

Functional Oxides Research Letter

Enhancement of oxygen surface exchange on epitaxial La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta} thin films using advanced heterostructured oxide interface engineering

Dongkyu Lee, Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Yueh-Lin Lee, and Xiao Renshaw Wang, Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA Dane Morgan, Department of Materials Science and Engineering, University of Wisconsin–Madison, 1509 University Avenue, Madison, WI 53706, USA Yang Shao-Horn, Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Department of Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA;

Address all correspondence to Yang Shao-Horn at shaohorn@mit.edu

(Received 8 May 2016; accepted 2 August 2016)

Abstract

Engineering of a novel heterostructured oxide interface was used to enhance the oxygen surface exchange kinetics of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ (LSCF₁₁₃) thin films. A single-layer decoration of mixed (LaSr)₂CoO_{4± δ} (LSC₂₁₄) and $La_{1-x}Sr_xCoO_{3-\delta}$ (LSC₁₁₃) and a double-layer decoration of stacked LSC₂₁₄ and LSC₁₁₃ grown on the LSCF₁₁₃ markedly enhanced the surface exchange coefficients of the LSCF₁₁₃ by up to ~1.5 orders of magnitude relative to the undecorated LSCF₁₁₃. It is hypothesized that two different types of surface decorations can enable Sr segregation at the interface and surfaces of LSC₁₁₃ and LSC₂₁₄, leading to enhancement of the oxygen surface exchange kinetics of decorated LSCF₁₁₃.

The development of highly active cathode materials is essential to lower the operating temperature of solid oxide fuel cells (SOFCs), where the slow kinetics of the oxygen surface exchange on the cathode surface limits the efficiency of SOFCs at intermediate temperatures (500–750 °C).^[1,2] Current cathode materials such as $La_{1-x}Sr_xMnO_{3-\delta}$ (LSM₁₁₃)^[3–5] with high electronic conductivity but low ionic conductivity^[6] are inadequate for the usage in the intermediate temperature range due to insufficient surface activity.

La_{1-x}Sr_xFe_{1-y}Co_yO_{3- δ} (LSCF₁₁₃), which has beneficial materials properties such as high ionic and electronic conductivity,^[7] and fast oxygen surface exchange,^[8] therefore, has been developed as one of the most promising commercial cathode materials for intermediate temperature SOFCs. In particular, a solution infiltration process, in which a phase transition occurs from a liquid into a solid has been widely used to further enhance the surface activity of LSCF₁₁₃.^[9–12] Utilizing infiltrated LSM₁₁₃ coatings, it has been shown the enhanced electrocatalytic activity of LSCF₁₁₃ cathodes.^[11,12] Infiltrated La_{0.4875}Ca_{0.0125}Ce_{0.5}O_{2- δ} (LCC)^[9] and Sm_{0.5}Sr_{0.5}CoO_{3- δ} (SSC)^[10] coatings have also been used for better stability and activity of LSCF₁₁₃ electrodes. Although many studies have shown the enhanced cathodic performance of LSCF₁₁₃ by surface modification through a solution-based infiltration process,

the origin responsible for the enhanced stability and activity of decorated LSCF₁₁₃ cathode is poorly understood.

Ruddlesden-Popper (RP) phases (A_2BO_4) have been utilized as a material for the $La_{1-x}Sr_xCoO_{3-\delta}$ (LSC₁₁₃) surface modification, which results in the enhanced surface activity of LSC113 significantly due to the formation of heterostructured oxide interfaces.^[13–18] Using well-defined epitaxial thin film systems, remarkably enhanced oxygen surface exchange kinetics (up to ~ 2 orders of magnitude) of LSC₁₁₃ has been reported by decorating $(La_{0.5}Sr_{0.5})_2CoO_{4\pm\delta}$ (LSC₂₁₄) phase on the LSC₁₁₃ surface.^[13,19] Coherent Bragg rod analysis (COBRA) and density functional theory (DFT) have suggested that the enhanced oxygen surface exchange kinetics may be attributed to the Sr segregation at the LSC214-LSC113 interface and the LSC214 surface, resulting from a large driving force for A-site cation interdiffusion across the heterostructured interface.^[14,15,20] In addition, the enhanced activity of LSC_{113} may also be attributed to the stabilized LSC113 surface by LSC214 phase, which suppresses the formation of Sr-enriched secondary particles on the LSC₁₁₃ surface after a long-time annealing.^[17] However, the heterostructured oxide interfaces formed by decorating LSC214 on LSCF113 perovskites have shown negligible enhancement (up to two times) of the oxygen surface exchange kinetics of LSCF₁₁₃,^[17] which can be attributed to no further

https://doi.org/10.1557/mrc.2016.28 Published online by Cambridge University Press

Figure 1. Schematic representation of (a) the LSCF₁₁₃ with single-layer decoration of mixed LSC₂₁₄ and LSC₁₁₃, and (b) with double-layer decoration of stacked LSC₂₁₄ and LSC₁₁₃ epitaxial thin films. High-resolution XRD analysis of (c) the ~65 nm LSCF₁₁₃ reference (green), the ~3 nm LSC₂₁₄-decorated LSCF₁₁₃ (yellow), and the LSCF₁₁₃ with ~3 nm single-layer decorations of mixed LSC₂₁₄ and LSC²¹⁴ and LSC4₁₁₃ (orange), and LSC46₁₁₃ (red), and (d) the ~65 nm LSCF₁₁₃ reference (green), the ~3 nm LSC₂₁₄-decorated LSCF₁₁₃ (yellow), and the LSCF₁₁₃ with double-layer decorations of stacked ~3 nm LSC₂₁₄ and ~0.5 nm LSC46₁₁₃ (blue), LSC64₁₁₃ (blue), LSC64₁₁₃ (blue), ~0.5 nm LSC64₁₁₃ (orange), and ~0.5 nm LSC46₁₁₃ (red) epitaxial thin films on (001) YSZ substrates with GDC buffer layer. YSZ substrate and GDC peaks are indicated with pounds (#) and asterisks (*), respectively.

increase in Sr concentration at the surface of LSCF₁₁₃ induced by LSC₂₁₄ decoration. While growing a more Sr-rich LSC₂₁₄ on LSCF₁₁₃ might yield enhancement due to the high oxygen surface exchange kinetics of LSC₂₁₄ ($x_{Sr} > 1.0$),^[15,21] such an approach is inhibited by difficulties in the synthesis of RP phase with high Sr substitution.^[22,23]

In this study, we have developed the heterostructured oxide decoration on LSCF₁₁₃, which leads to the enhancement of the surface activity of the LSCF₁₁₃. Utilizing pulsed laser deposition (PLD), we employ two different types of surface decorations on the epitaxial LSCF₁₁₃ thin films, which are the single-layer decoration of mixed LSC_{214} and LSC_{113} and the double-layer decoration of stacked LSC_{214} and LSC_{113} . These structures stabilize the LSC₁₁₃ phase, providing sufficient Sr sources and thermodynamic driving force for the Sr interdiffusion between LSC₂₁₄ and LSC₁₁₃. Electrochemical impedance spectroscopy (EIS) study reveals that the oxygen surface exchange coefficients (k^i) of the LSCF₁₁₃ thin films can be significantly enhanced up to ~ 1.5 orders of magnitudes higher than those of the undecorated $LSCF_{113}$ by the heterostructured oxide interface engineering. In addition, the LSC_{113} with higher Sr content relative to the LSC_{214} single phase in both single-layer and double-layer decoration leads to higher enhancement in the surface exchange kinetics of the $LSCF_{113}$, which suggests that the enhancement of the surface exchange kinetics of the $LSCF_{113}$ can be attributed to an increase of Sr concentration on the multiphase heterostructured interface.

PLD was used to deposit the epitaxial ~ 65 nm LSCF₁₁₃ thin films with the \sim 3 nm single-layer decoration of mixed LSC₂₁₄ and LSC₁₁₃ [Fig. 1(a)] and the double-layer decoration of stacked $\sim 3 \text{ nm LSC}_{214}$ and $\sim 0.5 \text{ nm LSC}_{113}$ [Fig. 1(b)] on an yttria-stabilized zirconia (YSZ) (001) substrate with a Gd-doped ceria (GDC) buffer layer. Out-of-plane x-ray diffraction (XRD) results [Figs. 1(c) and 1(d)] of the undecorated LSCF₁₁₃, LSC₂₁₄-decorated LSCF₁₁₃, the LSCF₁₁₃ with the single-layer decoration of mixed LSC_{214} and LSC_{113} thin films, and the $LSCF_{113}$ with the double-layer decoration of stacked LSC214 and LSC113 thin films clearly show the presence of the $(00l)_{pc}$ (l is integer) peaks of LSCF₁₁₃ and (001)_{cubic} (1 is even) peaks of GDC and YSZ, indicating that the LSCF₁₁₃ film was grown epitaxially with the following epitaxial relationships: (001)_{pc}LSCF₁₁₃//(001)_{cubic}GDC// (001)_{cubic}YSZ (where "pc" denotes the pseudocubic notation).

Figure 2. EIS results of microelectrodes (200 μ m in diameter) for the epitaxial LSCF₁₁₃ thin films with LSC₂₁₄ decoration, and single-layer decorations of mixed LSC₂₁₄ and LSC₁₁₃ on YSZ (001) with a GDC buffer layer at 550 °C. (a) Nyquist plot at 550 °C as a function of oxygen partial pressure, *p* (0₂), of the LSCF₁₁₃ thin films with single-layer decoration of mixed LSC₂₁₄ and LSC46₁₁₃. (b) Nyquist plot at 550 °C with an 1 atm of *p*(0₂) of the LSCF₁₁₃ (green), the LSC₂₁₄-decorated LSCF₁₁₃ (yellow), and the LSCF₁₁₃ with ~3 nm single-layer decoration of mixed LSC₂₁₄ and LSC46₁₁₃. (c) *p*(0₂) dependency of the surface exchange coefficients (*k* < I) of the LSCF₁₁₃ (green), the LSC₂₁₄-decorated LSCF₁₁₃ (yellow), and the LSCF₁₁₃ with ~3 nm single-layer decoration of mixed LSC4₁₁₃ (orange), and LSC46₁₁₃. (blue), LSC64₁₁₃ (red) thin films. All EIS spectra were collected at 550 °C.

With higher Sr content of LSC₁₁₃ in the single- and doublelayer decorations, the $(00l)_{tetra.}$ (l is the integer) peaks of LSC₂₁₄ become visible, which represents (001)_{tetra}LSC₂₁₄// (001)pcLSCF₁₁₃//(001)cubicGDC//(001)cubicYSZ. The subscript "tetra." denotes the tetragonal notation.^[24,25] Off-normal phi-scan analysis of the undecorated LSCF₁₁₃ and LSC₂₁₄-decorated LSCF₁₁₃ films shows that LSC₂₁₄ $\{103\}_{tetra.}$ LSCF₁₁₃ $\{202\}_{pc}$, GDC $\{202\}_{cubic}$, and YSZ $\{202\}_{cubic}$ have strong peaks with fourfold cubic symmetry (Fig. S1⁺). This reveals the in-plane crystallographic relationships between GDC and YSZ (a cube-on-cube alignment), LSCF₁₁₃ and GDC (an in-plane 45° rotation with [100]_{pc}LSCF₁₁₃//[110]_{cubic}GDC// [110]_{cubic}YSZ), and LSCF₁₁₃ and LSC₂₁₄ (no rotation with [100]_{pc}LSCF₁₁₃//[100]_{tetra}.LSC₂₁₄). Similar to our previous studies, [13,14,17,19] the relaxed lattice parameters, \hat{a} of the epitaxial LSCF₁₁₃ films with and without surface decoration in this study at room temperature did not change significantly, ranging from 3.898-3.904 Å (Table S1⁺). As shown in Table S1[†], both in-plane and out-of-plane strains of LSCF₁₁₃ films were not strongly influenced by the surface decoration, which is supported by the fact that the lattice constant of LSC₂₁₄ ($a_{\text{tetra.}} \approx 3.819$ Å for LSC₂₁₄ bulk^[26]) is very close to that of LSCF₁₁₃ ($a_{pc} \approx 3.885$ Å for the LSCF₁₁₃ bulk^[27]) and LSC₁₁₃ ($a_{\rm pc} \approx 3.854$ Å for the LSC₁₁₃ bulk^[28]). This observation is further supported by our recent work,^[14] where the LSC₂₁₄ decoration has no influence on the in-plane and out-of-plane strains of the epitaxial LSC113 films at elevated temperatures. Details about deposition, lattice parameter calculation, and high-resolution XRD of LSC₂₁₄-decorated LSC₁₁₃ film can be found in the ESI[†].

EIS results of geometrically well-defined microelectrodes (200 μ m in diameter), measured at 550 °C are shown in Fig. 2. These microelectrodes were fabricated by photolithography and acid etched for the epitaxial LSCF₁₁₃ thin films with

LSC₂₁₄ decoration and single-layer decorations of mixed LSC_{214} and three different Sr contents of LSC_{113} (Sr = 0.2, 0.4, and 0.6). The predominant semicircle was found to increase with decreasing oxygen partial pressure [Fig. 2(a)], where EIS data of all samples used in this study showed nearly perfect semicircle impedances.^[6] Considering the fact that the film thicknesses are much smaller than the critical thickness for bulk transport limitation (estimated to 3.28 µm for bulk LSCF₁₁₃ at 550 °C^[29]), the oxygen partial pressure [p (O_2)]-dependent impedance responses suggest that the oxygen surface exchange kinetics governs the oxygen electrocatalysis on the film surface. In Fig. 2(b), the real part of the impedance of the predominant semicircle decreased with increasing Sr content of LSC₁₁₃ in the single-layer decoration of mixed LSC_{214} and LSC_{113} , where the oxygen surface exchange coefficient (k^q) of the LSCF₁₁₃ with mixed LSC₂₁₄ and $La_{0.4}Sr_{0.6}CoO_{3-\delta}$ (LSC46₁₁₃) decoration was found to be ~7 times higher than that of undecorated LSCF₁₁₃ and LSC_{214} -decorated $LSCF_{113}$. This observation indicates that higher Sr content in mixed LSC₂₁₄ and LSC₁₁₃ decoration can lead to higher surface exchange kinetics of the $LSCF_{113}$.

To further investigate the effect of Sr concentration in the mixed LSC₂₁₄ and LSC₁₁₃ phase on the surface exchange kinetics of the LSCF₁₁₃, a different ratio between LSC₂₁₄ and LSC46₁₁₃ was applied for decorating the surface of the LSCF₁₁₃. EIS data collected from the LSCF₁₁₃ with and without the single-layer decoration of mixed LSC₂₁₄ and LSC46₁₁₃ thin films at 550 °C with an $p(O_2)$ of 1 atm is shown in Fig. 3 (a). It is noted that the k^q values of the LSCF₁₁₃ with 75% of LSC₂₁₄ and 25% of LSC46₁₁₃ decoration were found to be ~1.1 orders of magnitude higher than those of the LSCF₁₁₃ with and without LSC₂₁₄ decoration, as shown in Fig. 3(b). To understand these changes we consider if the decorations may lead to the enhancement of Sr in the LSCF₁₁₃ surface,

Figure 3. EIS results of microelectrodes (200 μ m in diameter) for the epitaxial LSCF₁₁₃ thin films with LSC₂₁₄ decoration, and single-layer decorations of mixed LSC₂₁₄ and LSC46₁₁₃ on YSZ (001) with a GDC buffer layer at 550 °C. (a) Nyquist plot at 550 °C with an 1 atm of *p*(0₂) of the LSCF₁₁₃ (green), the LSC6₂₁₄-decorated LSCF₁₁₃ (yellow), and the LSCF₁₁₃ with ~3 nm single-layer decoration of mixed LSC₂₁₄ and LSC64₁₁₃ (75%:25%) (dark red), LSC₂₁₄ and LSC64₁₁₃ (50%:50%) (red), and LSC₂₁₄ and LSC64₁₁₃ (25%:75%) (light red) thin films. (b) *p*(0₂) dependency of *kG* calculated from EIS spectra collected at 550 °C of the LSCF₁₁₃ (green), the LSC₂₁₄-decorated LSCF₁₁₃ (green), the LSC₂₁₄-decorated LSCF₁₁₃ (yellow), and the LSCF₁₁₃ (yellow), and the LSCF₁₁₃ with ~3 nm single-layer decoration of mixed LSC₂₁₄ and LSC64₁₁₃ (75%:25%) (light red), the LSC₂₁₄-decorated LSCF₁₁₃ (yellow), and the LSCF₁₁₃ with ~3 nm single-layer decoration of mixed LSC₂₁₄ and LSC64₁₁₃ (75%:25%) (dark red), LSC₂₁₄-decorated LSCF₁₁₃ (yellow), and LSC₂₁₄ and LSC64₁₁₃ (25%:75%) (light red) thin films. Inset shows a hypothetical model: enhancement of the Sr content at the top surface of the LSCF₁₁₃ due to adding LSC₁₁₃ to LSC₂₁₄.

which would be expected to increase the oxygen 2p band center relative to the Fermi level,^[17] which in turn is expected to correlate with the enhancement of the oxygen surface exchange kinetics.^[17,20,30] In the case of the LSC₂₁₄ decorated LSCF₁₁₃, it has been proposed that low enhancement is observed because there is a negligible change of the surface Sr concentration at the heterostructured interface due to the initially high Sr surface concentration (~100%) of the stable LSCF₁₁₃ (001) surface. This high Sr concentration cannot be easily increased. In contrast, the addition of the LSC₁₁₃ phase into the LSC₂₁₄ can provide the increased Sr content in LSC214 and associated thermodynamic driving force for Sr interdiffusion from the LSC_{113} into the LSC_{214} . We propose that this driving force is large enough to result in higher Sr concentration in the surface decoration layer of mixed LSC₂₁₄ and LSC₁₁₃ on the LSCF₁₁₃ surface. Accordingly, this Sr enrichment is expected to uplift the oxygen 2p band center (relative to the Fermi level) of the LSCF₁₁₃ interface layer and enhance the oxygen exchange kinetics of the LSCF₁₁₃, as reported previously.^[17] Interestingly, the enhancement in the surface exchange kinetics of the $LSCF_{113}$ was found to decrease with increasing the $LSC46_{113}$ ratio in the LSC_{214} phase. This can be explained by the fact that the LSC₂₁₄ phase becomes unstable with increasing LSC46₁₁₃, which can be supported by the reduced intensity of LSC₂₁₄ (001)_{tetra.} peak in Fig. S2[†]. Although a detailed study of the electronic structure changes is needed, the enhanced Sr concentration in the LSC₂₁₄ by mixing with LSC₁₁₃ may be responsible for enhancing the surface exchange kinetics of the $LSCF_{113}$.

Figure 4(b) shows the k^q values of the LSCF₁₁₃ with doublelayer decoration of stacked LSC₂₁₄ and three different Sr contents of LSC113 (LSC82113, LSC64113, and LSC46113) thin films, extracted from the EIS data [Fig. 4(a)]. As shown in Fig. 4(b), the k^q values of the LSCF₁₁₃ thin films were found to change with the additional LSC₁₁₃ phase between the $LSCF_{113}$ and LSC_{214} , which can be attributed to a change in the Sr concentration at the multiphase heterostructured interface. We hypothesize that the added LSC₁₁₃ phase provides sufficient Sr sources for surface Sr redistribution between LSC113 and LSC214, which results in increased Sr segregation on the LSCF interface layer. This hypothesis is consistent with our previous ab initio DFT calculations,^[17] which found that the thermodynamic driving force for Sr interdiffusion $La_{0.625}Sr_{0.375}Co_{0.25}Fe_{0.75}O_3$ to $(La_{0.5}Sr_{0.5})_2CoO_4$ from (-0.12 eV) is much weaker than that from $La_{0.75}Sr_{0.25}CoO_3$ to $(La_{0.5}Sr_{0.5})_2CoO_4$ (-0.7 eV). This driving force is likely responsible for different enhancements in the surface Sr content in the LSCF₁₁₃ films upon LSC₂₁₄ decoration, resulting in different surface exchange kinetics.

LSCF₁₁₃ with the double-layer decoration of stacked LSC₂₁₄ and LSC46₁₁₃ shows significantly higher k^q values up to ~1.5 orders of magnitude relative to the undecorated LSCF₁₁₃ and LSC₂₁₄-decorated LSCF₁₁₃. The enhancement can be attributed to Sr segregation at the interface between LSC₂₁₄ and LSC46₁₁₃ and on the LSC₂₁₄ surface at the expense of Sr in LSC46₁₁₃ in the double-layer decorated LSC82₁₁₃ in the previous work.^[17]

In conclusion, we demonstrate that the oxygen surface exchange kinetics of the (001)-oriented epitaxial $LSCF_{113}$ thin films can be markedly improved by the advanced heterostructured oxide interface engineering using the single-layer

Figure 4. EIS results of microelectrodes (200 μ m in diameter) for the epitaxial LSCF₁₁₃ thin films with LSC₂₁₄ decoration, and double-layer decorations of stacked LSC₂₁₄ and LSC₁₁₃ on YSZ (001) with a GDC buffer layer at 550 °C. (a) Nyquist plot at 550 °C with an 1 atm of $p(0_2)$ of the LSCF₁₁₃ (green), the LSC₂₁₄-decorated LSCF₁₁₃ (yellow), and the LSCF₁₁₃ with double-layer decoration of stacked ~3 nm LSC₂₁₄ and ~0.5 nm LSC82₁₁₃ (blue), ~0.5 nm LSC64₁₁₃ (orange), and ~0.5 nm LSC46₁₁₃ (red) thin films. (b) $p(0_2)$ of the k^q calculated from EIS spectra collected at 550 °C of the LSCF₁₁₃ (green), the LSCF₁₁₃ (yellow), and the LSCF₁₁₃ with double-layer decoration of stacked ~3 nm LSC2₁₄ and ~0.5 nm LSC82₁₁₃ (blue), ~0.5 nm LSC64₁₁₃ (orange), and ~0.5 nm LSC64₁₁₃ (red) thin films. (b) $p(0_2)$ of the k^q calculated from EIS spectra collected at 550 °C of the LSCF₁₁₃ (green), the LSC₂₁₄-decorated LSCF₁₁₃ (red) thin films. Inset shows a hypothetical model: enhancement of the Sr content at the interface between the LSCF₁₁₃ and the LSC₂₁₄ phase due to an increase in the Sr interdiffusion from LSC₂₁₄.

decoration of mixed LSC214 and LSC113 and double-layer decoration of stacked LSC214 and LSC113. This result extends previous results,^[17] showing enhancement from decoration of LSC_{214} on LSC_{113} to the $LSCF_{113}$ material, which is of significantly more interest for commercial applications than LSC_{113} . The oxygen surface exchange coefficients of the LSCF₁₁₃ with single-layer decoration of mixed LSC₂₁₄ and LSC₁₁₃ are ~1.1 orders of magnitude greater than those of the undecorated LSCF₁₁₃ and LSC₂₁₄-decorated LSCF₁₁₃. In addition, the oxygen surface exchange coefficients of the $LSCF_{113}$ with double layer decoration of stacked LSC214 and LSC113 are ~1.5 orders of magnitude higher than those of the undecorated LSCF₁₁₃ with and without LSC₂₁₄ decoration. The previous work^[17] suggests a strong correlation between the O 2p band center and surface exchange kinetics, where surface Sr segregation in the perovskite structure and associated O 2p band uplift could increase the surface exchange rate. Therefore, we hypothesize that the decoration on the surface of LSCF₁₁₃ provides Sr segregation at the interface LSC₂₁₄ and LSC₁₁₃ and on the surface of LSC₂₁₄, which can uplift in the position of the O 2p band center relative to Fermi energy of the LSCF interface layer in comparison to that of the LSCF₁₁₃ surface. This work illustrates that heterostructured oxide interface engineering is a strategy, which can enhance multiple types of active oxide materials. Such approaches could potentially be utilized in the infiltration process for decorating cathodes to enhance the performance of SOFCs.

Supplementary material

The supplementary material for this article can be found at http://dx.doi.org/10.1557/mrc.2016.28

Acknowledgments

This work was supported by the Department of Energy (DOE), National Energy Technology Laboratory (NETL), Solid State Energy Conversion Alliance (SECA) Core Technology Program (Funding Opportunity Number DEFE0009435) and the Skoltech-MIT Center for Electrochemical Energy. The PLD and XRD performed were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, and computations in this work were also benefited from the use of the National Energy Research Scientific Computing Center allocation of the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, both under grant number CNMS2013-292.

References

- 1. Z.P. Shao and S.M. Haile: A high-performance cathode for the next generation of solid-oxide fuel cells. *Nature* **431**, 170 (2004).
- B.C.H. Steele and A. Heinzel: Materials for fuel-cell technologies. *Nature* 414, 345 (2001).
- L. da Conceicao, C.R.B. Silva, N.F.P. Ribeiro, and M. Souza: Influence of the synthesis method on the porosity, microstructure and electrical properties of La_{0.7}Sr_{0.3}MnO₃ cathode materials. *Mater. Charact.* **60**, 1417 (2009).
- A. Endo, M. Ihara, H. Komiyama, and K. Yamada: Cathodic reaction mechanism for dense Sr-doped lanthanum manganite electrodes. *Solid State Ion.* 86–88, 1191 (1996).
- T. Ioroi, T. Hara, Y. Uchimoto, Z. Ogumi, and Z. Takehara: Preparation of perovskite-type La_{1-x}Sr_xMnO₃ films by vapor-phase processes and their electrochemical properties. *J. Electrochem. Soc.* **144**, 1362 (1997).
- S.B. Adler: Factors governing oxygen reduction in solid oxide fuel cell cathodes. *Chem. Rev.* **104**, 4791 (2004).

- S. Wang, M. Katsuki, M. Dokiya, and T. Hashimoto: High temperature properties of La_{0.6}Sr_{0.4}Co_{0.8}Fe_{0.2}O₃₋₈ phase structure and electrical conductivity. *Solid State Ion.* **159**, 71 (2003).
- 8. M. Katsuki, S. Wang, M. Dokiya, and T. Hashimoto: High temperature properties of La_{0.6}Sr_{0.4}Co_{0.8}Fe_{0.2}O_{3- δ} oxygen nonstoichiometry and chemical diffusion constant. *Solid State Ion.* **156**, 453 (2003).
- M.F. Liu, D. Ding, K. Blinn, X.X. Li, L.F. Nie, and M. Liu: Enhanced performance of LSCF cathode through surface modification. *Int. J. Hydrog. Energy* 37, 8613 (2012).
- 10.X.Y. Lou, S.Z. Wang, Z. Liu, L. Yang, and M.L. Liu: Improving $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ cathode performance by infiltration of a $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ coating. Solid State Ion. **180**, 1285 (2009).
- 11. M.E. Lynch, L. Yang, W.T. Qin, J.J. Choi, M.F. Liu, K. Blinn, and M.L. Liu: Enhancement of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ durability and surface electrocatalytic activity by $La_{0.85}Sr_{0.15}MnO_{3\pm\delta}$ investigated using a new test electrode platform. *Energy Environ. Sci.* **4**, 2249 (2011).
- 12. X.B. Zhu, D. Ding, Y.Q. Li, Z. Lu, W.H. Su, and L. Zhen: Development of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ cathode with an improved stability via $La_{0.8}Sr_{0.2}MnO_3$ -film impregnation. *Int. J. Hydrog. Energy* **38**, 5375 (2013).
- 13. E.J. Crumlin, S.J. Ahn, D. Lee, E. Mutoro, M.D. Biegalski, H.M. Christen, and Y. Shao-Horn: Oxygen electrocatalysis on epitaxial $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ perovskite thin films for solid oxide fuel cells. *J. Electrochem. Soc.* **159**, F219 (2012).
- 14. Z. Feng, E.J. Crumlin, W.T. Hong, D. Lee, E. Mutoro, M.D. Biegalski, H. Zhou, H. Bluhm, H.M. Christen, and Y. Shao-Horn: In situ studies of the temperature-dependent surface structure and chemistry of singlecrystalline (001)-oriented La_{0.8}Sr_{0.2}CoO_{3-δ} perovskite thin films. *J. Phys. Chem. Lett.* **4**, 1512 (2013).
- M.J. Gadre, Y.L. Lee, and D. Morgan: Cation interdiffusion model for enhanced oxygen kinetics at oxide heterostructure interfaces. *Phys. Chem. Chem. Phys.* 14, 2606 (2012).
- 16. D. Lee, Y.-L. Lee, A. Grimaud, W.T. Hong, M.D. Biegalski, D. Morgan, and Y. Shao-Horn: Enhanced oxygen surface exchange kinetics and stability on epitaxial La_{0.8}Sr_{0.2}CoO_{3-δ} thin films by La_{0.8}Sr_{0.2}MnO_{3-δ} decoration. *J. Phys. Chem. C* **118**, 14326 (2014).
- D. Lee, Y.-L. Lee, W.T. Hong, M.D. Biegalski, D. Morgan, and Y. Shao-Horn: Oxygen surface exchange kinetics and stability of (La, Sr)₂CoO_{4±δ}/La_{1-x}Sr_xMO_{3-δ} (M = Co and Fe) hetero-interfaces at intermediate temperatures. *J. Mater. Chem. A* **3**, 2144 (2015).
- M. Sase, F. Hermes, K. Yashiro, K. Sato, J. Mizusaki, T. Kawada, N. Sakai, and H. Yokokawa: Enhancement of oxygen surface exchange at the hetero-interface of (La,Sr)CoO₃/(La,Sr)₍₂₎CoO₄ with PLD-layered films. *J. Electrochem. Soc.* **155**, B793 (2008).
- E.J. Crumlin, E. Mutoro, S.J. Ahn, G.J. la O, D.N. Leonard, A. Borisevich, M.D. Biegalski, H.M. Christen, and Y. Shao-Horn: Oxygen reduction kinetics enhancement on a heterostructured oxide surface for solid oxide fuel cells. J. Phys. Chem. Lett. 1, 3149 (2010).
- 20.Z.X. Feng, Y. Yacoby, M.J. Gadre, Y.L. Lee, W.T. Hong, H. Zhou, M. D. Biegalski, H.M. Christen, S.B. Adler, D. Morgan, and Y. Shao-Horn: anomalous interface and surface strontium segregation in (La_{1-y}Sr_y)₂CoO_{4±δ}/La_{1-x}Sr_xCoO_{3-δ} heterostructured thin films. *J. Phys. Chem. Lett.* **5**, 1027 (2014).
- T. Nitadori, M. Muramatsu, and M. Misono: Valence control, reactivity of oxygen, and catalytic activity of lanthanum strontium cobalt oxide (La_{2-x}Sr_xCoO₄). *Chem. Mater.* **1**, 215 (1989).
- M. Sase, F. Hermes, T. Nakamura, K. Yashiro, K. Sato, J. Mizusaki, T. Kawada, N. Sakai, K. Yamaji, T. Horita, and H. Yokokawa: Promotion of oxygen surface reaction at the hetero-interface of (La,Sr)CoO₍₃₎/(La, Sr)₍₂₎CoO₍₄₎. In *Solid Oxide Fuel Cells 10*, edited by K. Eguchi, S. C. Singhai, H. Yokokawa, and H. Mizusaki (Electrochemical Society Inc, Pennington, 2007), pp. 1055.
- 23. S. Shinomori, M. Kawasaki, and Y. Tokura: Orientation-controlled epitaxy and anisotropic properties of La_{2-x}Sr_xNiO₄ with 0.5 ≤ x ≤ 1.5 covering the insulator-metal transition. *Appl. Phys. Lett.* **80**, 574 (2002).
- 24. D. Lee, A. Grimaud, E.J. Crumlin, K. Mezghani, M.A. Habib, Z.X. Feng, W. T. Hong, M.D. Biegalski, H.M. Christen, and Y. Shao-Horn: Strain influence on the oxygen electrocatalysis of the (100)-oriented epitaxial

 $La_2NiO_{4+\delta}$ thin films at elevated temperatures. J. Phys. Chem. C 117, 18789 (2013).

- 25. D. Lee, Y.-L. Lee, A. Grimaud, W.T. Hong, M.D. Biegalski, D. Morgan, and Y. Shao-Horn: Strontium influence on the oxygen electrocatalysis of $La_{2-x}Sr_xNiO_{4\pm\delta}$ ($0.0 \le x_{Sr} \le 1.0$) thin films. *J. Mater. Chem. A* **2**, 6480 (2014).
- 26. M. James, A. Tedesco, D. Cassidy, M. Colella, and P.J. Smythe: The phase diagram and crystal chemistry of strontium-doped rare earth cobaltates: Ln_(2-x)Sr_(x)CoO₍₄₊₈₎ (Ln=La-Dy). *J. Alloys Compd.* **419**, 201 (2006).
- 27. L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, and S.R. Sehlin: Structure and electricial-properties of La_{1-x}Sr_xCo_{1-y}Fe_yO₃₋₈. 1. The system La_{0.8}Sr_{0.2}Co_{1-y}Fe_yO₃. *Solid State Ion.* **76**, 259 (1995).
- 28. R.H.E. van Doorn, and A.J. Burggraaf: Structural aspects of the ionic conductivity of La_{1-x}Sr_xCoO₃₋₈. *Solid State Ion.* **128**, 65 (2000).
- 29. B.C.H. Steele and J.M. Bae: Properties of La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3- $\delta}$ (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes—II. Role of oxygen exchange and diffusion. *Solid State Ion.* **106**, 255 (1998).}
- Y.L. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn, and D. Morgan: Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. *Energy Environ. Sci.* 4, 3966 (2011).