EXISTENCE RESULT FOR NONUNIFORMLY DEGENERATE SEMILINEAR ELLIPTIC SYSTEMS IN \mathbb{R}^N

NGUYEN THANH CHUNG

Department of Mathematics and Informatics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Vietnam e-mail: ntchung82@yahoo.com

and HOANG QUOC TOAN

Department of Mathematics, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Vietnam e-mail: hq_toan@yahoo.com

(Received 10 September 2008; accepted 20 November 2008)

Abstract. We study the existence of solutions for a class of nonuniformly degenerate elliptic systems in \mathbb{R}^N , $N \ge 3$, of the form

 $\begin{cases} -\operatorname{div}(h_1(x)\nabla u) + a(x)u = f(x, u, v) & \text{in } \mathbb{R}^N, \\ -\operatorname{div}(h_2(x)\nabla v) + b(x)v = g(x, u, v) & \text{in } \mathbb{R}^N, \end{cases}$

where $h_i \in L^1_{loc}(\mathbb{R}^N)$, $h_i(x) \ge \gamma_0 |x|^{\alpha}$ with $\alpha \in (0, 2)$ and $\gamma_0 > 0$, i = 1, 2. The proofs rely essentially on a variant of the Mountain pass theorem (D. M. Duc, Nonlinear singular elliptic equations, *J. Lond. Math. Soc.* **40**(2) (1989), 420–440) combined with the Caffarelli–Kohn–Nirenberg inequality (First order interpolation inequalities with weights, *Composito Math.* **53** (1984), 259–275).

2000 Mathematics Subject Classification. 35J65, 35J20

1. Introduction. This paper deals with the existence of solutions to the nonuniformly degenerate elliptic systems in \mathbb{R}^N , $N \ge 3$, of the form

$$\begin{cases} -\operatorname{div}(h_1(x)\nabla u) + a(x)u = f(x, u, v) & \text{in } \mathbb{R}^N, \\ -\operatorname{div}(h_2(x)\nabla v) + b(x)v = g(x, u, v) & \text{in } \mathbb{R}^N. \end{cases}$$
(1.1)

Note that in the case when $h_1(x) \equiv h_2(x) \equiv 1$ in \mathbb{R}^N , system (1.1) was studied by D. G. Costa [7]. In that paper, using variational methods the author proved the existence of a weak solution in a subspace of the Sobolev space $H^1(\mathbb{R}^N, \mathbb{R}^2)$. This was extended by N. T. Chung [6], in which the author considered the situation that $h_i \in L^1_{loc}(\mathbb{R}^N)$, $h_i(x) \ge 1$ for a.e. $x \in \mathbb{R}^N$ with i = 1, 2. Then, system (1.1) now was nonuniformly elliptic and an existence result was obtained by using a variant of the Mountain pass theorem in [8]. We also find that in the scalar case, the degenerate elliptic problem of the form

$$-\operatorname{div}(|x|^{\alpha}\nabla u) = f(x, u) \text{ in } \mathbb{R}^{N},$$

where $N \ge 3$, $\alpha \in (0, 2)$ and the nonlinearity term f has special structures, was studied in many works (see [4, 9, 10, 12–14]). Such problems in anisotropic media

can be regarded as equilibrium solutions of the evolution equations. For instance, in describing the behaviour of a bacteria culture, the state variable u represents the number of mass of the bacteria.

In the present paper, we extend the results in [6, 7, 10, 12, 13] to a class of nonuniformly degenerate semilinear elliptic systems in \mathbb{R}^N . In order to state our main theorem, we first introduce some hypotheses.

Assume that the functions $a, b: \mathbb{R}^N \to \mathbb{R}$ and $h_i: \mathbb{R}^N \to [0, \infty), i = 1, 2$, satisfy the following hypotheses:

- $(\mathbf{A} \mathbf{B}) \ a(x), b(x) \in L^{\infty}_{loc}(\mathbb{R}^N)$, there exist $a_0, b_0 > 0$ such that $a(x) \ge a_0, b(x) \ge b_0$ for all $x \in \mathbb{R}^N$.
 - (H) $h_i \in L^1_{loc}(\mathbb{R}^N)$, i = 1, 2, and there exist constants $\alpha \in (0, 2)$, $\gamma_0 > 0$ such that $h_i(x) \ge \gamma_0 |x|^{\alpha}$ for all $x \in \mathbb{R}^N$.

Next, we assume that the functions $F, f, g : \mathbb{R}^N \times \mathbb{R}^2 \to \mathbb{R}$ are of C^1 class, $\frac{\partial F}{\partial u} = f(x, w), \frac{\partial F}{\partial v} = g(x, w), \nabla F(x, w) = \left(\frac{\partial F}{\partial u}, \frac{\partial F}{\partial v}\right)$ for all $x \in \mathbb{R}^N$ and all $w = (u, v) \in \mathbb{R}^2$. In addition, the following hypotheses are satisfied:

- (**F**₁) f(x, 0, 0) = g(x, 0, 0) = 0 for all $x \in \mathbb{R}^N$.
- (**F**₂) There exist nonnegative functions τ_1, τ_2 with $\tau_1 \in L^{r_0}(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$, $\tau_2 \in L^{s_0}(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$, where $r, s \in (1, \frac{N+2-\alpha}{N-2+\alpha})$, $r_0 = \frac{2N}{2N-(r+1)(N-2+\alpha)}$, $s_0 = \frac{2N}{2N-(s+1)(N-2+\alpha)}$, $\alpha \in (0, 2)$ such that

$$|\nabla f(x, w)| + |\nabla g(x, w)| \leq \tau_1(x)|w|^{r-1} + \tau_2(x)|w|^{s-1}$$

for all $x \in \mathbb{R}^N$, $w = (u, v) \in \mathbb{R}^2$.

(F₃) There exists a constant $\mu > 2$ such that

$$0 < \mu F(x, w) \leq w \cdot \nabla F(x, w)$$

for all $x \in \mathbb{R}^N$ and $w \in \mathbb{R}^2 \setminus \{(0, 0)\}$.

Let *E* and *H* be the spaces defined as the completion of $C_0^{\infty}(\mathbb{R}^N, \mathbb{R}^2)$ with respect to the norms

$$\|w\|_{\alpha}^{2} = \int_{\mathbb{R}^{N}} \left[|x|^{\alpha} |\nabla u|^{2} + |x|^{\alpha} |\nabla v|^{2} + a(x)|u|^{2} + b(x)|v|^{2} \right] dx$$

and

$$\|w\|_{H}^{2} = \int_{\mathbb{R}^{N}} [h_{1}(x)|\nabla u|^{2} + h_{2}(x)|\nabla v|^{2} + a(x)|u|^{2} + b(x)|v|^{2}] dx$$

for w = (u, v). Then, it is clear that E and H are Hilbert spaces with respect to the inner products

$$\langle w_1, w_2 \rangle_{\alpha} = \int_{\mathbb{R}^N} \left[|x|^{\alpha} \nabla u_1 \nabla u_2 + |x|^{\alpha} \nabla v_1 \nabla v_2 + a(x) u_1 u_2 + b(x) v_1 v_2 \right] dx$$

for $w_1 = (u_1, v_1), w_2 = (u_2, v_2) \in E$ and

$$\langle w_1, w_2 \rangle_H = \int_{\mathbb{R}^N} [h_1(x) \nabla u_1 \nabla u_2 + h_2(x) \nabla v_1 \nabla v_2 + a(x) u_1 u_2 + b(x) v_1 v_2] dx$$

for $w_1 = (u_1, v_1)$, $w_2 = (u_2, v_2) \in H$. Moreover, by the condition (**H**), the embedding $H \hookrightarrow E$ is continuous.

DEFINITION 1.1. We say that $w = (u, v) \in H$ is a weak solution of system (1.1) if

$$\int_{\mathbb{R}^N} [h_1(x)\nabla u\nabla \varphi_1 + h_2(x)\nabla v\nabla \varphi_2 + a(x)u\varphi_1 + b(x)v\varphi_2] dx - \int_{\mathbb{R}^N} [f(x, u, v)\varphi_1 + g(x, u, v)\varphi_2] dx = 0$$

for all $\varphi = (\varphi_1, \varphi_2) \in C_0^{\infty}(\mathbb{R}^N, \mathbb{R}^2)$.

Our main result is given by the following theorem.

THEOREM 1.2. Assume that the hypotheses $(\mathbf{A} - \mathbf{B})$, (\mathbf{H}) and $(\mathbf{F_1}) - (\mathbf{F_3})$ are satisfied. Then system (1.1) has at least one non-trivial weak solution.

Note that by hypothesis (**H**), the problem which was considered here contains the situations in [6] and [7]. We also do not require the coercivity for the functions a(x) and b(x) as in [12]. Theorem 1.2 will be proved by using variational techniques based on a variant of the Mountain pass theorem [8]. But the key in our arguments is the following lemma which can be obtained essentially by interpolating between Sobolev's and Hardy's inequalities (see [3, 5]).

LEMMA 1.3 (Caffarelli–Kohn–Nirenberg). Let $N \ge 2$, $\alpha \in (0, 2)$. Then there exists a constant $C_{\alpha} > 0$ such that

$$\left(\int_{\mathbb{R}^N} |\varphi|^{2^*_{\alpha}} dx\right)^{\frac{2^*}{\alpha}} \leq C_{\alpha} \int_{\mathbb{R}^N} |x|^{\alpha} |\nabla \varphi|^2 dx$$

for every $\varphi \in C_0^{\infty}(\mathbb{R}^N)$, where $2^* = \frac{2N}{N-2+\alpha}$.

2. Proof of the main result. Let us define the functional $\mathcal{I} : H \to \mathbb{R}$ given by

$$\mathcal{I}(w) = \frac{1}{2} \int_{\mathbb{R}^N} [h_1(x) |\nabla u|^2 + h_2(x) |\nabla v|^2 + a(x) |u|^2 + b(x) |v|^2] dx - \int_{\mathbb{R}^N} F(x, u, v) dx$$

= $\mathcal{H}(w) - \mathcal{F}(w),$ (2.1)

where

$$\mathcal{H}(w) = \frac{1}{2} \int_{\mathbb{R}^N} [h_1(x)|\nabla u|^2 + h_2(x)|\nabla v|^2 + a(x)|u|^2 + b(x)|v|^2] \, dx, \tag{2.2}$$

$$\mathcal{F}(x) = \int_{\mathbb{R}^N} F(x, u, v) \, dx \text{ for all } w = (u, v) \in H.$$
(2.3)

In general, as $h_i \in L^1_{loc}(\mathbb{R}^N)$, i = 1, 2, the functional \mathcal{H} (and thus \mathcal{I}) may not belong to $C^1(H)$ as usual (in this work, we are not completely interested in the case

whether the functional \mathcal{I} belongs to $C^1(H)$ or not). This means that we cannot apply directly the Mountain pass theorem by Ambrosetti and Rabinowitz [1]. To overcome this difficulty, we need to recall the following useful concept of weakly continuous differentiablity.

DEFINITION 2.1. Let J be a functional from a Banach space Y into \mathbb{R} . We say that J is weakly continuously differentiable on Y if and only if the following conditions are satisfied:

(i) For any $u \in Y$ there exists a linear map DJ(u) from Y into \mathbb{R} such that

$$\lim_{t \to 0} \frac{J(u+tv) - J(u)}{t} = \langle DJ(u), v \rangle, \forall v \in Y.$$

(ii) For any $v \in Y$, the map $u \mapsto \langle DJ(u), v \rangle$ is continuous on Y.

We denote by $C_w^1(Y)$ the set of weakly continuously differentiable functionals on Y. It is clear that $C^1(Y) \subset C_w^1(Y)$, where $C^1(Y)$ is the set of all continuously Fréchet differentiable functionals on Y. With similar arguments as those used in the proof of Proposition 2.2 in [6], we conclude the following lemma which concerns the smoothness of the functional \mathcal{I} .

LEMMA 2.2. The functional \mathcal{I} given by (2.1) is weakly continuously differentiable on H and we have

$$\langle D\mathcal{I}(w), \varphi \rangle = \int_{\mathbb{R}^N} [h_1(x)\nabla u\nabla \varphi_1 + h_2(x)\nabla v\nabla \varphi_2 + a(x)u\varphi_1 + b(x)v\varphi_2] dx - \int_{\mathbb{R}^N} [f(x, u, v)\varphi_1 + g(x, u, v)\varphi_2] dx$$
(2.4)

for all w = (u, v), $\varphi = (\varphi_1, \varphi_2) \in H$.

By Lemma 2.2, weak solutions of system (1.1) correspond to the critical points of the functional \mathcal{I} . Our approach is based on a weak version of the Mountain pass theorem by D. M. Duc [8].

LEMMA 2.3. The functional \mathcal{H} given by (2.2) is weakly lower semicontinuous on the space H.

Proof. By the convexity of the functional \mathcal{H} , in order to prove the weak lower semicontinuity of \mathcal{H} on H we shall prove that for any $w_0 \in H$ and $\epsilon > 0$ there exists $\delta > 0$ such that

$$\mathcal{H}(w) \ge \mathcal{H}(w_0) - \epsilon \quad \forall w \in H : \|w - w_0\|_H < \delta.$$

564

Since \mathcal{H} is convex, for all $w \in H$ we have

$$\begin{aligned} \mathcal{H}(w) &\geq \mathcal{H}(w_{0}) + \langle \mathcal{D}\mathcal{H}(w_{0}), w - w_{0} \rangle \\ &\geq \mathcal{H}(w_{0}) - \int_{\mathbb{R}^{N}} [h_{1}(x) |\nabla u_{0}| |\nabla u - \nabla u_{0}| + h_{2}(x) |\nabla v_{0}| |\nabla v - \nabla v_{0}|] dx \\ &- \int_{\mathbb{R}^{N}} [a(x) |u_{0}| |u - u_{0}| + b(x) |v_{0}| |v - v_{0}|] dx \\ &\geq \mathcal{H}(w_{0}) - \left(\int_{\mathbb{R}^{N}} h_{1}(x) |\nabla u_{0}|^{2} dx \right)^{\frac{1}{2}} \cdot \left(\int_{\mathbb{R}^{N}} h_{1}(x) |\nabla u - \nabla u_{0}|^{2} dx \right)^{\frac{1}{2}} \\ &- \left(\int_{\mathbb{R}^{N}} h_{2}(x) |\nabla v_{0}|^{2} dx \right)^{\frac{1}{2}} \cdot \left(\int_{\mathbb{R}^{N}} h_{2}(x) |\nabla v - \nabla v_{0}|^{2} dx \right)^{\frac{1}{2}} \\ &- \left(\int_{\mathbb{R}^{N}} a(x) |u_{0}|^{2} dx \right)^{\frac{1}{2}} \cdot \left(\int_{\mathbb{R}^{N}} a(x) |u - u_{0}|^{2} dx \right)^{\frac{1}{2}} \\ &- \left(\int_{\mathbb{R}^{N}} b(x) |v_{0}|^{2} dx \right)^{\frac{1}{2}} \cdot \left(\int_{\mathbb{R}^{N}} b(x) |v - v_{0}|^{2} dx \right)^{\frac{1}{2}} \\ &\geq \mathcal{H}(w_{0}) - c \, \|w - w_{0}\|_{H}, \quad \text{where } c = 4 \, \|w_{0}\|_{H}. \end{aligned}$$

Taking $\delta = \frac{\epsilon}{c}$ we obtain that

$$\mathcal{H}(w) \ge \mathcal{H}(w_0) - \epsilon, \quad \forall w \in H : \|w - w_0\|_H < \delta.$$

Thus, we have proved that \mathcal{H} is strongly lower semicontinuous on H. Since \mathcal{H} is convex, by Corollary III.8 in [2] we conclude that \mathcal{H} is weakly lower semicontinuous on H.

LEMMA 2.4. The functional I given by (2.1) satisfied the Palais-Smale condition in H.

Proof. Let $\{w_m\} = \{(u_m, v_m)\}$ be a sequence in H such that

$$\lim_{m\to\infty}\mathcal{I}(w_m)=\overline{c},\quad \lim_{m\to\infty}\|D\mathcal{I}(w_m)\|_{H^*}=0.$$

We first prove that $\{w_m\}$ is bounded in H. By (F₃) we have

$$\begin{aligned} \mathcal{I}(w_m) - \frac{1}{\mu} \langle D\mathcal{I}(w_m), w_m \rangle &= \left(\frac{1}{2} - \frac{1}{\mu}\right) \|w_m\|_H^2 + \left(\frac{1}{\mu} \langle D\mathcal{F}(w_m), w_m \rangle - \mathcal{F}(w_m)\right) \\ &\geq \gamma \|w_m\|_H^2, \end{aligned}$$

where $\gamma = \frac{1}{2} - \frac{1}{\mu}$. It yields that

$$\mathcal{I}(w_{m}) \geq \gamma \|w_{m}\|_{H}^{2} + \frac{1}{\mu} \langle D\mathcal{I}(w_{m}), w_{m} \rangle$$

$$\geq \gamma \|w_{m}\|_{H}^{2} - \frac{1}{\mu} \|D\mathcal{I}(w_{m})\|_{H^{*}} \cdot \|w_{m}\|_{H}$$

$$= \|w_{m}\|_{H} \left(\gamma \|w_{m}\|_{H} - \frac{1}{\mu} \|D\mathcal{I}(w_{m})\|_{H^{*}} \right).$$
(2.5)

Letting $m \to \infty$, since $\|D\mathcal{I}(w_{m_j})\|_{H^*} \to 0$ and $\mathcal{I}(u_m) \to \overline{c}$, we deduce that $\{w_m\}$ is bounded in H. Since H is a Hilbert space and $\{w_m\}$ is bounded, there exists a subsequence of $\{w_m\}$, denoted by $\{w_m\}$, such that $\{w_m\}$ converges weakly to some w = (u, v) in H. Then, by Lemma 2.3 we find that

$$\mathcal{H}(w) \le \liminf_{m \to \infty} \mathcal{H}(w_m).$$
(2.6)

Furthermore, by Lemma 1.3 and the condition (H) we have

$$\left(\int_{\mathbb{R}^N} |\varphi_i|^{2^*_{\alpha}} dx \right)^{\frac{2}{2^*_{\alpha}}} \leq C_{\alpha} \int_{\mathbb{R}^N} |x|^{\alpha} |\nabla \varphi_i|^2 dx \\ \leq \frac{C_{\alpha}}{\gamma_0} \int_{\mathbb{R}^N} h_i(x) |\nabla \varphi_i|^2 dx, \text{ for any } \varphi_i \in C_0^{\infty}(\mathbb{R}^N), i = 1, 2.$$

It follows that the embeddings $H \hookrightarrow E \hookrightarrow L^{2^{\star}}(\mathbb{R}^N, \mathbb{R}^2)$ are continuous. Therefore, $\{w_m\}$ converges weakly to w in $L^{2^{\star}}(\mathbb{R}^N, \mathbb{R}^2)$ and $w_m(x) \to w(x)$ a.e. $x \in \mathbb{R}^N$. Then, it is clear that the sequence $\{|w_{m_k}|^{r-1}w_{m_k}\}$ converges weakly to $|w|^{r-1}w$ in $L^{\frac{2^{\star}}{r}}(\mathbb{R}^N, \mathbb{R}^2)$. Using the method as in [11] we define the map $K(w) : L^{\frac{2^{\star}}{r}}(\mathbb{R}^N, \mathbb{R}^2) \to \mathbb{R}$ by

$$\langle K(w), \Phi \rangle = \int_{\mathbb{R}^N} \tau_1(x) w \varphi dx, \quad \varphi = (\varphi_1, \varphi_2) \in L^{\frac{2^*}{r}}(\mathbb{R}^N, \mathbb{R}^2).$$

Since $\tau_1 \in L^{p_0}(\mathbb{R}^N)$, $w \in L^{\frac{2^*}{\alpha}}(\mathbb{R}^N, \mathbb{R}^2)$, $\varphi \in L^{\frac{2^*}{r}}(\mathbb{R}^N, \mathbb{R}^2)$ and $\frac{1}{r_0} + \frac{1}{2^*_{\alpha}} + \frac{r}{2^*_{\alpha}} = 1$, the map K(w) is linear and continuous. Hence,

$$\langle K(w), |w_m|^{r-1}w_m \rangle \to \langle K(w), |w|^{r-1}w \rangle$$
 as $m \to \infty$

i.e.

$$\lim_{k \to \infty} \int_{\mathbb{R}^N} \tau(x) |w_m|^{r-1} w_m w dx = \int_{\mathbb{R}^N} \tau(x) |w|^{r+1} dx.$$
(2.7)

With the same arguments we can show that

$$\lim_{m \to \infty} \int_{\mathbb{R}^N} \tau_2(x) |w_m|^{s-1} w \, dx = \int_{\mathbb{R}^N} \tau_2(x) |w|^{s+1} \, dx, \tag{2.8}$$

$$\lim_{m \to \infty} \int_{\mathbb{R}^N} \tau_1(x) |w_m|^{r+1} dx = \int_{\mathbb{R}^N} \tau_1(x) |w|^{r+1} dx,$$
(2.9)

$$\lim_{m \to \infty} \int_{\mathbb{R}^N} \tau_2(x) |w_m|^{s+1} dx = \int_{\mathbb{R}^N} \tau_2(x) |w|^{s+1} dx.$$
(2.10)

Relations (2.7) and (2.9) imply that

$$\lim_{m \to \infty} \int_{\mathbb{R}^N} \tau_1(x) |w_m|^{r-1} w_m(w_m - w) \, dx = 0.$$
 (2.11)

Similarly we obtain

$$\lim_{m \to \infty} \int_{\mathbb{R}^N} \tau_2(x) |w_m|^{s-1} w_m(w_m - w) \, dx = 0.$$
 (2.12)

By (2.11), (2.12) and the condition (\mathbf{F}_2) we get

$$\lim_{m \to \infty} \left\langle D\mathcal{F}(w_m), w_m - w \right\rangle = \lim_{m \to \infty} \int_{\mathbb{R}^N} \nabla F(x, w_m)(w_m - w) = 0, \qquad (2.13)$$

which implies that

$$\lim_{m \to \infty} \langle D\mathcal{H}(w_m), w_m - w \rangle = 0.$$
(2.14)

Using (2.14) and the convexity of \mathcal{H} we infer that

$$\mathcal{H}(w) - \lim_{m \to \infty} \sup \mathcal{H}(w_m) = \lim_{m \to \infty} \inf \left[\mathcal{H}(w) - \mathcal{H}(w_m) \right]$$
$$\geq \lim_{m \to \infty} \left\langle D\mathcal{H}(w_m), w - w_m \right\rangle = 0.$$
(2.15)

Relations (2.6) and (2.15) imply that

$$\mathcal{H}(w) = \lim_{m \to \infty} \mathcal{H}(w_m).$$
(2.16)

We now prove that $\{w_m\}$ converges strongly to w in H. Indeed, we assume by contradiction that $\{w_m\}$ is not strongly convergent to w in H. Then there exist a constant $\epsilon_0 > 0$ and a subsequence of $\{w_m\}$, denoted by $\{w_m\}$, such that $\|w_m - w\|_H \ge \epsilon_0 > 0$ for all $m = 1, 2, \ldots$ Hence,

$$\frac{1}{2}\mathcal{H}(w_m) + \frac{1}{2}\mathcal{H}(w) - \mathcal{H}\left(\frac{w_m + w}{2}\right) = \frac{1}{4} \|w_m - w\|_H^2 \ge \frac{1}{4}\epsilon_0^2.$$
(2.17)

567

Remark that the sequence $\{\frac{w_m+w}{2}\}$ also converges weakly to w in H, applying Lemma 2.3 again we get

$$\mathcal{H}(w) \le \liminf_{j \to \infty} \mathcal{H}\left(\frac{w_m + w}{2}\right).$$
 (2.18)

Hence, letting $m \to \infty$ from (2.17) we infer

$$\mathcal{H}(w) - \lim \inf_{j \to \infty} \mathcal{H}\left(\frac{w_m + w}{2}\right) \ge \frac{1}{4}\epsilon_0^2, \tag{2.19}$$

which contradicts (2.18). Therefore, we conclude that $\{w_m\}$ converges strongly to w in H. Thus, \mathcal{I} satisfies the Palais-Smale condition in H.

In order to apply the Mountain pass theorem we shall prove the following lemma which shows that the functional \mathcal{I} has the geometry of the Mountain pass theorem.

Lemma 2.5.

- (i) There exist two positive constants β and ρ such that $\mathcal{I}(w) \ge \beta \ \forall w \in H$ with $||w||_H = \rho$.
- (ii) There exists $w_0 \in H$ such that $||w_0||_H > \rho$ and $\mathcal{I}(w_0) < 0$.

Proof. (i) We follow the method used in the proof of Theorem 1.2 in [7]. From condition (F_3) it is easy to see that

$$F(x, z) \ge \min_{|s|=1} F(x, s)|z|^{\mu} \quad \forall x \in \mathbb{R}^{N} \text{ and } z = (z_{1}, z_{2}) \in \mathbb{R}^{2}, |z| \ge 1,$$
(2.20)

$$0 < F(x, z) \le \max_{|s|=1} F(x, s)|z|^{\mu} \quad \forall x \in \mathbb{R}^{N} \text{ and } z = (z_{1}, z_{2}) \in \mathbb{R}^{2}, |z| \le 1, \quad (2.21)$$

where $\max_{|s|=1} F(x, s) \leq c$ in view of (H_2) .

Since $\mu > 2$, it follows from (2.21) that

$$\lim_{|z|\to 0} \frac{F(x,z)}{|z|^2} = 0 \text{ uniformly for } x \in \mathbb{R}^N.$$
(2.22)

From (2.22) we deduce that for every $\epsilon > 0$ there exists $\delta \in (0, 1)$ such that

$$0 < F(x, z) < \epsilon |z|^2 \tag{2.23}$$

for all z with $|z| < \delta$. Therefore, by using the continuous embeddings $H \hookrightarrow E \hookrightarrow L^2(\mathbb{R}^N, \mathbb{R}^2)$, a simple calculation implies from (2.23) that $\inf_{\|w\|_H=\rho} \mathcal{I}(w) = \alpha > 0$ for all $\rho > 0$ small enough.

(ii) Besides, by (2.14), for any given compact set $\Omega \subset \mathbb{R}^N$ there exists $\overline{c} = \overline{c}(\Omega)$ such that

$$F(x, z) \ge \overline{c}|z|^{\mu} \text{ for all } x \in \Omega, |z| \ge 1.$$
(2.24)

Let $\varphi \in C_0^{\infty}(\mathbb{R}^N, \mathbb{R}^2), \varphi \neq 0$, for t > 0 large enough, from (2.24) we have

$$\mathcal{I}(t\varphi) = \frac{1}{2}t^2 \|\varphi\|_H^2 - \int_{\mathbb{R}^N} F(x, t\varphi) \, dx$$
$$\leq \frac{1}{2}t^2 \|\varphi\|_H^2 - t^{\mu} \overline{c} \int_{\mathbb{R}^N} |\varphi|^{\mu} \, dx.$$
(2.25)

This and the condition $\mu > 2$ help us to conclude (ii).

Proof of Theorem 1.2. It is clear that $\mathcal{I}(0) = 0$. Furthermore, the acceptable set

$$\mathbf{G} = \{ \gamma \in C([\mathbf{0}, \mathbf{1}], H) : \gamma(\mathbf{0}) = 0, \, \gamma(\mathbf{1}) = \omega_0 \},\$$

where w_0 is given in Lemma 2.5, is not empty since clearly the function $\gamma(t) = t\omega_0 \in \mathbf{G}$. Besides, by Lemmas 2.2, 2.4 and 2.5, all assumptions of the Mountain pass theorem in [8] are satisfied. Therefore, there exists $\hat{w} \in H$ such that

$$0 < \alpha < \mathcal{I}(\hat{w}) = \inf \{\max \mathcal{I}(\gamma([0, 1])) : \gamma \in \mathbf{G}\}$$

and $\langle D\mathcal{I}(\hat{w}), \varphi \rangle = 0$ for all $\varphi \in C_0^{\infty}(\mathbb{R}^N, \mathbb{R}^2)$. Thus \hat{w} is a weak solution of system (1.1). The solution \hat{w} is not trivial since $\mathcal{I}(\hat{w}) \ge \alpha > 0$. Theorem 1.2 is completely proved.

ACKNOWLEDGEMENTS. The authors would like to thank the referees for their suggestions and helpful comments on this work.

REFERENCES

1. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical points theory and applications, *J. Funct. Anal.* 4 (1973), 349–381.

2. H. Brezis, Analyse fonctionelle théorie et applications Masson, 1992.

3. L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, *Composito Math.* **53** (1984), 259–275.

4. P. Caldiroli and R. Musina, On the existence of extremal functions for a weighted Sobolev embedding with critical exponent, *Calc. Var. Partial Differential Equations* **8**(4) (1999), 365–387.

5. F. Catrina and Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence) and symmetry of extremal functions, *Comm. Pure Appl. Math.* **54** (2001), 229–258.

6. N. T. Chung, Existence of weak solutions for a nonuniformly elliptic nonlinear system in \mathbb{R}^N , *EJDE* **119** (2008), 1–10.

7. D. G. Costa, On a class of elliptic systems in \mathbb{R}^N , *EJDE* **07** (1994), 1–14.

8. D. M. Duc, Nonlinear singular elliptic equations, J. Lond. Math. Soc. 40(2) (1989), 420-440.

9. F. Gazzola and V. Radulescu, A nonsmooth critical point theory approach to some nonlinear elliptic equations in \mathbb{R}^N , *Differential Integr. Equations* **13**(1–3) 2000, 47–60.

10. M. Mihăilescu, Nonlinear eigenvalue problems for some degenerate elliptic operators on \mathbb{R}^N , Bull. Belg. Math. Soc. 12 (2005), 435–448.

11. M. Mihăilescu, Existence and multiplicity of weak solutions for a class of denegerate nonlinear elliptic equations, *Boundary Value Probl.* (2006), Art. ID 41295, 17 pp.

12. M. Mihăilescu and V. Rădulescu, Ground state solutions of nonlinear singular Schrödinger equations with lack of compactness, *Math. Methods Appl. Sci.* 26 (2003), 897–906.

13. D. Motreanu and V. Rădulescu, Eigenvalue problems for degenerate nonlinear elliptic equations in anisotropic media, *Boundary Value Probl.* **2** (2005), 107–127.

14. V. Radulescu and D. Smets, Critical singular problems on infinite cones, *Nonlinear Anal.* 54(6) (2003), 1153–1164.