
J. Aust. Math. Soc. 82 (2007), 59-83

FOURIER ALGEBRA OF A HYPERGROUP. I

VARADHARAJAN MURUGANANDAM

Dedicated to the memory of my father

(Received 6 April 2005; revised 3 September 2005)

Communicated by G. Willis

Abstract

In this article we study the Fourier space of a general hypergroup and its multipliers. The main result
of this paper characterizes commutative hypergroups whose Fourier space forms a Banach algebra under
pointwise product with an equivalent norm. Among those hypergroups whose Fourier space forms a
Banach algebra, we identify a subclass for which the Gelfand spectrum of the Fourier algebra is equal
to the underlying hypergroup. This subclass includes for instance, Jacobi hypergroups, Bessel-Kingman
hypergroups.
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Introduction

Fourier algebras (of locally compact groups) which are being extensively studied by
harmonic analysts do not attract the same attention when one considers them over
hypergroups, since they need not form an algebra under pointwise product. One
important reason is that the product of two continuous positive definite functions on
a hypergroup is not necessarily positive definite in general. Yet, existence of sev-
eral classes of examples of hypergroups—prominent ones are Jacobi hypergroups—
for which the product of positive definite functions belonging to the support of the
Plancherel-Levitan measure is again positive definite, prompts us to ascertain those
hypergroups for which the Fourier space forms a Banach algebra.

Apart from the general theory of Fourier spaces, our primary concern in this article is
to characterize commutative hypergroups for which the Fourier space forms a Banach
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algebra. In the subsequent article (Muruganandam [22]), we study the above problem
for a class of hypergroups called spherical hypergroups. The spherical hypergroups
need not be commutative and include for example the double coset hypergroups
associated to any pair (G, K), where K is a compact subgroup of a locally compact
group G.

This paper contains 5 sections. In Section 1, we present preliminaries. In Sec-
tion 2, we define and study the Fourier space and Fourier-Stieltjes space of a general
hypergroup. Section 3 is devoted to the study of multipliers of Fourier spaces. In
Section 4, we give necessary and sufficient conditions for a commutative hypergroup
to have an equivalent norm with respect to which the Fourier space forms a Banach
algebra under pointwise product. In Section 5, we study some of the basic properties
of these Fourier algebras (whenever they form algebras) of general hypergroups.

1. Preliminaries

Let H denote a (locally compact Hausdorff) hypergroup which admits a left Haar
measure m. We follow the definition of a hypergroup as given by Jewett [17] wherein
he calls them 'convos'. We freely use the results proved therein and adhere to the
notation as far as possible. We also refer to the books by Bloom and Heyer [2] and
Trimeche [27] for more details.

However, we recapitulate some notation which we use frequently for the conve-
nience of the reader.

Let CC(H), Cb(H), M(H) denote the space of all complex valued continuous
functions with compact support, Banach space of all bounded continuous functions,
and Banach space of all bounded Radon measures on H respectively. For every x
in H, let Sx denote the point measure at x. We shall denote the probability measure
8X * Sy simply by x * y. Let of denote the involution of x in H.

For all x in H, and for all / in C(H), the space of all continuous functions on H,
let the (generalized) left translate of / by x be denoted by k(x)(f) or xf. That is,

/ .
f(x*y)= / f(z)d(8x*8y)(z).

JH

The Banach spaces LP(H), 1 < p < oo, are understood as usual with respect to
the fixed left Haar measure m.

Let H (similarly H) denote the equivalence classes of all representations (irre-
ducible representations) of H. Let k denote the left regular representation and C*(H)
denote the enveloping C*-algebra of L'(//). It is also called the full C*-algebra of
H. If {it, H) is a representation of H, let the associated representations of Ll(H)
and C"{H) be also denoted by n itself. If {it, H) is any representation and if £, i) are
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in H, then the matrix coefficient n^n associated to n given by n^,n(x) = (n(x)(%), r))
for all* e H is continuous and bounded by ||£HIMI- Here7r(x) denotes n(8x).

Let Pb(H) denote the set of all bounded, continuous positive definite functions
and let P\(H) = [<p € Pb{H) : (j)(e) = 1}. Let us recall that the bijective association
between Pb(H) and the cyclic representations (up to unitary isomorphism) via the
Gelfand-Naimark construction, given by </>(*) = (n(x)t;,t;) and H^H^ = (£,£),
is valid for hypergroups also. We have that Pi(H), with the topology of uniform
convergence on compact subsets, is homeomorphic to the state space of C*(//), when
it is given the weak*-topology.

2. Fourier-Stieltjes space and Fourier space

The contents of this section are in fact, an adaptation of whatever was done for
groups in Eymard [10]. We will not repeat proofs, wherever the proof for groups can
be applied to the hypergroups with necessary modifications. As far as possible we
will adhere to the notations and conventions of Eymard [10].

2.1. Weak containment If E is a subset of H, let Nz = {/ € V (H) : n(f) = 0
for all n e E}. Define an operator norm on Lx{H)/N-z by

| | / ° | | E = sup{ | | 7 r ( / ) | | : 7 r€5 :} .

Complete this to get a C*-algebra and denote it by C*Z{H).
The following theorem is exactly as in the case of groups, proved in Eymard [10,

Theorem 1.15].

THEOREM 2.1. Suppose thatHis a subset ofH. LetNz = {T € C"{H) : n{T) = 0
for all n € £} . Then the map f -*• f extends to a surjective *-homomorphismfrom
C'(H) onto C^(H), whose kernel is precisely N-^. In particular, the C*-algebras
C*(H)/(NZ) and C* ( # ) are isomorphic.

DEFINITION 2.2. The C*-algebra corresponding to {X}, the left regular representa-
tion is called the reduced C-algebra of H and is denoted by

THEOREM 2.3. Suppose that E is subset of H and <p belongs to Pb(H). Then the
following are equivalent.

(i) <p ^ the limit of sums of positive definite functions associated to the represen-
tations belonging to E.

(ii)
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(iii) There exists a positive linear form <& on C^-(H) satisfying

* ( / ° ) = f f(x)4>(x)dx
JH

for all f° belonging to Ll(H)/NE.

PROOF. The equivalence of (i) and (ii) follows from Dixmier [8, Theorem 3.4.4].
The equivalence of (ii) and (iii) follows by appropriately modifying the proof of

Eymard [ 10, Proposition 1.21]. •

Let P% (H) denote the set of all bounded, continuous positive definite functions
satisfying any one of the conditions of Theorem 2.3.

DEFINITION 2.4. Let E be a subset of H and let n be any representation of H. We

say that jr is weakly contained in E if any one of the conditions of Theorem 2.3 holds.

2.2. Fourier-Stieltjes space If E is a subset of H, let B^(H) denote the Banach
space dual of C* (H). Notice that BX(H) is contained in L°°(H).

PROPOSITION 2.5. Let <j> be a function on H. Then the following are equiva-
lent.

(i) <j> belongs to
(ii) <p is a linear combination of elements of P% (H).

(iii) There exists a representation (n, H) of H, which is weakly contained in £
and £, r) in H satisfying (/> = n^n.

(iv) <p is continuous, bounded and satisfies

- I / .sup / f(x)<t>(x)dx < oo.

PROOF. The proof is exactly as in Eymard [10, Proposition 2.1]. •

The Banach spaces B^(H), corresponding to two particular subsets of H namely,
when E = H and when E = [k], are of much importance in the sequel.

DEFINITION 2.6. The Banach space dual of the full C*-algebra C*(H) is called the
Fourier-Stieltjes space and is denoted by B(H).

The Banach space dual of the reduced C*-algebra C{(H) is denoted by Bk(H).

REMARKS 2.7. (1) By Proposition 2.5 we observe that B(H) is precisely the space
consisting of all matrix coefficients belonging to all representations of H whereas
Bk(H) is the space consisting of all matrix coefficients associated to representations
of H that are weakly contained in k, the left regular representation.
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(2) If E is a subset of H then since Q ( # ) is a quotient C*-algebra of C*(H) its
dual can be identified as a closed subspace of B(H) and thus we see that the norm
of 0 in BZ(H) does not depend on E. That is, for all (f> in B^(H), \\(p\\z = \\4>\\fi,
which we denote by \\4>\\.
Moreover, by Proposition 2.5 (iv), we have

110II = f(x)4>{x)dx

(3) By the duality of C{{H) and Bk(H) we have

(2.1) f f(x)u(x)dx =
JH

for every u in BX(H) and for every / in Ll(H). Moreover,

(2.2) f(x)u{x)dx < IMI-11/11, = INI-IW/)!!

PROPOSITION 2.8. Let E be a subset of H and let <f> be in BZ(H). Then there
exists a representation n in H, which is weakly contained in E and vectors £, rj in H*
satisfying <p = jt^ and \\4>\\ = ||£|| • \\r)\\.

PROOF. The proof uses the polar decomposition of elements belonging to operator
algebras and it is exactly as in the case of groups proved in Eymard [10, Lemma 2.14].

•
REMARKS 2.9. (1) H^IL < ||0|| for every <f> in B(H).

(2) If 0 belongs to BZ{H) then (p, 4>, x(f>, <px, and 0 are all in BZ{H). Moreover,

= 11011 = II0JL^II0H. whereas |W|| < \\<p\\ and | | 0 J < ||0||. Here 0V(JC) =
(j>{x) and 4>(x) = <p(x") for every x in H.

2.3. Fourier space For every / , g in L2{H) the function f * g belongs to Bk(H)
by Remark 2.9 (2), since

/ * g(x) = f f(x* y)gly)dy = (kf.J(x).
JH

DEFINITION 2.10. The closed subspace of Bk(H) spanned by { / * / : / e CC(H)}
is called the Fourier space of H and is denoted by A(H).

The following lemma is proved for groups by Godement [13]. See also Peder-
son [23, Section 7.2].
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LEMMA 2.11. Let <p be a positive definite function belonging to CC(H). Then there
exists a i/r in L2(H) such that <j> = i/r * ijf.

PROOF. The proof is as in Pederson [23, Lemma 7.2.4]. •

COROLLARY 2.12.

{ / * / : / 6 Cc(tf)} c (Pk n CC)(H) c (P n Cc)(//) c { / * / : / € L2( / / )} .

Therefore, A(H) is the closure of the span of each set of the above in Bk(H).

PROOF. If M = g * g for some g belonging to L2(H), then it belongs to the closure
of {f * f : f e CC(H)} in Bk(H). D

COROLLARY 2.13. A(H) c c o ( # ) .

PROOF. The result follows by Definition 2.10 and Remark 2.9 (1). •

COROLLARY 2.14. IfH is compact, then A(H) = B(H).

PROOF. Since H is compact, PHCC(H) = Pfc(ff). Therefore, A(H) = B(H). D

REMARK 2.15. If H is a compact hypergroup, Vrem [30] defines A(H) as the
space of all those elements in Ll(H) that have absolutely convergent Fourier series.
By Vrem [30, Theorem 4.7] and by Corollary 2.14 we see that both the definitions
coincide.

PROPOSITION 2.16. If u belongs to A{H), then u, u, xu, ux, and u all belong
to A(H).

PROOF. If u belongs to the space {f*g'-f,g& CC(H)}, then all the functions
listed in the hypothesis belong to the above set and so, to A(H). Since the set given
above is dense in A(H), the result follows by Remark 2.9 (2). •

Let BL(H) denote, as usual, the space of all bounded operators on a Hilbert
space H. If F is any subset of BL(H), let F" denote the bicommutant of F.

DEFINITION 2.17. The von Neumann algebra [k(H)]" associated to the left regu-
lar representation k of H is called the von Neumann algebra of H and is denoted
by VN(H).
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REMARKS2.18. (1) VAr(//)isthesameas[A(L'(77))]". Observe that Cc(#) is a
quasi-Hilbert algebra as given in Dixmier [9, Part 1, Chapter 5, Definition 1], with the
scalar product (/, g) = j H f(x)g(x)dx and the involutive antiautomorphism given
by / ->• / A~1/2. Using the commutation theorem for quasi-Hilbert algebras as given
in Dixmier [9, Part 1, Chapter 5, Theorem 1], we can see that VN(H) = [p(H)]',
where p denotes the right regular representation of H.
(2) Notice that C*k(H) is contained in VN(H), as VN(H) is the a-weakly closed

subalgebraof BL(L2(H)) containing {k(f) : f e CC(H)}.

THEOREM 2.19. Let H be a hypergroup. For every T in VN(H) there exists a
unique continuous linear functional <pT on A(H) satisfying

(2.3) <f>T((f * gj) = (T(f), g)LHH) for all fge L\H).

The mapping T -> <pT is a Banach space isomorphism between VN(H) and A(//)*.
Moreover, the above mapping is also a homeomorphism when VN(H) is given the

a-weak topology and A(H)* is given the weak"-topology.

PROOF. We omit the proof as it can be obtained by following the proof given for
groups in Eymard [10, Theorem 3.10] with appropriate modifications. •

The following proposition clarifies the duality between C*X(H) and Bk(H) on the
one hand and between A(H) and VN(H) on the other hand.

PROPOSITION 2.20. For every T in C*k(H) and for every u in A(H) we have

(2.4) <t>T(u) = (T, u).

Here <, > appearing on the right-hand side is with respect to the duality between
C{{H) and Bk(H).

PROOF. Let T be equal to X(h) for some h in L'(#). Let u = f * g be in A(H).

Then

4>T(u) = {h*f, g)LHH) = / u(x)h(x)dx.
JH

Therefore, by (2.1) <f>T(u) - (u, k(h)} = (T, u). Thus, (2.4) is valid for all u in E
where E is the span of elements of the above form in A(H). As E is dense in A(H)
we see that (2.4) is valid for all u in A(H) and for all k(h) in Q ( H ) with h in Ll(H).
By density of {>,(/) : / e L\H)} in Q ( # ) , the result follows. •

PROPOSITION 2.21. For every fi in M(H) and for every u in A(H), we have

(2.5) &oo(«)= f u{x)dii{x).
JH
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PROOF. Observe that for any fi in M(H), A(/M) need not belong to C*X(H).
Let /u, be in M{H). Using a bounded approximate identity in L\H) we see that

there exists a net {/} in V{H) such that A.(/)) converges to k(fi) with respect to the
strong operator topology. So, <j)k(fi){u) converges to 0xoo(M) f°r every u e A(//).
Therefore, tf>x(M)(«) = /H "(*) d/x(» for all M G A(#). D

Convention. For the sake of convenience, the duality between A(H) and VN(H)
given by Theorem 2.19 will henceforth be denoted by (M, T) with u in A(H) and T
in VN(H). In particular,

(2.6) (A.(x), «> = " M for all a e A(H) and JC € H.

The following proposition, whose proof is found in Eymard [10] in the case of
groups, holds for hypergroups also. Vrem [30] has already shown it for compact
hypergroups and his proof is applicable to general hypergroups also.

PROPOSITION 2.22. Let H be a hypergroup. If K is a nonempty compact subset of
H and U is a neighborhood ofK, then there exists u in A(H) satisfying 0 < u (x) < 1,
u\K = 1 and suppM is contained in U.

3. Multipliers of A (H)

DEFINITION 3.1. A complex valued function <p on H is called a multiplier of A(H),
if <j> • u belongs to A(H) whenever u is in A(H). Let MA(H) denote the space of all
multipliers of A(H).

It appears to be difficult to find examples of multipliers apart from constant functions
for a general hypergroup. In Section 4, we give several classes of examples of
hypergroups for which Bk(H) is contained in MA(H). This section is devoted to the
general study of the space of multipliers, which is needed in sequel.

PROPOSITION 3.2. If<p is a multiplier ofA(H), then it is continuous.

PROOF. Let x be in H. If V is a compact neighborhood of x, then by Proposi-
tion 2.22 there exists a u in A(H) satisfying u \v= 1. Since <j> • u belongs to A{H), it
is continuous. As <p agrees with <j> • u on V, the result follows. •

For every </> in MA(H), let ||0||MA(H) denote the operator norm of m^ where m^ is
the linear operator on A(H) given by m^(«) = <j>u for every u in A(H).

THEOREM 3.3. || • ]\MAW) defines a norm on MA(H) and (MA(H),
forms a Banach algebra.
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PROOF. Suppose that 0 is in MA{H). We use the closed graph theorem, in order
to show that the linear map m^ is bounded.

Suppose that [un] and u, V are in A(H) such that un converges to u and m^,(un)
converges to v. As H-Ĥ , < ||-|| in A{H) we see that un converges to u and 0 • un

converges to v uniformly. However 0 • un converges to <f> • v uniformly on compact
subsets. Therefore, m (̂w) = <p • u = v.

If nx^ = 0 for some 0 in MA(H), then <p • u = 0 for every u in A(H). However,
then, by Proposition 2.22, 0 = 0. Therefore, ||0||MA<H) is indeed a norm for MA(H).

Let {</>„) be Cauchy in MA(H). That is, the sequence of operators m^ is Cauchy
in BL(A(H)). So, there exists T in BL(A(H)) such that m^ converges to T in
BL(A(H)).

Fix a compact subset K of H and let e > 0. Let u be as in Proposition 2.22
satisfying u\K = 1. Then, for every JC in K, we have

1(0,, - 4>m)(x)\ = \(4>n - <t>m){x)u{x)\ < \\(cpn - <f>m) • a l L

< U4>n - 4 > m ) - u \ \ < U4>n-<Pm)\\MMH) • Hul l .

Therefore, {<pn} is uniformly Cauchy on compacta. Let cj> be its limit. We show that
T(u) = <p • u for every u in A(//), which in turn implies that 0 belongs to MA(H).

Fix « in A(H). Then m^iu) converges to T{u) in A(//). In particular, 0n • M
converges to T(u) uniformly. However, 0n • u converges to 0 • u uniformly on
compact sets. Therefore, T{u) = 0 • u. So, 0 belongs to MA(H). Hence MA{H) is
a Banach algebra. •

The analog of the following theorem for groups was proved by DeCanniere and
Haagerup [7]. We make the proof brief as it is similar to that for groups.

THEOREM 3.4. Let H be a hypergroup and <pbea bounded complex valued function
on H. Then the following are equivalent.

(i) 0 belongs to MA(H).
(ii) There exists a a-weakly continuous operator M$ on VN(H) satisfying

(3.1) M*{k{f)) = X(0/) for all f e Ll(H).

Moreover, \\4>\\uA(H) = | ^ | -

PROOF. Suppose that 0 is in MA{H). Let M^ denote the transpose of m^. Then M^
is a cr-weakly continuous operator on VN(H) and |A^>| = ||0||A//i(H)- Moreover, for
every / in Ll(H) and for every u in A(H), we have

= [
JH

<«, M*W))) = (m*(«), *(/)} = [ (0 • u)(x)f(x) dx = (II, M0 • /))
J
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by (2.5). Therefore, M*(k(f)) = A(0 • / ) .
We prove the converse. Suppose that there exists a a -weakly continuous opera-

tor M# satisfying (3.1) for some bounded function </>. As M^ is CT-weakly continuous,
there exists a bounded operator, say 5, on A{H) satisfying {S(u), T) = {u, M+iT))
for all T € VN(H). Then by (3.1) and (2.5) we see that

f f(x)<Hx)u(x)dx= I S(u)(x)f(x)dx
JH JH

for every / in LX(H). Therefore, S(u) = <pu almost everywhere for all u in A{H).
In order to conclude that they are equal everywhere, we show that </> is continuous.

Observe that the restriction of M^ to C*k{H) is a bounded linear map satisfying (3.1).
By taking the transpose we see that (j> is a multiplier for BX(H). Now use Proposi-
tion 2.22 and the proof of Proposition 3.2 to conclude that 0 is continuous.

Therefore, for every win A (H) we have S(«) =(f>-u. So, <p belongs to MA{H). •

REMARKS 3.5. (1) In the above proof we have also proved that if 0 is a multiplier
of A(H), then </> is a multiplier of Bk(H) also.
(2) We do not know whether a multiplier of A{H), H being a hypergroup, is always

bounded. However, if G is a group, then we have Ĥ H,*, < II</>IUA(G)' whenever 0 is a
multiplier of A(G).
(3) If H is a hypergroup, let MbA(H) = {</>€ MA(H) : <p is bounded}.

4. Fourier spaces of commutative hypergroups

Throughout this section H is assumed to be commutative. The set consisting
of all nonzero hermitian characters on H, equipped with the topology of uniform
convergence on compact subsets of H, is called the dual of H and is denoted by H.

For any / in L\H) and /x in M(H), let !F(f) and F{n) denote the Fourier
transform and Fourier-Stieltjes transform of / and /x respectively. Let dn denote the
Plancherel-Levitan measure. Let S denote the subset of H given by

5 = {X € H : \T(ix)(X)\ < IIMAOII for all n e M(H)}.

Then 5 is a nonempty closed subset of H. Moreover, S is precisely the support of dn.
By LP(H) we mean the Banach space LP(H, dn) where 1 < p < oo.

If / , (i belong to Ll(H) and M{H) respectively, let T{f) and l(n) denote the
inverse Fourier transform of / and [i respectively.

As H is commutative, any irreducible representation of H is 1-dimensional and is
given by a hermitian character. In particular, the full C*-algebra C*(H) is identified
with C0(H). So, the Fourier-Stieltjes space B{H) is identified with M(H). That is,
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if M is a complex valued function on H, then u belongs to B{H) if and only if there
exists a unique measure n in M(H) satisfying u(x) = 2(^i)(x) for all x e H and

A hermitian character y is weakly contained in the left regular representation A. if
and only if \T(f)(y)\ < \\Hf)\\ for all / e L\H). Equivalently, by Jewett [17,
Subsections 7.3B and 7.3D], we see that [x € H : x is weakly contained in X] = S.
Therefore, the reduced C*-algebra of a commutative hypergroup H is identified with
C0(S), and for every u in Bk(H) there exists a unique measure /x in M(S) such that
u(x) = l(n)(x) for all x e H and ||M||B(W) =

PROPOSITION 4.1. Let H be a commutative hypergroup. Then there exists a von
Neumann algebra isomorphism identifying VN(H) with L°°(S, dn) which mapsX(f)
to F{f)for every f in L\H).

PROOF. Let us use the same notation, namely T, to denote the Plancherel-Levitan
transform also. For every <p belonging to L°°(S, dn) define 7^ on L2(H) by

•F( W » = 4> • W ) -

Then ||7^|| < ||0||oo and T^ belongs to VN(H); it can be easily seen that it commutes
with all (right) generalized translations p (x) with x in H. Moreover, one can verify that
the above map from L°°(S, dn) into VN(H) is injective and a-weakly bicontinuous
satisfying Tjr(f) = X(f) for every / in Ll(H).

Since the image is a cr-weakly closed subspace containing [X(f) : f € Ll(H)}, it
includes VN(H) also. Therefore, it is surjective. Thus it is a von Neumann algebra
isomorphism by Takesaki [26, Chapter II, Corollary 3.10]. •

In the following proposition, we get back the classical definition of a Fourier space
when H is a commutative hypergroup.

PROPOSITION 4.2. Let H be a commutative hypergroup. Then

(i) A(H) = I (L ' (5 , dn)). That is, for every u in A(H) there exists a unique f
in Ll(S, dn) such that u(x) = I(f)(x) for all x e H and \\u\\A(H) = 11/11,.

(ii) A{H) = [f*~g:f,gzL\H)}.
(iii) A(H) is equal to the closure of the subspace [B(H) D CC(H)] in B{H).
(iv) A(H) is equal to the closure of the subspace [BX(H) n CC(H)] in Bk(H).

PROOF, (i) By the above proposition and the uniqueness of the preduals of von
Neumann algebras, the Banach spaces L\S, dn) and A(H) are isometrically iso-
morphic.
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We show that if 4> : L'(5, dn) -» A(H) denotes the above isomorphism, then it
is given by the inverse Fourier transform. In fact, for every / in L'(S, dn) and for
every g in Ll(H)

(Hg), *(/)> = (Vfrig)), f) = (F(g), f) = (g,

(ii) We already know by Corollary 2.12 that {/ * g : f, g e L2{H)} is dense in A(H).
Let u be in A(H). By (i) there exists h in L'(5, dn) such that u — l(h). Since

any element in Ll(S, dn) can be written as a product of two elements of L2(S, dn),
we have u — f * g for some / , g in L2(H).
(iii) Let u be in fi(//) D CC(H) Then there exists a unique measure /u, in M(H) such
that M = X(^). By Jewett [17, Lemma 12.2B], /z = T{u)dn. In particular, fj.
belongs to L'(5, ^7r). By the Fourier inversion theorem, we have u = T{T{u)) and
so u belongs to A(H) by (i). That is, B(H) n CC(H) is contained in A{H).

Since the linear span of P D CC(H) is contained in B(#) D CC(H), and since it is
dense in A(#) by Corollary 2.12, we see that B(H) n Cc(//) is dense in A(H).
(iv) The proof uses Corollary 2.12 and is similar to the proof of (iii). D

COROLLARY 4.3. Let H be a commutative hypergroup and<p be a bounded function
on H. Then <j> is a multiplier of A(H) if and only if <j> is a multiplier of Bk(H).
Moreover, the respective norms coincide.

PROOF. We have already seen in Remark 3.5 (1) that if 0 is a multiplier of A{H),
then it is a multiplier of Bk(H) also.

Conversely, suppose that 0 is a multiplier of Bk (H). If u belongs to Bx (H) n Cc (H),
then <p • u belongs to BX(H) n CC(H). By Proposition 4.2(iv), <p • u belongs to A(H).
Now we use the density of Bk(H) D CC(H) in A(H) to see that <p is a multiplier
of A(H). D

REMARK 4.4. As in the case of groups we want to know whether A(H) forms
a Banach algebra. If the dual space H of a commutative hypergroup H forms a
hypergroup with the convolution given by J(/x * v) = T(ix)-T(v) for all/z, v € M{H)
and with the involution given by x* for every x m # (see Jewett [17, Subsection 12.4]
for details), then, by Proposition 4.2, A(H) turns out to be a Banach algebra under
pointwise product.

It is worthwhile to remark that the dual hypergroup exists-only in very few cases,
even within the classical hypergroups such as the classes of polynomial hypergroups,
hypergroups on compact intervals and Chebli-Trimeche hypergroups on the halfline.
In fact Zeuner proved that polynomial Jacobi hypergroups, compact Jacobi hyper-
groups and Bessel-Kingman hypergroups are the only hypergroups, among the classes
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specified above, for which the dual space forms a hypergroup. See Zeuner [32, Corol-
lary 5.5, Theorem 6.4 and Theorem 7.4].

The main results of this section and the next section give necessary and sufficient
conditions for a commutative hypergroup so that its Fourier space forms a Banach
algebra with an equivalent norm under pointwise product. We give several classes of
examples whose dual space does not form a hypergroup, yet the Fourier space of them
forms a Banach algebra.

DEFINITION 4.5. (1) Let MbA{H) be given a new norm

(4.1) ||0||° = max [UWMAW, ||*||OO} for all 0 e MbA(H).

(2) Let Q(H) be the vector space Ll(H) equipped with the norm given by

(4-2) ||/ | |C( / / ) = sup{|</,0>|:0eMfcA(tf) and 11*11° < 1}

for every / belonging to L'(//).

Here (/, 0) = fH f(x)(/>(x) dx for every / in Q(H) and for every 0 in MbA(H).

LEMMA 4.6. (i) (MbA(H),\\-\\°) is a Banach space.
(ii) Assume that S, the support ofdn, is contained in MA{H). Then Q(H) is a

normed linear space and is contained in the dual space of(MbA(H), ||-||°).

PROOF, (i) Only completeness needs proof. If {</>,} is Cauchy in (MbA(H), \\-\\°),
then it is Cauchy in MA(H) and in Cb(H) also. If 0 is the limit of the above sequence
in MA(H), then by the proof of Theorem 3.3 we see that {0,} converges to 0 uniformly
on compact sets. So, 0 is the limit of the sequence in Cb(H) also. Therefore, {0,}
converges to 0 in (MbA(H), ||-||°).
(ii) The norm given in (4.2) is finite as

ll/llfl(W) < sup{|(/, 0}| : V0 e Cb(H) and U0IU < 1} < | | / | | , < oo,

since
Assume that there is a / in L\H) satisfying (/, 0) = 0 for every 0 in MbA(H). In

particular, (/, y)=0 for all y in 5. That is, .F(/) = 0. So, k(f) = 0 by Jewett [17,
Subsection 7.3D]. Therefore, / = 0 as k is faithful. Thus Q(H) is a normed linear
space.

Any / in Q(H) defines a linear functional xf on (MbA(H), \\-\\°) given by

= f f(x)ct>(x)dx.

Moreover, 1^(0)] < H/llill*^ < ||/ | |i ||*H°. Therefore, xf belongs to the dual
of (MbA(H), ||-||°) and IT7I < | | / | | , . D
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DEFINITION 4.7. Let H be a commutative hypergroup. We say that H satisfies
condition (F) if there exists a constant M > 0 satisfying the following:

(F) For every pair x and y in S, ry belongs to BX{H) and ||ry || < A/.

Equivalently, for every r and y in 5, there exists a measure /x in M(S), (not necessarily
positive) such that, ||/x|| < A/ and r(jc)y(x) = /# x(*) ^M(x) f°r all x e H.

LEMMA 4.8. Suppose that H is a commutative hypergroup satisfying condition (F)
for some M > 0. Then S is contained in MbA(H). Moreover, \\X\\MA{H) = IMI° < Af
for all z € S.

PROOF. For every r, y in 5, let /xrtY be in M(S) such that x • y = l(ixZiY).
If T belongs to 5, then for every / in Ll(H), we have

= f I(iir.yKx)f(x)dx = f T{f){w)diiz,Y{co).
JH JH

Therefore, \T{xf){y)\ < fs |^(/)(a>)||rf/iT,y(a>)| < Af | |^(/)| |oc Hence, the map
T(f) -*• F{xf) extends to a bounded linear operator on C0(S). That is, k(f) ->
k(xf) is a bounded linear operator on Q(H) . By duality, as given in (2.1), we
infer that u —>• xu is a multiplier on Bk(H) and ||r||MBl(W) < Af. Therefore, by
Corollary 4.3, T is a multiplier on A(//) and ||r ||MA(W) < M.

If u belongs to A(#) then (u, x(e)X(e)) = x(e)(u, X(e)) = (x • u)(e). So,

\x(e)\ = \\x(eMe)\\vNW = sup |(«, x(e)X(e))\

< sup |T • u(e)\ < sup ||r • u\\ < \\x\\MMH).
ll«ll<i ll«ll<i

Since r belongs to H, UTII^ = r(e) by Jewett [17, Subsection 6.3D]. That is,
IITIL < ||r||MA(W). Therefore, ||r||° = \\T\\HAW < Af. D

REMARK 4.9. Let 5 be contained in MbA(H). Then the normed linear spaces
[(MbA(H), IHI°), Q(H)} form a dual system in the following sense:

(i) If (/, <p) = 0 for every (pin MbA(H), then/ = 0by the proof of Lemma4.6(ii).
(ii) If on the other hand, (/, <j>) = 0 for every / i n Q{H), then <p = 0 as </> belongs

to Cb(H).

LEMMA 4.10. Let S be contained in MbA(H) and the dual system given in the
above remark be denoted by (X, X.) with Xt = Q{H) and X = (MbA(H), ||-||°).
Then the following are true:
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(i) ||0||° = sup{|<0, f)\:fe Q(H) and \\f\\Qm < 1} for every 0 in MbA{H).
(ii) The a(X, Xt)-closed convex hull of a a(X, X,)-compact subset of X is

a(X, X,)-compact.

PROOF, (i) By duality we see that if / belongs to Q(H) and ||/ | |e(W) < 1, then we
have |<0, f ) \ < | | 0 | | ° • | | / | | C ( « , < 11011°.

Now, we show the reverse inequality. Let e > 0 and let 0 be in MbA(H).

If W\MMH) < II0IL. t h e n 11011° = H0lloo- I f / i n Ll(H) s a t i s f i e s ll/lli < 1 a n d

l</. 0 ) 1 + « > I I 0 I I O O . then

(4.3) I I / I I C ( W ) < 1 and | |0| |° < | ( / , 0)1 + e.

Suppose that on the other hand, I^H^ < ||0||MA(//)- Let u be in A(H) satisfying

(4.4) | | I * | | < 1 and \\4>\\MMH) < \\4>u\\ + e.

Then there exists/ in Ll(H) satisfying \\k(f)\\ < 1 and ||0M|| = |(0 • u, k(f))\ + e.
As (0 • 11, k(f)} = fH f{x)<P(x)u(x) dx = (fu, 0), we have, by (4.4)

(4.5)

Now, fu belongs to Q(H) and ||/M||e(W) < 1, since

= s u p { l / w
f(x)u(x)f(x)dx < 1

By (4.3) and (4.5) we have

11011° < sup {|(0, />| : / g Q(H) and ||/| |e(W) < 1} .

This proves (i).
(ii) Let E be a o(X, X,)-compact subset of X. Let E denote the convex hull of E

in X. We shall prove that E is pre-compact in the a{X, Xt)-topology.
By Grothendieck [14, Chapter 2, Proposition 15], it is sufficient to show that E

is bounded in the a(X, X.)-topology. That is, for every / in Q(H) the set {(0, / ) :
0 € E) is bounded in C.

It can be seen that £ as a subset of L°°(H) is o(L°°(H), L'(7/))-compact. So,
E is a(L°°(H), /. '(//^bounded which in turn implies that, it is a(X, XJ-bounded
also. Hence, (ii) follows. •
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REMARK 4.11. We recall Arveson's theorem [1, Proposition 1.2]. Suppose that X
is a Banach space and Xt is a subspace of the dual space X* of X satisfying the
following:

(i) HJCII = sup{|(x, f)\:fe X., and | | / | | < 1}.
(ii)Thea(Z, X,)-closed convex hull of any a{X, X,)-compactsetinXisa(X, X.)-

compact.

Then the following result holds. Let Q be a locally compact space and let x : Q -*• X
be norm bounded and a(X, Z»)-continuous function. Then, for every /z belonging
to M(Q), there exists a vector xM in X satisfying (*M, / ) = fQ{x(s), f) dfj,(s) for
all / e Xt.

THEOREM 4.12. Let H be a commutative hypergroup. Suppose that H satisfies
condition (F), for some M > 0. Then Bk(H) is contained in MbA{H). Moreover,
\\u\\MMH)<M\\u\\forallu€BdH).

PROOF. We show that if fx belongs to M(S), then l(^) belongs to MbA{H) and

Take Q = S, X = (MbA(H), ||-||°) and Xt = Q(H). From Lemma 4.10, the
conditions given in Arveson's theorem are satisfied. By Lemma 4.8, S is contained in
MbA{H) and ||y ||° < M for every y in 5.

As the topology in 5 is the Gelfand topology and

</. Y) = HfW for all feQ(H),

we see that the inclusion map from 5 into (MbA(H), \\-\\°) is a{X, XJ-continuous.
By Arveson's theorem we see that for every n in M(5), there exists a vector 0M

in MbA(H) satisfying (/, </>M) = fs(f, y) d/x(y). Since,

J {f,J
= f f(x)l((i)(x)dx,

JH

we see that 0M = J(/x). Thus, J(/x) belongs to MbA(H).
Now,

\{f,IQi))\< f \(f,y)\d\ti\(Y)
JH

< [ \\f\\Q(H)\\Y\\° d\n\(y)

<M\\ix\\\\f\\Qm.

Therefore, ||J(/x)||° < M \\\i\\. In particular, ||T(/z)|UA(ff) < M \\n\\. D
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COROLLARY 4.13. Let H be a commutative hypergroup satisfying condition(F).
Then the Fourier space A(H) is an algebra underpointwise product. Moreover,

(4.6) I|K-V|| < Af ||II||| |V|| for all u,veA(H).

In particular, if M = 1, then A(H) forms a Banach algebra. Similar results hold for
Bk(H) also.

PROOF. Let u belong to A(H). Then, by the above theorem, we see that u belongs
to MbA(H) and \\u\\MAiH) < M\\u\\. In particular, A (H) is an algebra under pointwise
product. Moreover, for any u, v in A(H), we have

\\uv\\ < \\u\\MMH)\\v\\ < M \ \ u \ \ \ \ v \ \ .

Thus A(H) is a Banach algebra if M = 1.
Now if u = l(fx) is in Bk(H) for some /i, then, by the above theorem, u is a

multiplier of A(H) and so, by Corollary 4.3 it is a multiplier of Bk(H) also. The rest
follows as above. •

COROLLARY 4.14. Suppose that H is a commutative hypergroup satisfying (F).
If the trivial character 1 belongs to S, then A(H) is a Banach algebra under the
multiplier norm which is equivalent to the original norm.

PROOF. By Corollary 4.13, Bk{H) c Mb(Bk(H)). Since 1 belongs to 5, it belongs
to Bk(H). Therefore, Mb(Bk(H)) = Bk(H) which in turn equals MbA(H) by
Corollary 4.3. The norms in MA(H) and Bk(H) are equivalent since

and since \\<p\\MMH) = \\<p\\MBk(H).
As A(H) is closed in Bk(H), it is closed with respect to the multiplier norm also.

Therefore, A(H) is a Banach algebra under the multiplier norm, and the original norm
is equivalent to the multiplier norm. •

The following corollary is quite useful in our further study of multipliers of A (H),
which we take up in future.

COROLLARY 4.15. Suppose that S' is a locally compact set such that S c S' c H
satisfying the following: there exists M > 0 such that for every x in S' and y in S, zy
belongs to Bk(H) and \\ry\\ < M.

Then for any \x in M(H) whose support is contained in S', T{fi) belongs to
MbA{H). Moreover, \\1{IX)\\MA(H) < M ||/x||.
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PROOF. The proof follows exactly as in the proofs of Lemma 4.8 and Theorem 4.12.

•
The following theorem discusses the converse of Theorem 4.12.

THEOREM 4.16. Suppose that A{H) is an algebra under pointwise product and
there exists M > 0 satisfying \\u • v\\ < M \\u\\ \\v\\ for all u,ve A(H). Then for
every y, y' in S, y • y' belongs to Bk(H) and \\y • y'\\ < M.

PROOF. Let y belong to S. We are done if we show that y belongs to MBk(H) and
IIKIUBII//) — M. By Corollary 4.3, it is sufficient to show that y belongs to MA(H)
and ||y ||MA(H) < M. However, as CC(H) n A{H) is dense in A(H), we need to show
only that for every win CC(H)C\A(H), y -u belongs to A (H) and ||y • w|| < M||M||.

If u belongs to CC(H) D A(H), then by hypothesis u belongs to MA{H) and so to
MBX(H). Therefore, u • y belongs to BX(H) D CC(H) which is contained in A(H)
and IIM - K || < M \\u||. Hence the result follows. •

4.1. Examples of commutative hypergroups satisfying condition (F)

EXAMPLE 4.17. It is easy to see that any finite commutative hypergroup satisfies
condition (F) of Definition 4.7. We observe that the constant M is strictly greater
than 1 for the following example.

Let H = {e, a, b] be the hypergroup given in Jewett [17, Example 9.1C], whose
dual space H is equal to {1, x, if), where the character x is given by x(e) = 1.
X(a) = -3 /4 and x(b) = 1/2. If / is defined on H by / ( I ) = 17/36, f(X) =
(-3/68)07/4) and /(VO = (153/100)(175/306), thenl ( / ) = x1 and

666
612"

See op. cit for the computation of Plancherel-Levitan measure of this hypergroup and
other unexplained details. Vrem has already computed ||x21, see [30].

EXAMPLE 4.18 (cosh hypergroup). Let H denote the cosh hypergroup studied
by Zeuner [31]. It is a 1-dimensional hypergroup on K+ defined by the following
convolution formula.

cosh(x — y) cosh(x + y)
2 cosh(;c) cosh(y) |Jr">l 2 cosh(x) cosh(y)

It is shown in [31] that H = {(pK : X € K+ U i[0, 1]}, whereas S = {<px : X e K+},
where 0x = (cos kx) /cosh x.

Moreover, by [31, Proposition 4.2 (a)-(b)] we see that the following holds: for
every r in H and for every y in S, there exists a probability measure \xx,Y such that
I(fiz Y) = yz.ln particular, Condition (F) holds for the cosh hypergroup for M = 1.

cosh(x - y) coshC* + y)
* dv = <5ix-vi -\ <5v+v x, y > 0 .y 2cosh(;c)cosh(y) '* yl 2cosh(jt)cosh(y) +y y
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EXAMPLE 4.19 (Jacobi hypergroups). Fix a > p > - 1 / 2 . Let us exclude the
case a = P = —1/2. Let Hap denote the Jacobi hypergroup (it is also known as
Chebli-Trimeche hypergroup of Jacobi type). It is a one-dimensional hypergroup
whose characters are Jacobi functions given as follows: if

— ^ ,« + ! . - sinh2*J ,
where 2F\ is the Gauss hypergeometric function, then Hap = {<f>k : A. € KL+ U i[0, p]}
and 5 = {<pk : A. e R+}, where p = a + p + 1.

It was proved by Flensted-Jensen and Koornwinder in [11, Section 4] that, for
every 1) and k2 in R+, the function <^, -<f>k2 is continuous positive definite and therefore
condition (F) is satisfied with M = 1. See also Koornwinder [18, Section 8.3].

EXAMPLE 4.20 (Bessel-Kingman hypergroups). These are one-dimensional hyper-
groups Ha : a > - 1 / 2 , whose characters are given by </>*(*) = ja(\x), where j a

denote (complex valued) modified Bessel functions of type a. These hypergroups are
self-dual. That is, H = H. So, H satisfies condition (F) with M = 1. For more
details, see Bloom and Heyer [2, Section 3.5.61],

EXAMPLE 4.21. Suppose that G is a locally compact group. Let B be a subgroup of
the group of all topological automorphisms of G containing the inner automorphisms
of G, which is relatively compact with respect to the Birkhoff topology. That is to
say, G is a [FIA]~B group with I(G) c B. If H denotes the space of all B orbits
in G, then H is a commutative hypergroup and H is also a hypergroup (see Hartmann
et al. [15] and Ross [25]). In particular, H satisfies condition (F) with M = 1.

EXAMPLE 4.22 (Jacobi polynomial hypergroups). Let a > fi > — 1 and a + ft +
1 > 0. Consider the polynomial hypergroup Ha^ on No corresponding to Jacobi
polynomials Ra/{x). Then diza-p{x) = (1 - x)a{\ + xfdx and S = [ - 1 , 1]. The
characters {*,} are given by x*(«) = R"fi(x). By Gasper [12, Section 1], there exists
a constant M > 0 satisfying the following:

for every x, y in [—1, 1] there exists a unique, real valued bounded measure, fiXiy

on [—1, 1], independent of n, such that

= [ Ra/(.z)dfix.y{z) for all n e No,

and ||/ix,y| < M- Thus, the hypergroup Ha# satisfies condition (F).
If furthermore, $ > - 1 / 2 or a + P > 0, then Af = 1. For further details see

Lasser [21].
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EXAMPLE 4.23. Consider the generalized Chebyshev polynomials {T°•? }n£No with
a, ft > — 1 normalized by T°^(l) = 1. They are orthogonal on [—1, 1] with respect
to dn = (1 - x2)" \x\20+l (see Chihara [6]).

If a > fi + 1, then it gives rise to a polynomial hypergroup say Ha^ on No (see
Lasser [21]). Moreover, S is identified with [—1, 1]. By Laine [19, Theorem 1], we
observe that Hafi satisfies the condition (F). Moreover, M = 1 if we further assume
that p > —1/2 (refer to Laine [19, Theorem 1] again).

REMARK 4.24. We say that a commutative hypergroup H has, a dual convolution
structure on a subset E of H if, for every yu y2 belonging to E, the product y\ • Yi
is positive definite on H. If a hypergroup has the dual convolution structure on 5,
then it satisfies the condition (F) with M ~ \. For instance, Jaeobi hypergroups,
and Bessel-Kingman hypergroups have dual convolution structure. Voit has studied
hypergroups having dual convolution structure, along with many examples [28]. For
instance, in his recent article Voit [29] discusses dual convolutions on the hypergroups
associated with infinite distance transitive graphs.

5. Fourier hypergroups

DEFINITION 5.1. A hypergroup H is called a Fourier hypergroup if

(1) The Fourier space A(H) forms an algebra with pointwise product.
(2) There exists a norm on A(H) which is equivalent to the original norm with

respect to which A(H) forms a Banach algebra.

A hypergroup is called a regular Fourier hypergroup if A (H) is a Banach algebra with
its original norm and pointwise product.

REMARK 5.2. We will show in Muruganandam [22] that a double coset hypergroup
is a regular Fourier hypergroup.

PROPOSITION 5.3. If H is a commutative hypergroup satisfying condition (F)for
some M > 0, then H is a Fourier hypergroup. If M = 1, then H is actually a regular
Fourier hypergroup.

PROOF. By Corollary 4.13, A(H) is an algebra under pointwise product.
If we define a new norm on A(H) by ||«||new = M \\u\\ for every u in A(H), then

the two norms are equivalent. Moreover, by (4.6) we observe that (A(H), ||||new) is
a normed algebra. Thus (A(H), IHInew) is a Banach algebra. That is, H is a Fourier
hypergroup. If M = 1, then it is of course regular also. •
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REMARK 5.4. The examples enumerated in Subsection 4.1 are all Fourier hyper-
groups. Whenever M = 1 they are regular.

Another classical Banach algebra found in the context of harmonic analysis on the
locally compact abelian group G, namely, the Banach algebra AP(G), of all almost
periodic functions on G does not form an algebra when considered over commutative
hypergroups. Moreover, the Bohr compactification does not carry any hypergroup
structure extending that of H. Yet, Lasser in [20] made a systematic study of AP{H)
extending many classical results to hypergroups by imposing appropriate assumptions
on the commutative hypergroups. See also Blower [5, Section 4.11] for some results
on almost periodic functions.

If H is a Fourier hypergroup, let Q. (A{H)) denote the Gelfand spectrum consisting
of all nonzero complex homomorphisms of A(H).

REMARK 5.5. If x belongs to H, then the functional cox given by cox(f) = f(x)
is a nonzero complex homomorphism by Proposition 2.22 and thus provides a map
x -> cox from H into Q.{A(H)). In the remaining part of this section, we identify
some hypergroups for which Q(A(H)) is equal to H.

As in the case of groups (see Eymard [10]), we define the support of an element in
the Banach space dual A(H)* of A{H) as follows.

DEFINITION 5.6. Let T be in A(H)\ We say that x belongs to the support of T if
the following holds. For every neighborhood V of x there exists u in A{H) such that
the support of u is contained in V and {u,T) ^ 0.

We denote the support of T by supp T.

PROPOSITION 5.7. Suppose that H is a Fourier hypergroup and T belongs to A(H)'.
Then supp 7"^0 if and only if

PROOF. Use Proposition 2.22 to observe that if AT is a compact subset of H, then
for every open cover of K there exists a partition of unity in A(H) subordinated to it.

Suppose that T is in A(H)* such that supp T = 0. Let u be in CC(H) n A(H) and
let K denote suppw.

Since supp T = 0, we see that for every x in K there exists a compact neighborhood
Ux such that (v,T) =0 for every v belonging to A(H) with supp v c Ux.

Let {M,} denote the partition of unity in CC(H) D A(H) subordinated to {UX}X€K.
Then

(u, T) = lj2u- u,, T\ = £ > • «,, T) - 0.

That is, (u, T) = 0 for every u in CC(H) n A(H). As CC(H) D A{H) is dense in
A(H), we conclude that T = 0. D
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REMARK 5.8. For every u in A(H) and for every T in A{H)\ define u • T by
(v, u-T) = {u-v,T) for all v € A(/ / ) . Then u • T belongs to A(H)*.

Since the proof of the following proposition is exactly as in the case of groups (see
Eymard [10, Proposition 4.8]), we will not prove it here.

PROPOSITION 5.9. Let H be a Fourier hypergroup. Then

supp(« • T) c supp M n supp T

for every u in A{H) and for every T in A(H)*.

Let P.(K+) = {/ : there exists g e C~en(K) f~l CM) such that / = g|R+}.

PROPOSITION 5.10. Let H be either a Jacobi hypergroup or a Bessel-Kingman
hypergroup. Then T>t(U.+) is dense in A(H).

PROOF. By Bloom and Xu [3, Lemma 3.24] or by Koornwinder [18, Theorem 2.3],
and by Proposition 4.2(i), we have that £>.(R+) c A(H).

Let € > 0 and let u = f * / b e in A(H) with / , g belonging to L2(H). As £>,(R+)
is dense in L2(H) (see, for example, Bloom and Zu [4, Lemma 4.12]), there exist
/ , , gl in 2>,(H+) satisfying \\f - / , | | 2 < e and ||g - ^ | | 2 < e.

Then v = f\ * gi~ belongs to P , (R + ) by, for instance, Trimeche [27, Proposi-
tion 6.11.12], and

Therefore, V,(R+) is dense in A(H). D

PROPOSITION 5.11. Let H be either a Jacobi hypergroup or a Bessel-Kingman
hypergroup. If co belongs to Q(A(H)) and ifsuppco C {x} for some x in H, then
co = cox.

PROOF. AS the support of co is not empty, supp co = {x}. We will first show that for
any u in P*(K+) if co(u) = 0, then cox(u) = 0.

Suppose on the contrary that there is a u in X>,(K+) satisfying co(u) = 0, but
u(x) ^ 0. Let V be a compact neighborhood of x such that \u(y) | > S for some 8 > 0
and for every v in V. Let u' be a function in P . (K + ) with w'(y) = l/u(y) for every y
in V. Then M' belongs to A(H).

Since * belongs to the support of co there exists v in A(//) with support of v
contained in V satisfying co(v) ^ 0. Then v = v • «' • u and

co(u)co(v • u) = u>(v • u • u) = co(v) ^ 0,
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a contradiction to the assumption that co{u) = 0. Therefore, cox{u) = 0.
Let M0 in Vt(R+) be fixed so that co(u0) = 1. If u belongs to X\(IR+), then

u = v + co(u)u0, where v belongs to £>.(R+) with co(v) = 0. Therefore, if we fix
a = uo(x), then by the above cox = aco on P , (K + ) . As Vt(R+) is dense in A(H),
by the above proposition, we have cox = aco. Since co and a^ are nonzero complex
homomorphisms a = 1. •

REMARKS 5.12. (1) From the above proof we also observe that if H is a discrete
Fourier hypergroup, then the conclusion of the above proposition holds.
(2) The proof Theorem 5.13 is an adaptation of the proof given for groups by Herz

in [16].

THEOREM 5.13. Suppose that H is a Fourier hypergroup satisfying any one of the
following:

(i) H is discrete.
(ii) H is either a Jacobi hypergroup or a Bessel-Kingman hypergroup.

Then the map x —*• cox defines a homeomorphism from H onto £2(A(H)). Moreover,
the Banach algebra A{H) is regular, semisimple and Tauberian.

PROOF. We first show the surjectivity of the above map in both cases. Let co be
in £2(A(//)). Then the support is not empty by Proposition 5.7. Let x belong to the
support of co.

We show that suppa> C {x}. If V is any arbitrary compact neighborhood of x,
then there exists u in A(H) such that suppu c V and co(u) ^ 0 . If v is in A(H)
such that v(y) = 1 for every y in suppw and if suppu is contained in V, which
exists by Proposition 2.22, then u = u • v. Now co{u) = co{u • v) = co(u)co(v).
Therefore, co(v) = 1. In particular, co = v • co since v • co = co(v)co. However, then by
Proposition 5.9, we have supp(a>) = supp(v • co) c supp(u) D supp(&>) c V. As V is
arbitrary, supp(o>) c [x]. We use the above remark for case (i) and Proposition 5.11
for case (ii) to conclude that co = cox.

In particular, A(H) is semisimple. As CC(H) n A{H) is dense in A(H), the
Banach algebra A{H) is Tauberian. By Proposition 2.22, we see that A(H) is regular.
By Rickart [24, Theorem 3.2.4], the mapping x ->• cox is indeed a homeomorphism
from// onto Q (A (//)). •
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