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ABSTRACT

We derive the estimation error in a Bayesian framework and discuss the estimates
of Mack [2] and of Buchwalder, Bühlmann, Merz and Wüthrich (BBMW) [1]
from a Bayesian point of view.

1. INTRODUCTION

In [1] the authors BBMW revisit the chain ladder method on the basis of a
time-series’ model and suggest a new formula for the estimation error, which
differs from the formula in the original paper [2] of Mack. The estimates result-
ing from the new formula are always greater then the ones resulting from Mack.
In [3] Mack, Quarg and Braun make some comments on the approach taken
in [1] and make a question mark, whether the new formula is an improvement.
Hence there is some controversial discussion on how to estimate the estimation
error.

In this contribution we first discuss shortly the different formulae of Mack
and BBMW in section 2. The main part is section 3, where we tackle the ques-
tion of the estimation error in a new way by means of a Bayesian approach.
We will consider two Bayesian models with a limiting prior, where the Bayes
estimators for the unknown chain ladder factors will coincide with the classi-
cal chain ladder estimates fj , such that the mean square error of this Bayes
estimator is comparable with the estimation error of the classical chain ladder
method.

By this different approach we hope to contribute to the discussion and to give
some further insight into the problem.

Wherever possible and not otherwise stated we will use the same notation
as in [1] .

2. DISCUSSION ON THE ESTIMATES OF BBMW AND MACK

The mean square estimation error of Xk, j , j > K – k + 1, is defined as
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In the original paper [2] Mack suggests to estimate ej,k by
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The reasoning behind this formula is well documented in [2] .
First we should note that (2.2) takes also into account the information con-

tained in the upper right corner DO
K and that it can therefore also be considered

as a conditional approach.
BBMW suggest to estimate ek, j by
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where in (2.4) s2
l was replaced by s 2

l . The reasoning behind (2.4) is explained
in [1], but the arguments are not so obvious and not so easy to follow.

The main objection in [3] to the new approach of BBMW is that, by taking
the product

l KfE
l K k

j
2

1

1

= - +

-

D% 9 C

in (2.3), this formula disregards the negative correlation between the r.v.
f 2
l given BK – k + 1. Hence on average over all upper right triangles DO

K, (2.3) has
a systematic upward bias, i.e. for ek, j as in (2.3) we have that E [ek, j |BK – k + 1] >
E [ek, j |BK – k + 1] for all fj .

The point is that we are interested in the conditional estimation error given
the whole triangle DK including the upper right corner DO

K. This conditional
estimation error given by (2.1) is a real number, which is unknown to us,
because we do not know the true chain ladder factors fj . As a consequence,
given the whole triangle DK and hence the resulting estimates fj , for some val-
ues of the underlying fj (2.4) will be closer to the true estimation error (2.1)
and for others (2.2). The question is, which of the two methods give on aver-
age a more accurate result.
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But how to define this average? In [3] the authors consider the average over
all possible upper right corners DO

K given BK – k + 1. This is one possible point of
view, but not the only one.

Another possibility is to vary the underlying true chain ladder factors fj and
to take the average over the set of all possible underlying fj which might be
behind the observed triangle DK. It seems to me that this point of view is even
more suited to the conditional situation and hence to the estimation of the
conditional estimation error, where the triangle DK is given and where the true
factors fj are unknown.

However, averaging over the set of possible fj can only be done in a strict
mathematical way within a Bayesian framework. This will be the subject of the
next section.

3. DERIVATION OF THE ESTIMATION ERROR IN A BAYESIAN FRAMEWORK

In the Bayesian framework, we assume that the true chain ladder factors of a
given triangle are a realisation

f� = ( f1, …, fJ – 1)

of a random vector

F� = (F1, …, FJ – 1),

and that conditionally, given F, the chain ladder assumptions hold true. In a
Bayesian model, we further have to specify the family of conditional distribu-
tions on the one hand and the a priori distribution on the other hand.

Conditionally given F we make the same assumption as (M2) of [1], namely
that conditionally Xk, j ( j =1, …, J ) form a Markov chain. To be strict, this is
a slightly stronger assumption than the original chain ladder assumption in
Mack [2] . In [2] it is assumed that the first and second order moments of Xk, j+1

depend only on Xk, j and not on Xk, l for l < j, but it is not assumed that this
property holds true for the whole distribution of Xk, j+1.

In the following two subsections we will consider two different Bayes mod-
els. In both models we will consider a limiting case of a prior where the Bayes
estimator of the Fj as well as of Xk, j given the triangle D K coincide with
the classical estimators fj resp. Xk, j . Hence the mean square error of this Bayes
estimator will be comparable with the estimation error of the classical chain
ladder model.

Instead of the random variables Xk, j+1 we will rather consider the random
variables

Yk, j =
,

,

k j

k j 1+

X
X

and will denote by
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Y�j = (Y1, j , ...,YK – j, j) the random vector and by

y�j = (y1, j , ..., yK – j, j) a realisation of Y�j .

We will also distinguish between the random variable

j
j

, ,k j k j

.F S
k

K j

1= =

-

X Y!

and the observed chain ladder factor fj as a realisation of Fj .

3.1. Bayesian model I: normal distribution

In this model we assume that conditionally, given F,Yk, j are normally distribu-
ted, i.e. we make the following assumptions:

(N1) Conditionally, given F and B j, the random variables Yk, j (k = 1, …, K – j )
are independent and normally distributed with moments

E [Yk, j |Fj ] = Fj ,

Var[Yk, j |Fj ,Xk, j ] =
j

,k j

s 2

X .

(N2) F1, …, FJ – 1 are independent and uniformly distributed on (–a, a).

Remarks:

• The time series’ model considered in [1] with the additional assumption, that
the ek, j are normally distributed, assumes that (conditionally given F = f) the
triangle DK is generated by

Xk, j + 1 = fj Xk, j + sj ,k jX ek, j + 1,

where
ek, j are independent and ek, j ~ N (0,1).

Assumption (N1) is slightly more general, because the r.v. ek, j + 1 (k = 1, …,
K – j ) are assumed to be only conditionally independent given the observa-
tions Xk, j in column j.

• Assumption (N1) could be generalised by allowing the sj to depend on the
observations Xk, j in column j .

• Because of the normality assumption, some of the Xk, j could become nega-
tive. A negative value of Xk, j contradicts the chain ladder assumption, since
the conditional variance of Xk, j +1 would then become negative. Therefore,
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from a theoretical point of view, this model is a bit questionable as it is the
time-series’ model in [1] . We consider it here to get a direct Bayesian counter-
part to the time series’ model of [1] with normally distributed ek, j . In the next
subsection we will consider a model which has no longer this theoretical
deficiency. However, as we will see, it will have other drawbacks.

We now derive the Bayes estimator and its mean square error. On the condi-
tion F = f and given B1, the joint density of Y1, …,YJ – 1 is given by

uf (y1, …, yJ – 1) =
j ,k

y

j
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where xk, j = Xk,1 · yk,1 · ... · yk, j – 1.

From (3.1) we obtain for the joint posterior distribution of F given the trian-
gle DK
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where h (DK) depends only on the observations DK and not on the unknown
parameters fj. Inserting (3.3) into (3.2) yields
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Now we make the prior non informative by considering the limiting case a "3.
Then we obtain immediately from (3.4) that the posterior density of F is given by
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558 A. GISLER

9130-06_Astin_36/2_10  06-12-2006  14:42  Pagina 558

https://doi.org/10.2143/AST.36.2.2017939 Published online by Cambridge University Press

https://doi.org/10.2143/AST.36.2.2017939


From (3.5) we see that a posteriori, given the observed triangle DK, the ran-
dom variables F1, …, FJ – 1 are independent and normally distributed with

j

j
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and for the mean square error of the Bayes estimator we obtain
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By replacing s2
l in (3.7) by s2

l we obtain the BBMW formula (2.4).
The Mack formula (2.2) is also obtained in the Bayesian framework by the

following Taylor-approximation:
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By inserting (3.8) into (3.6) we obtain
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(3.9)

(3.10)

which is identical to (2.2) if we replace s2
l in (3.10) by s 2

l .

3.2. Bayesian model II: Gamma distribution

In this more realistic model, where the Xk, j are always strictly positive, we
assume that conditionally, given F, the observed chain ladder factors are
Gamma-distributed, i.e. we make the following assumptions:

(G1) Conditionally, given F and B j, the random variables Yk, j (k = 1, …, K – j )
are independent and Gamma-distributed with moments

E [Yk, j |Fj ] = Fj , (3.11)

Var [Yk, j |Fj , Xk, j ] =
jj

,k j

Ft 2 2

X , (3.12)

where t2
j are given positive constants.

(G2) {F1, …, FJ – 1} = {Q–1
1 , …, Q–1

J – 1}, where the random variables Q1, …, QJ – 1

are independent and uniformly distributed on (a–1, a ), where a ! �+.

Remarks:

• Conditionally, given F = f, the chain ladder assumptions are fulfilled with
s2

j = t2
j f 2

j .

• The difficulty of this model is that s2
j depends on the parameter fj to be esti-

mated. Contrary to the normal model it is therefore not possible here that
E [F 2

l |DK ] in the Bayesian model is identical to E [ f 2
l |B l ] in the classical

model, since the latter depends on the parameter fl to be estimated. We can
therefore not expect to get out of this model exactly the BBMW formula (2.4).
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• Assumption (G1) can also be written as a time-series’ model in the follow-
ing way: conditionally, given F = f, the triangle DK is generated by the process

Xk, j + 1 = G
~

k, j · Xk, j ,

where conditionally, given the observations in column j, the r.v. G
~

k, j (k = 1,
…, K – j ) are independent and Gamma distributed with

E [G
~

k, j ] = fj ,

Var [G
~

k, j |Xk, j ] =
jj

,k j

ft 2 2
$

X .

• It follows from assumption (G1) that on the condition Q = ‡, Yk, j

(k = 1, …, K – j ) are Gamma-distributed with

shape parameter gk, j = Xk, j t–2
j and (3.13)

scale parameter ck, j = Xk, j t–2
j ‡ j , (3.14)

i.e. the conditional density of Yk, j is given by
g

g
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S .

• Assumption (G2) is equivalent to the assumption that the density of the Fj

is given by

u ( f ) = .a
a f12

2- -

• It might look a bit strange that we have introduced Qj in assumption (G2).
The reason is just mathematical feasibility.

We derive again the Bayes estimator of the unknown chain ladder factors Fj

as well as of Xk, j and the mean square error of these estimators. On the con-
dition Q = ‡ and B1, the joint density of {Y1, …, YJ – 1} is given by
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where xk, j = Xk,1 · yk,1 · … · yk, j – 1.
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Denote by uDK
(‡1, …, ‡J – 1) the posterior density of Q1, …, QJ – 1 given the

observed triangle DK . From xk, j yk, j = Xk, j +1 and (3.15) follows that

uDK
(‡1, …, ‡J – 1) j

jj jk k1 1= =q e
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J t t
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jX X%
! ! for ‡j ∈ (a –1, a), (3.16)

where terms not depending on ‡j ( j = 1, …, J ) are included in the normalising
constant and therefore omitted on the right hand side of the equation.

Now we consider the limiting case for a "3. Because Sj = ,k jk 1=

K j- X! , we
then obtain from (3.16) that
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From (3.17) follows that a posterior, given the observed triangle DK,

• the random variables Q1, …, QJ – 1 are independent,

• the Qj are Gamma distributed with

shape parameter gj = Sj tj
– 2 + 1 and

scale parameter cj = j,k j t
k

K j

1
1

2
+

=

-
-X! .

Remark:

• If we take an exponential distribution with density

u (‡) ∝ le –l‡

as a prior for Qi and if we consider the limiting case l " 0, we obtain the
same a posteriori distribution as in (3.17).

For the first and second order moments we get from (3.17)
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and by an analogous calculation
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Hence the Bayes estimator of Xk, j is given by
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and for the mean square error of the Bayes estimator we obtain

(3.18)
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Formula (3.18) is not directly comparable to (2.4) because t2
l is not the same

parameter as s2
l . Indeed the difficulty with this model to be comparable with

the classical formula is that s2
l = t2

l Fl
2 and thus depends itself on the parameter

to be estimated. A natural estimator for t2
l is

t 2
l =

l

l .
s
f 2

2

If we replace t2
l in (3.18) with t 2

l we obtain
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(3.19)

(3.19) is not exactly the same as the BBMW formula (2.4) and yields higher
values than (2.4). The resulting estimates are approximately the same in the case

where
l

l>
s
fl 2

2

S for all l.

3.3. Summary and Conclusions 

• The estimation error resulting in the Bayesian normal model coincides with
the formula of BBMW. In this normal model the Xk, j could become nega-
tive, which is problematic from a theoretical point of view.
In the Gamma Bayesian model we have obtained a formula, which is similar
but not fully identical to the BBMW formula.
Hence we could not find a model which doubtlessly confirmed the new
approach (2.4) of BBMW. Nevertheless, by comparing the results with BBMW
and Mack, the results seem to be rather in favour of the formula of BBMW.

• One question and criticism in [3] is, whether it is allowed and whether it
makes sense to take the product

l lfE B
l K k
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SS
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in (2.3). From a Bayesian point of view, the answer to this question is definitely
positive the reason being that in the Bayesian context the random variables
Fj are a posteriori independent and that therefore
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The result that the r.v. Fj are a posteriori independent is not a specific of the
two considered Bayesian models. It results essentially from the natural model
assumptions that, on the condition F = f, Xk, j ( j = 1, …, J ) form a Markov
process and that the r.v. Fj are a priori independent. The posterior inde-
pendency property will therefore also be encountered in other Bayesian mod-
els with the above natural assumptions.

• The question, whether one should consider the average over the set of all
possible true factors fj or the average over all possible upper right corners
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DO
K given BK – k + 1, is rather a question of philosophy than mathematics. The

first definition of average is in my view probably better suited to the problem
of estimating the conditional estimation error. Then, based on the results above,
I would give preference to the formula of BBMW. If one takes the average over
all possible upper right corners DO

K given BK – k + 1 then the formula of Mack
should be preferred, because BBMW has then an upward bias whereas Mack
does not. In the classical as well as in the Bayesian framework, the Mack
formula is obtained by a first order Taylor approximation to BBMW. There-
fore the difference between BBMW and Mack will mostly be rather small
and not essential for practical purposes. Finally, what is called the conditional
approach in the paper by BBMW, is a third way to look at the problem.
This approach can be described as follows: each of the r.v. Yk, j is associated
with a weight wk, j and the variance of Yk, j is inversely proportional to wk, j ;
the r.v. Yk, j are then considered as independent and the weights are taken from
the observed triangle, i.e. wk, j = Xk, j = observed value in the triangle.

• We have focused on the problem of the estimation error, since the discussion
on this part of the mean square prediction error is controversial. We should
however remark here that, surprisingly, the estimate of the process variance
in the Bayesian framework would differ and would be greater than the
estimate suggested by both, Mack and BBMW. If we consider the Bayesian
approach as the stringent conditional approach, then the estimate of the
process variance would have to be changed too.
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