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1. Introduction

In recent years considerable attention has been given to problems of thermal
stress in isotropic materials. Much of this work has been devoted to statical
problems although there has been some work on problems with time dependence,
for example the quasi-static solutions obtained by Sternberg (1) and Eason
and Sneddon (2). A good deal of interest has also been shown in statical thermal
stress problems when the material is anisotropic. For the type of material
considered here statical problems have been investigated by Grechushnikov
and Brodovskii (3) and Sirotin (4) among others. Little attention has been
given, however, to time dependent thermal stress problems when the material
is anisotropic.

The problem considered here is that of the stress in a cylinder resulting from
an applied surface temperature, when the material of the cylinder has transverse
curvilinear isotropy. It is assumed that the temperature and the resulting
stresses depend on the radial co-ordinate and the time only. A general solution
of the basic equations is obtained using the Laplace transform. The particular
problem of uniform surface temperature suddenly applied to a solid cylinder
is then considered. The cylinder is assumed to have a stress free surface and to
be initially at constant temperature. Inertia effects are neglected throughout
so that the treatment is quasi-static and the solution obtained is unlikely to be
valid immediately after the temperature is applied.

2. The Basic Equations
Let r, 9, z be cylindrical polar co-ordinates. In the problem considered

here all quantities are assumed to depend on the radial co-ordinate r and the
time t only. Under these conditions the heat conduction equation is

< r̂ iar = i_ar
dr2 r dr K dt

where T is the temperature of the body, K is the diffusivity and the coupling
term has been neglected. For material with transverse isotropy about the
radius vector the stress-strain relations, under plane strain conditions, are
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'• = c3+c2 2^-A2r, (3)
or r

where u is the radial displacement, ar and a9 are the radial and circumferential
stress components respectively, clu c12, c22 are the elastic constants of the
material and Xu A2 are the stress-temperature coefficients (Hearman (5) p. 66).
The remaining equation is the equation of equilibrium

^ + A(ar-ff,) = 0 (4)
dr r

The neglect of the coupling term in (1) and of the inertia term in (4) means
that the discussion is essentially quasi-static and that the results obtained are
unlikely to be valid immediately after any disturbance of the temperature
distribution.

It is convenient to introduce dimensionless space and time co-ordinates
denned by

R = r/a, r = Kt/a2, (5)

where a is some typical length of the body. Equations (l)-(4) now become

— + ! — - — (6)
dR2 RdR~ dr'

aor = Cn -^ +^12-^ -akrT, (7)
OK K

«".-'=l2~+^-a>-,T, (8)

Equations (6)-(9) are the basic equations and their solution will now be con-
sidered.

3. Solution of the Basic Equations
To obtain a solution of equations (6)-(9) we introduce the Laplace transform

/ of the function / denned by

f(R, s) = I ~f(R, x)e~"dx (10)
Jo

If each of equations (6)-(9) is multiplied by exp (—ST) and the resulting equations
are integrated from 0 to oo with respect to T it is found that

q + î -rf- (11)
dR2 RdR
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Mr = cu ~ +c12~ -akxT, (12)
U/V JV

™o = c12 — +c22 - -aX2T, (13)
uK K

d£r + {{dr-dg) = O, (14)

where it has been assumed that the body is at zero temperature when x = 0.
Equation (11) has the solution

T = AI0(Rjs) + BK0(RyJs), (15)

where A, B are constants and I^R^Js) and K0(RyJs) are Bessel functions of
imaginary argument of zero order and of the first and second kinds respectively.
Substituting from (12) and (13) into (14) yields the equation

d2u 1 du 2 u dT , , . T „ _
— - H v — = ai H(ai— a2) — (16)
dR2 RdR R2 dR R

where

The method of variation of parameters gives as a solution of (16)

w = Rv{C-i^(R)} + R~v{D + $(R)} (18)

where the functions <I>(R), $(.R) are defined by

^ £

= 1 f' L R d-£ +(«x -a 2 )r l R"
2vjj, [ dR J

(F-TRl-v) + (va1-a2) P

..(19)

\, (20)
IR

and P is the value of T when R = 1. The functions <j>(R), ip(R) are to be regarded
as the Laplace transforms of functions <j>(R) and ip(R) respectively. Equations
(12) and (13) give expressions for the transformed stress components of the
forms

acr = (vc^ + c^R'-'iC-mV-ivcu-c^R-^ViD + m j - c ^ T , (21)

aa$ = (c22+vel^-1{C-iP(R)}Hc22-w12)R-l^li{D + $(R)}-ell«aT. (22)

The solutions of the basic equations obtained here are quite general and may
be used as the basis for obtaining solutions to problems such as that of a
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cylindrical tube with prescribed surface temperature as well as the cylindrical
rod considered here.

4. The Solid Cylinder
As an example of the application of the basic solutions obtained in the

previous section the problem of a solid cylinder will be considered. It is
assumed that the surface of the cylinder is stress free and that the applied
temperature has the constant value Q for t>0. Let the cylinder have radius a.
The conditions to be applied when R = 1 are therefore

fO t<0,
T = P =

[Q t>0,

°r = 0,
so that taking the Laplace transforms we find

T = P = Qjs, (23)

ffr = 0, (24)

when R = 1. The further conditions to be applied are that T and w remain
finite as r->0, so that Tand u must be finite as R-+0. Inserting these conditions
in (15), (18) and (21) results in

B = 0, (25)

D = -$ (0) , (26)

(28)

where
P = vC l l + c12 (29)

The expressions for the transformed temperature and displacement are now
obtained in the forms

« ( 3 0 ,

u = i?v{c1 1a1e/5-(vC l l -C l 2)^(0)-jS1?(R)}/^ + R-v{$(i?)-^(0)} (31)

The inversion theorem for the Laplace transform now gives

, . . , , , , - - - (32 )
2ni J7_io

where y is a real constant chosen so that all singularities of the integrand of (32)
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lie to the left of the line s = y in the complex s-plane, and <I>(R), <p(R) are denned
by

<KR) = |« i (e - TRV+ J)-(va, + a2) f T U ' d l l W (34)

MR) = UiQ-TR'

f * TU'd

-^) P TU-VI?j/2v (35)

Equations (21) and (22) lead to expressions for the stress components of the
forms

(36)

(37)

It is seen from equations (32)-(37) that once Tis determined all other quantities
may be found by evaluating the single integrals occurring in (34) and (35).
The integral for T is known (see Carslaw and Jaeger (6) p. 328). It has poles
at s = 0 and s = — X$ where kn is the nth positive root of the equation

^oW = O, (38)

where JV(A) is a Bessel function of the first kind of order v. It is now found that

2aiK
1+' f

V ^ l

x + a2) f ^-^- f' *
n=l A ^ ^ J R

(40)

J

Z

-a2) f - £ - ^ - P R
"= 1 ^ • ' I ( ^ B ) J«

2 ( v a i 2 f ^
^ ( ^ ) J J

n = 1

R

Equations (39)-(42) give a solution to our problem, the displacement and stress
components are found by substituting into (33), (36) and (37). The integrals
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occurring in (40) may be evaluated explicitly when v is an odd integer. Due to
the way in which (j>(R) and \j/(R) were defined in (19) and (20) it is seen that

<K1) = .Kl) = 0, (43)
so that the surface displacement and stress depends on <£(0) alone.

The results obtained in this section will now be specialised to the case of an
isotropic solid.

5. The Isotropic Solid

The particular results for an isotropic solid are obtained by writing

at = a2 = a, clt = c22, v = 1.

Equations (40) and (42) now give

£ f^1{R%J0(RXn)
n = 1 JI

+ 2Jl{kn)-2RJ1{kn)},

as the basic results from which to determine the displacement and stress com-
ponents.
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