1
2

∫
�N

[h1(x)|∇u|2 + h2(x)|∇v|2 + a(x)|u|2 + b(x)|v|2] dx −
∫

�N

F(x, u, v) dx

= H(w) − F(w), (2.1)

where

H(w) = 1
2

∫
�N

[h1(x)|∇u|2 + h2(x)|∇v|2 + a(x)|u|2 + b(x)|v|2] dx, (2.2)

F(x) =
∫

�N

F(x, u, v) dx for all w = (u, v) ∈ H. (2.3)

In general, as hi ∈ L1
loc(�

N), i = 1, 2, the functional H (and thus I) may not
belong to C1(H) as usual (in this work, we are not completely interested in the case
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whether the functional I belongs to C1(H) or not). This means that we cannot apply
directly the Mountain pass theorem by Ambrosetti and Rabinowitz [1]. To overcome
this difficulty, we need to recall the following useful concept of weakly continuous
differentiablity.

DEFINITION 2.1. Let J be a functional from a Banach space Y into �. We say that
J is weakly continuously differentiable on Y if and only if the following conditions are
satisfied:

(i) For any u ∈ Y there exists a linear map DJ(u) from Y into � such that

lim
t→0

J(u + tv) − J(u)
t

= 〈DJ(u), v〉 ,∀v ∈ Y.

(ii) For any v ∈ Y , the map u �→ 〈DJ(u), v〉 is continuous on Y .

We denote by C1
w(Y ) the set of weakly continuously differentiable functionals on

Y . It is clear that C1(Y ) ⊂ C1
w(Y ), where C1(Y ) is the set of all continuously Fréchet

differentiable functionals on Y . With similar arguments as those used in the proof of
Proposition 2.2 in [6], we conclude the following lemma which concerns the smoothness
of the functional I.

LEMMA 2.2. The functional I given by (2.1) is weakly continuously differentiable on
H and we have

〈DI(w), ϕ〉 =
∫

�N

[h1(x)∇u∇ϕ1 + h2(x)∇v∇ϕ2 + a(x)uϕ1 + b(x)vϕ2] dx

−
∫

�N

[f (x, u, v)ϕ1 + g(x, u, v)ϕ2] dx (2.4)

for all w = (u, v), ϕ = (ϕ1, ϕ2) ∈ H.

By Lemma 2.2, weak solutions of system (1.1) correspond to the critical points
of the functional I. Our approach is based on a weak version of the Mountain pass
theorem by D. M. Duc [8].

LEMMA 2.3. The functional H given by (2.2) is weakly lower semicontinuous on the
space H.

Proof. By the convexity of the functional H, in order to prove the weak lower
semicontinuity of H on H we shall prove that for any w0 ∈ H and ε > 0 there exists
δ > 0 such that

H(w) ≥ H(w0) − ε ∀w ∈ H : ‖w − w0‖H < δ.
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Since H is convex, for all w ∈ H we have

H(w) ≥ H(w0) + 〈DH(w0), w − w0〉
≥ H(w0) −

∫
�N

[h1(x)|∇u0||∇u − ∇u0| + h2(x)|∇v0||∇v − ∇v0|] dx

−
∫

�N

[a(x)|u0‖u − u0| + b(x)|v0‖v − v0|] dx

≥ H(w0) −
⎛
⎝ ∫

�N

h1(x)|∇u0|2dx

⎞
⎠

1
2

.

⎛
⎝ ∫

�N

h1(x)|∇u − ∇u0|2dx

⎞
⎠

1
2

−
⎛
⎝ ∫

�N

h2(x)|∇v0|2dx

⎞
⎠

1
2

.

⎛
⎝ ∫

�N

h2(x)|∇v − ∇v0|2dx

⎞
⎠

1
2

−
⎛
⎝ ∫

�N

a(x)|u0|2dx

⎞
⎠

1
2

.

⎛
⎝ ∫

�N

a(x)|u − u0|2dx

⎞
⎠

1
2

−
⎛
⎝ ∫

�N

b(x)|v0|2dx

⎞
⎠

1
2

.

⎛
⎝ ∫

�N

b(x)|v − v0|2dx

⎞
⎠

1
2

≥ H(w0) − c ‖w − w0‖H , where c = 4 ‖w0‖H .

Taking δ = ε
c we obtain that

H(w) ≥ H(w0) − ε, ∀w ∈ H : ‖w − w0‖H < δ.

Thus, we have proved that H is strongly lower semicontinuous on H. Since H is
convex, by Corollary III.8 in [2] we conclude that H is weakly lower semicontinuous
on H. �

LEMMA 2.4. The functional I given by (2.1) satisfied the Palais-Smale condition
in H.

Proof. Let {wm} = {(um, vm)} be a sequence in H such that

lim
m→∞ I(wm) = c, lim

m→∞ ‖DI(wm)‖H� = 0.

We first prove that {wm} is bounded in H. By (F3) we have

I(wm) − 1
μ

〈DI(wm), wm〉 =
(

1
2

− 1
μ

)
‖wm‖2

H +
(

1
μ

〈DF(wm), wm〉 − F(wm)
)

≥ γ ‖wm‖2
H ,
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where γ = 1
2 − 1

μ
. It yields that

I(wm) ≥ γ ‖wm‖2
H + 1

μ
〈DI(wm), wm〉

≥ γ ‖wm‖2
H − 1

μ
‖DI(wm)‖H� . ‖wm‖H

= ‖wm‖H

(
γ ‖wm‖H − 1

μ
‖DI(wm)‖H�

)
. (2.5)

Letting m → ∞, since ‖DI(wmj )‖H� → 0 and I(um) → c, we deduce that {wm} is
bounded in H. Since H is a Hilbert space and {wm} is bounded, there exists a
subsequence of {wm}, denoted by {wm}, such that {wm} converges weakly to some
w = (u, v) in H. Then, by Lemma 2.3 we find that

H(w) ≤ lim inf
m→∞ H(wm). (2.6)

Furthermore, by Lemma 1.3 and the condition (H) we have

⎛
⎝ ∫

�N

|ϕi|2�
α dx

⎞
⎠

2
2�
α

≤ Cα

∫
�N

|x|α|∇ϕi|2dx

≤ Cα

γ0

∫
�N

hi(x)|∇ϕi|2dx, for any ϕi ∈ C∞
0 (�N), i = 1, 2.

It follows that the embeddings H ↪→ E ↪→ L2�
α (�N, �2) are continuous. Therefore,

{wm} converges weakly to w in L2�
α (�N, �2) and wm(x) → w(x) a.e. x ∈ �N . Then, it

is clear that the sequence {|wmk |r−1wmk} converges weakly to |w|r−1w in L
2�
α
r (�N, �2).

Using the method as in [11] we define the map K(w) : L
2�
α
r (�N, �2) → � by

〈K(w),�〉 =
∫

�N

τ1(x)wϕdx, ϕ = (ϕ1, ϕ2) ∈ L
2�
α
r (�N, �2).

Since τ1 ∈ Lp0 (�N), w ∈ L2�
α (�N, �2), ϕ ∈ L

2�
α
r (�N, �2) and 1

r0
+ 1

2�
α

+ r
2�

α
= 1, the map

K(w) is linear and continuous. Hence,

〈
K(w), |wm|r−1wm

〉 → 〈
K(w), |w|r−1w

〉
as m → ∞

i.e.

lim
k→∞

∫
�N

τ (x)|wm|r−1wmwdx =
∫

�N

τ (x)|w|r+1dx. (2.7)
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With the same arguments we can show that

lim
m→∞

∫
�N

τ2(x)|wm|s−1wdx =
∫

�N

τ2(x)|w|s+1dx, (2.8)

lim
m→∞

∫
�N

τ1(x)|wm|r+1dx =
∫

�N

τ1(x)|w|r+1dx, (2.9)

lim
m→∞

∫
�N

τ2(x)|wm|s+1dx =
∫

�N

τ2(x)|w|s+1dx. (2.10)

Relations (2.7) and (2.9) imply that

lim
m→∞

∫
�N

τ1(x)|wm|r−1wm(wm − w) dx = 0. (2.11)

Similarly we obtain

lim
m→∞

∫
�N

τ2(x)|wm|s−1wm(wm − w) dx = 0. (2.12)

By (2.11), (2.12) and the condition (F2) we get

lim
m→∞ 〈DF(wm), wm − w〉 = lim

m→∞

∫
�N

∇F(x, wm)(wm − w) = 0, (2.13)

which implies that

lim
m→∞ 〈DH(wm), wm − w〉 = 0. (2.14)

Using (2.14) and the convexity of H we infer that

H(w) − lim
m→∞ supH(wm) = lim

m→∞ inf [H(w) − H(wm)]

≥ lim
m→∞ 〈DH(wm), w − wm〉 = 0. (2.15)

Relations (2.6) and (2.15) imply that

H(w) = lim
m→∞H(wm). (2.16)

We now prove that {wm} converges strongly to w in H. Indeed, we assume by
contradiction that {wm} is not strongly convergent to w in H. Then there exist a constant
ε0 > 0 and a subsequence of {wm}, denoted by {wm}, such that ‖wm − w‖H ≥ ε0 > 0
for all m = 1, 2, . . . Hence,

1
2
H(wm) + 1

2
H(w) − H

(
wm + w

2

)
= 1

4
‖wm − w‖2

H ≥ 1
4
ε2

0 . (2.17)
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Remark that the sequence {wm+w

2 } also converges weakly to w in H, applying
Lemma 2.3 again we get

H(w) ≤ lim inf
j→∞

H
(

wm + w

2

)
. (2.18)

Hence, letting m → ∞ from (2.17) we infer

H(w) − lim inf
j→∞

H
(

wm + w

2

)
≥ 1

4
ε2

0 , (2.19)

which contradicts (2.18). Therefore, we conclude that {wm} converges strongly to w in
H. Thus, I satisfies the Palais-Smale condition in H. �

In order to apply the Mountain pass theorem we shall prove the following
lemma which shows that the functional I has the geometry of the Mountain pass
theorem.

LEMMA 2.5.

(i) There exist two positive constants β and ρ such that I(w) ≥ β ∀w ∈ H with
‖w‖H = ρ.

(ii) There exists w0 ∈ H such that ‖w0‖H > ρ and I(w0) < 0.

Proof. (i) We follow the method used in the proof of Theorem 1.2 in [7]. From
condition (F3) it is easy to see that

F(x, z) ≥ min
|s|=1

F(x, s)|z|μ ∀x ∈ �N and z = (z1, z2) ∈ �2, |z| ≥ 1, (2.20)

0 < F(x, z) ≤ max
|s|=1

F(x, s)|z|μ ∀x ∈ �N and z = (z1, z2) ∈ �2, |z| ≤ 1, (2.21)

where max|s|=1 F(x, s) ≤ c in view of (H2).
Since μ > 2, it follows from (2.21) that

lim
|z|→0

F(x, z)
|z|2 = 0 uniformly for x ∈ �N . (2.22)

From (2.22) we deduce that for every ε > 0 there exists δ ∈ (0, 1) such that

0 < F(x, z) < ε|z|2 (2.23)

for all z with |z| < δ. Therefore, by using the continuous embeddings H ↪→ E ↪→
L2(�N, �2), a simple calculation implies from (2.23) that inf‖w‖H=ρ I(w) = α > 0 for
all ρ > 0 small enough.
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(ii) Besides, by (2.14), for any given compact set � ⊂ �N there exists c = c(�) such
that

F(x, z) ≥ c|z|μ for all x ∈ �, |z| ≥ 1. (2.24)

Let ϕ ∈ C∞
0 (�N, �2), ϕ �≡ 0, for t > 0 large enough, from (2.24) we have

I(tϕ) = 1
2

t2‖ϕ‖2
H −

∫
�N

F(x, tϕ) dx

� 1
2

t2‖ϕ‖2
H − tμc

∫
�N

|ϕ|μ dx. (2.25)

This and the condition μ > 2 help us to conclude (ii). �
Proof of Theorem 1.2. It is clear that I(0) = 0. Furthermore, the acceptable set

G = {γ ∈ C([0, 1], H) : γ (0) = 0, γ (1) = ω0} ,

where w0 is given in Lemma 2.5, is not empty since clearly the function γ (t) = tω0 ∈ G.
Besides, by Lemmas 2.2, 2.4 and 2.5, all assumptions of the Mountain pass theorem
in [8] are satisfied. Therefore, there exists ŵ ∈ H such that

0 < α < I(ŵ) = inf {max I(γ ([0, 1])) : γ ∈ G}

and 〈DI(ŵ), ϕ〉 = 0 for all ϕ ∈ C∞
0 (�N, �2). Thus ŵ is a weak solution of system

(1.1). The solution ŵ is not trivial since I(ŵ) ≥ α > 0. Theorem 1.2 is completely
proved. �
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