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This paper considers testing for unit roots in Gaussian panels with cross-sectional
dependence generated by common factors. Within our setup, we can analyze
restricted versions of the two prevalent approaches in the literature, that of Moon and
Perron (2004, Journal of Econometrics 122, 81–126), who specify a factor model for
the innovations, and the PANIC setup proposed in Bai and Ng (2004, Econometrica
72, 1127–1177), who test common factors and idiosyncratic deviations separately
for unit roots. We show that both frameworks lead to locally asymptotically normal
experiments with the same central sequence and Fisher information. Using Le Cam’s
theory of statistical experiments, we obtain the local asymptotic power envelope
for unit-root tests. We show that the popular Moon and Perron (2004, Journal of
Econometrics 122, 81–126) and Bai and Ng (2010, Econometric Theory 26, 1088–
1114) tests only attain the power envelope in case there is no heterogeneity in the
long-run variance of the idiosyncratic components. We develop a new test which
is asymptotically uniformly most powerful irrespective of possible heterogeneity
in the long-run variance of the idiosyncratic components. Monte Carlo simulations
corroborate our asymptotic results and document significant gains in finite-sample
power if the variances of the idiosyncratic shocks differ substantially among the
cross-sectional units.
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2 OLIVER WICHERT ET AL.

1. INTRODUCTION

Testing for unit roots is an important aspect of time series and panel data analysis.
See, for example, the monographs Patterson (2011, 2012) and Choi (2015) for
overviews. A well-known problem with univariate unit-root tests is their low
power. In the last two decades, increased data availability led to the development
of panel unit-root tests that increase the statistical power by exploiting the cross-
sectional data dimension. The “first generation” of panel unit-root tests imposes
the panel observations Zit to be independent over panel units i. Surveys of this
literature are provided by Banerjee (1999), Baltagi and Kao (2000), Choi (2006),
Breitung and Pesaran (2008), and Westerlund and Breitung (2013). Moon, Perron,
and Phillips (2007), Becheri, Drost, and Van den Akker (2015a), Moon, Perron,
and Phillips (2014), and Juodis and Westerlund (2019) studied optimal testing
for unit roots for first-generation frameworks, when the driving innovations are
Gaussian. O’Connell (1998) and Gutierrez (2006) showed that presence of cross-
sectional dependence typically leads to invalidity of “first-generation tests.” For
this reason, a “second generation” of models and tests has been introduced. To the
best of our knowledge, optimality of unit-root tests has not yet been studied for
second-generation models.

To (partly) fill this gap, we focus on two widely used setups for second-
generation panel unit-root tests: the “PANIC” framework of Bai and Ng (2004)
and the framework of Moon and Perron (2004) (“MP”). We introduce the following
data-generating process (DGP): the observations Zit, i = 1, . . . ,n and t = 1, . . . ,T ,
are assumed to be generated by the components specification:

Zit = mi +Yit, (1)

Yit =
K∑

k=1

λkiFkt +Eit, (2)

Eit = ρEi,t−1 +ηit, (3)

Fkt = ρkFk,t−1 + fkt, (4)

where λki is the loading of unobserved factor Fkt on panel unit i, the mi are fixed
effects, and the innovations {ηit} and {fkt} are assumed to be mutually independent,
Gaussian, stationary time series. Section 2.2 discusses the precise assumptions.

For ρk = 1,k = 1, . . . ,K, we obtain a restricted DGP that falls in the PANIC
framework. And, with ρk = ρ,k = 1, . . . ,K, we can rewrite (2)–(4) as

Yit = ρYi,t−1 + εit and εit =
K∑

k=1

λkifkt +ηit, (5)

which corresponds to Displays (1)–(3) in MP. Note that MP uses an autoregressive
structure with the factors appearing in the innovations εit in (5), whereas the factors
are part of the “mean specification,” i.e., (2), in the PANIC setup. Consequently,
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UMP TESTING FOR UNIT ROOTS IN DEPENDENT GAUSSIAN PANELS 3

the PANIC framework allows for nonstationarity of Zit generated by the factors Fkt

and for nonstationarity generated by the idiosyncratic components Eit, while the
factors and the idiosyncratic components have the same order of integration in the
MP framework.

Following Bai and Ng (2010), Pesaran, Smith, and Yamagata (2013), and
Westerlund (2015), when considering the PANIC framework, we focus on testing
for unit roots in the idiosyncratic components, i.e., H0 : ρ = 1 versus Ha : ρ < 1.
Note that, under the null hypothesis, the model equations of both models coincide.
The main restrictions on the DGP considered here are the absence of idiosyncratic
deterministic trends and the assumption of Gaussian innovations {ηit}. In Section 7,
we discuss to what extent we expect that these assumptions can be relaxed. As
another extension, it is possible to allow for heterogeneity in the alternatives (i.e.,
to replace ρ by ρi under the alternative hypothesis; see Remark 2.3).

We show that in cases where the nuisance parameters are known, the MP
experiment is locally asymptotically normal (LAN) when n,T → ∞ (jointly).
This means that the limit experiment, in the Le Cam sense, is a simple Gaussian
shift experiment (see, for example, Van der Vaart, 2000). We further establish that
the PANIC experiment for the idiosyncratic parts, in cases where the nuisance
parameters are known, is also LAN with the same central sequence and Fisher
information as for the MP experiment.

The LAN results imply that for any test satisfying a mild regularity condi-
tion, it suffices to determine its asymptotic size and local power in one of the
frameworks, since the same results automatically hold for the other one. To the
best of our knowledge, even for the well-studied tests proposed in Moon and
Perron (2004) and Bai and Ng (2010), the literature only conducted specific local
asymptotic power analyses without noting the power implications for other local
alternatives.

The LAN results, which are based on known nuisance parameters, directly yield
an upper bound, which is the same for PANIC and MP, to the local asymptotic
power of unit-root tests. We demonstrate that we can attain this upper bound
also for the case the O(n) nuisance parameters are unknown. In other words, we
establish adaptivity: the obtained upper bound yields the local asymptotic power
envelope.

On comparing the local asymptotic power functions of the tests proposed in
Bai and Ng (2010) and Moon and Perron (2004) to the power envelope, it is
seen that these tests are optimal only in cases where there is no heterogeneity
in the long-run variances of the idiosyncratic components. We propose a new
test that is asymptotically uniformly most powerful (UMP). This test is also
valid (under suitable moment conditions) in non-Gaussian settings. We report
numerical asymptotic powers for commonly encountered amounts of heterogene-
ity and use Monte Carlo experiments to show that the new test also compares
favorably to existing tests in finite samples. These results extend the work on
optimality on first-generation frameworks (Moon et al., 2007; Becheri et al.,
2015a; Moon et al., 2014; Juodis and Westerlund, 2019), who considered optimal

https://doi.org/10.1017/S0266466624000112 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000112


4 OLIVER WICHERT ET AL.

testing for unit roots in Gaussian panels without cross-sectional dependence, to the
second-generation models.

The paper is organized as follows. Section 2 presents and discusses the precise
assumptions we impose. Section 3 derives the common approximation to the
local likelihood ratios in the two experiments and derives its limiting distribution.
Section 4 introduces our new UMP test based on the limit experiment. Section 5
computes the local asymptotic power functions of the tests proposed in Moon and
Perron (2004) and Bai and Ng (2010), and Section 6 compares their asymptotic
and finite-sample power to those of the new UMP test. Section 7 concludes. All
proofs are organized in several appendixes that also contain additional results on
finite-sample performances. These appendixes are available as the Supplementary
Material.

2. NOTATION AND ASSUMPTIONS

2.1. Matrix Notation

Before we introduce our assumptions, we introduce some notation in order to
write the model in matrix form. We write In and IT for identity matrices of
dimension n and T, respectively, while ι denotes a T-vector of ones. Introduce
the n-vectors λk = (λk1, . . . ,λkn)

′, k = 1, . . . ,K, and the n × K matrix � =
(λ1, . . . ,λK). Collect the observations as Z = (Z11,Z12, . . . ,Z1T, . . . ,Zn1, . . . ,ZnT)′.
We also write Z−1 = (Z10,Z11, . . . , Z1,T−1, . . . ,Zn0, . . . ,Zn,T−1)

′, �Z = Z−Z−1, and
define ε, η, E, E−1, �E, Y, Y−1, and �Y analogously. Write m = (m1, . . . ,mn)

′,
ηi = (ηi1, . . . ,ηiT)′, i = 1, . . . ,n, fk = (fk1, . . . ,fkT)′, k = 1, . . . ,K, and denote their
corresponding covariance matrices by 	f,k = var fk ∈ RT×T and

	η = diag(	η,1, . . . ,	η,n), with 	η,i = var ηi ∈ RT×T .

The long-run variances of {fkt} and {ηit} (see Remark 2.2 below) are denoted
by ω2

f,k and ω2
η,i, respectively. In addition, we define the approximate long-run

variances ω2
f,k,T = ι′	f,kι/T and ω2

η,i,T = ι′	η,iι/T . For a given T, these ignore
the contribution of any autocovariances further than T apart. We will use the
approximate long-run variances to simplify notation and the structure of our
proofs. We add the subscript T to the approximate versions to emphasize the
difference and define

�η = diag(ω2
η,1,T, . . . ,ω

2
η,n,T) and �F = diag(ω2

f,1,T, . . . ,ω
2
f,K,T).

In addition to this “vectorized” notation, it will also be useful to consider the
observations as T × n matrices. Thus, let η̃ = (η1, . . . ,ηn), and define ε̃, Ỹ , Z̃, Ẽ,
f̃ = (f1, . . . ,fK), and F̃ analogously. With this notation, (5) can be rewritten as

ε̃ = f̃�′ + η̃, (6)
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while for the vectorized versions, we have

ε =
K∑

k=1

λk ⊗ fk +η.

Finally, we introduce the T ×T matrix A by Ast := 1 if s > t and 0 otherwise, and
we put A := In ⊗A ∈ RnT×nT , i.e.,

A =

⎛
⎜⎜⎜⎝

0 0 . . . 0
1 0 . . . 0
...

. . .
. . .

...
1 . . . 1 0

⎞
⎟⎟⎟⎠ and A =

⎛
⎜⎜⎜⎝

A 0T×T . . . 0T×T

0T×T A . . . 0T×T
...

. . .
. . . 0T×T

0T×T . . . 0T×T A

⎞
⎟⎟⎟⎠ .

The matrix A can be considered a cumulative sum operator, and premultiplying the
vectorized panel with A takes the cumulative sum in the time direction for each
panel unit. It is also related to “approximate one-sided long-run variances,” which
we can define by δη,i,T = tr[A	η,i/T] and δf,k,T = tr[A	f,k/T]. Note A+A′ = ιι′ −
IT , so that, analogous to the long-run variances, we have 2δη,i,T = ω2

η,i,T −γη,i(0).

2.2. Assumptions

Now we can formally state the full specifications of our DGPs in Equations (1)–(4).
The distributional assumptions on the time series of the factors {fkt} and idiosyn-
cratic shocks {ηit} are given in Assumption 2.1, and we formulate the assumptions
on the (deterministic) factor loadings λki in Assumption 2.2. Assumption 2.3 states
the assumption on the initial values Ei0 and Fk0. Assumption 2.4 specifies the
joint asymptotics we consider in this paper. Finally, Assumption 2.5 differentiates
between the two setups discussed in Section 2.

Assumption 2.1.

(a) Each factor innovation, indexed k = 1, . . . ,K, is a zero-mean ergodic stationary
time series {fkt} independent of the other factors and all idiosyncratic parts ηit.
Its autocovariance function γf,k satisfies

∞∑
m=−∞

(|m|+1)|γf,k(m)| < ∞

and is such that the variance of each factor innovation {fkt} is strictly positive.
(b) For each panel unit i ∈ N, the idiosyncratic part {ηit} is a Gaussian zero-

mean stationary time series independent of the other idiosyncratic parts and
all factors. The autocovariance function γη,i satisfies

sup
i∈N

∞∑
m=−∞

(|m|+1)|γη,i(m)| < ∞ (7)
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and is such that the eigenvalues of the T ×T covariance matrices are uniformly
bounded away from zero, i.e., infi,T λmin

(
	η,i

)
> 0.

Remark 2.1. The imposed restrictions on serial correlation are sometimes
phrased in terms of spectral densities. Note that our assumption on the bounded-
ness of the eigenvalues is implied by the spectral density being uniformly bounded
away from zero (see, for example, Proposition 4.5.3 in Brockwell and Davis,
1991). Similarly, they are sometimes phrased in terms of linear processes on which
analogous assumptions are imposed (see, for example, Assumption C in Bai and
Ng, 2004 and Assumption 2 in Moon and Perron, 2004). Finally, note that a
collection of causal ARMA processes satisfies Assumption 2.1 if the roots are
uniformly bounded away from the unit circle.

Remark 2.2. Note that, under Assumption 2.1, the long-run variances of the
{ηit}, ω2

η,i, are also uniformly bounded and uniformly bounded away from zero.
The former directly follows from (7), whereas the latter follows from ω2

η,i =
limT→∞ 1

T ι′	η,iι ≥ limT→∞ 1
T λmin

(
	η,i

)
ι′ι ≥ infi,T λmin

(
	η,i

)
> 0. Moreover, the

one-sided long-run variances

δη,i =
∞∑

m=1

γη,i(m) = 1

2

(
ω2

η,i −γη,i(0)
)
, i ∈ N,

are also well defined.

As already announced, we also need to impose some stability on the factor
loadings λki, which we assume to be fixed. Assumption 2.2 is standard in the
literature (cf. Assumption A in Bai and Ng, 2004 or Assumption 6 in Moon and
Perron, 2004). It is commonly referred to as the factors being “strong.”

Assumption 2.2. There exists a positive definite K × K matrix �� such that
limn→∞ 1

n�′� = ��. Moreover, maxk=1,...,K supi∈N |λki| < ∞.

For univariate time series, it is known (see, for example, Müller and Elliott,
2003) that the initial value can have a non-negligible impact on the asymptotic
behavior of unit-root tests. Our assumption on the initial values is as follows.

Assumption 2.3. We assume zero starting values: Ei0 = 0 and Fk0 = 0.

We refer to Section 6.2 in Moon et al. (2007) for a discussion on why relaxing
initial conditions can be problematic in a panel context and do not pursue this issue
further, except by noting that our tests are invariant with respect to the mi.

Assumption 2.4 below specifies the asymptotic framework we consider through-
out this paper. We follow Moon and Perron (2004), Bai and Ng (2010), and
Westerlund (2015) in considering large “macro panels,” where both n and T go
to infinity, but T will be the larger dimension. We derive all our results using joint
asymptotics, which yields more robust results than taking sequential limits where
first T → ∞ and subsequently n → ∞.
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Assumption 2.4. We consider joint asymptotics, in the Phillips and Moon
(1999) sense, with n/T → 0.

Assumption 2.5 below specifies that we either operate in the PANIC (case (a)) or
in the MP (case (b)) framework. In the PANIC framework, we allow the long-run
variance of the factor innovations to be zero, so that we consider both integrated
and stationary factors. This is ruled out in the MP case, in which the factors have
the same order of integration as the idiosyncratic parts.

Assumption 2.5. One of the below holds:

(a) For each factor Fk,k = 1, . . . ,K, we have ρk = 1.
(b) For each factor k = 1, . . . ,K, we have ρk = ρ. Moreover, {fkt} is Gaussian and

its long-run variance exists and is strictly positive.

We phrase our hypotheses about ρ in Equations (1)–(4) using the following local
parameterization.

Assumption 2.6. We use, in (1)–(4), the following local parameterization for ρ

in (3):

ρ = ρ(n,T) = 1+ h√
nT

.

As shown below, these rates indeed lead to contiguous alternatives, which
allow us to obtain the (local) power of our tests. The unit-root hypothesis can be
reformulated in terms of the “local parameter” h:

H0 : h = 0 versus Ha : h < 0.

Remark 2.3. The main setup does not allow for “heterogeneous alternatives”
with ρ different across panel units. However, for the case without factors, Becheri
et al. (2015a) prove that unobserved heterogeneity in the autoregressive process
has no impact on the power envelope or optimal tests. This result can be easily
generalized to the current model in case we use, in (1)–(4), the following local
parameterization, which allows for heterogeneity, instead of ρ in (3):

ρ
(n,T)
i = 1+ h√

nT
Ui,

where U1, . . . ,Un are unobserved i.i.d. variables with mean 1. The asymptotic
power envelope only depends on h and not on the distribution of Ui. In Section 7,
we provide a sketch of the proof.

3. LIMIT EXPERIMENT AND POWER ENVELOPE

In this section, we show that likelihood ratios related to the unit-root hypothesis,
for the MP and for the PANIC framework, exhibit the same local asymptotic
expansion. For both setups, we consider the likelihood ratio for observing Zit in
case ρ is the only unknown parameter. Hence, the number of factors K, the factor
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loadings λki, the autocovariance functions, and the fixed effects mi are considered
as known in this section. We will first show, for each model separately, that its
likelihood ratio satisfies an expansion, under the null hypothesis, of the form

log
dPh,n,T

dP0,n,T
= h�n,T −h2J/2+op(1)

with Fisher information J = 1/2 and where �n,T will be defined in Lemma 3.1.
In Section 3.3, we consider the limiting distribution of their common central

sequence �n,T and will conclude that both experiments enjoy the LAN property.
This result allows us to treat the two setups jointly. It also enables us to obtain sev-
eral important/main results in cases where the nuisance parameters are unknown.
First, it yields an upper bound to the local asymptotic powers of tests because the
testing problem with unknown nuisance parameters is more complex than the one
without. Second, the Gaussian MP and PANIC experiments appear to be adaptive
with respect to the nuisance parameters since, in Section 4, we propose a new,
feasible test (not depending on the unknown nuisance structures) attaining the
upper bound derived in this section. Hence, our new test is locally asymptotically
UMP also in cases where the nuisance parameters are unknown. Third, the LAN
results allow us to show that any test, satisfying a mild regularity condition, has the
same, typically nonoptimal, local asymptotic power function under both DGPs.

Remark 3.1. For unit-root problems in (univariate) time series, limit experiment
theory has been exploited by, among others, Jansson (2008) and Zhou, Van den
Akker, and Werker (2019). That limit experiment is of the Locally Asymptotically
Brownian Functional type for which asymptotically UMP tests do not exist. Also,
in our case, the central sequence could be written as an (approximate) stochastic
integral. However, we obtain an additional sum across panel units. Combined with
a CLT-type argument, but now in the more complicated joint (n,T)-convergence
case, this sum is the intuition for the Gaussian limits we obtain in this panel setting.

3.1. Expanding the Likelihood in the PANIC Setup

For the PANIC case, we will assume, in this subsection, that the factors Fkt are
observed. Just as for the nuisance parameters, we show in Section 4 that the
resulting likelihood ratio can still be approximated by an observable version (up to
a negligible term). This result implies that observing the factors will not lead to an
increase in local asymptotic power for the PANIC framework. This appears to be a
surprising result. Indeed, Moon et al. (2014) derived the power envelope for a first-
generation DGP that basically corresponds to PANIC with observed factors. Our
analysis implies that, for the PANIC framework, the same power envelope applies.
We stress that for the MP setting, the situation is different: Becheri, Drost, and Van
den Akker (2015b) report higher powers in cases where factors are observed and
Juodis and Westerlund (2019) show power gains when covariates correlated to the
innovations are observed.
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Denote the joint law of F and Z under Assumptions 2.1–2.3, 2.5(a), and 2.6
by PPANIC

h,n,T . Using η ∼ N(0,	η) and η = �E − hE−1/(
√

nT), we obtain the log-
likelihood ratio

log
dPPANIC

h,n,T

dPPANIC
0,n,T

= h√
nT

�E′A′	−1
η �E − h2

2nT2
�E′A′	−1

η A�E

=: h�PANIC
n,T − 1

2
h2JPANIC

n,T .

Note, from (6), �Ẽ = �Ỹ − �F̃�′, implying �E is indeed observable in this
PANIC framework (with observed factors as considered here). Moreover, under
PPANIC

0,n,T , �E = η. We now show that we can replace variances by long-run variances,
to obtain a more tractable version of the central sequence and empirical Fisher
information.

Lemma 3.1. Suppose that Assumptions 2.1–2.4, 2.5(a), and 2.6 hold. Then we
have, under PPANIC

0,n,T , (�PANIC
n,T ,JPANIC

n,T ) = (�n,T,
1
2 )+op(1), where

�n,T = 1√
nT

�E′A′�−1
η �E − 1√

n

n∑
i=1

δη,i,T

ω2
η,i,T

, with �−1
η = �−1

η ⊗ IT .

Remark 3.2. The simplified central sequence �n,T is the result of substituting
	−1

η by �−1
η . To obtain the correct centering, a correction term involving the one-

sided long-run variance is needed for each panel unit. This is analogous to the
univariate case (see Elliott, Rothenberg, and Stock, 1996) and arises due to the
fact that, contrary to 	

−1/2
η �E, �

−1/2
η �E exhibits serial correlation.

3.2. Expanding the Likelihood in the Moon and Perron (2004) Setup

Let us denote the law of Z under Assumptions 2.1–2.3, 2.5(b), and 2.6 by PMP
h,n,T .

Then the log-likelihood ratio of PMP
h,n,T with respect to PMP

0,n,T is given by, using
ε ∼ N(0,	ε) and ε = �Y −hY−1/(

√
nT),

log
dPMP

h,n,T

dPMP
0,n,T

= h√
nT

�Y ′A′	−1
ε �Y − h2

2nT2
�Y ′A′	−1

ε A�Y

=: h�MP
n,T − 1

2
h2JMP

n,T .

In this more complicated model, we simplify the central sequence and also the
Fisher information in two steps. The first is analogous to the approximation in the
PANIC setup, i.e., we replace variances by long-run variances. Note that thanks
to our independence assumptions, the nT × nT covariance matrix of the ε can be
written as
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	ε = var ε =
K∑

k=1

(
λkλ

′
k ⊗	f,k

)+	η. (8)

Replacing 	f,k by ω2
f,k,TIT and 	η,i by ω2

η,i,TIT in (8), we obtain the simplified
versions of central sequence

�̃MP
n,T := 1√

nT
�Y ′A′�−1

ε �Y − 1√
n

n∑
i=1

δη,i,T

ω2
η,i,T

,

where the nT ×nT matrix �ε is defined by

�ε := ψε ⊗ IT := (
��F�′ +�η

)⊗ IT, (9)

with �η = diag(ω2
η,1,T, . . . ,ω

2
η,n,T) and �F = diag(ω2

f,1,T, . . . ,ω
2
f,K,T). The follow-

ing lemma demonstrates that applying these replacements to the central sequence
and Fisher information do not affect their asymptotic behavior.

Lemma 3.2. Suppose that Assumptions 2.1–2.4, 2.5(b), and 2.6 hold. Then we
have, under PMP

0,n,T , (�MP
n,T,J

MP
n,T ) = (�̃MP

n,T,
1
2 )+op(1).

Remark 3.3. In the MP case, the covariance matrix that is approximated by
long-run variances is not block diagonal. Therefore, contrary to Lemma 3.1, the
proof of Lemma 3.2 exploits the assumption that n/T → 0.

Exploiting the Sherman–Morrison–Woodbury formula, we obtain

�−1
ε = ψ−1

ε ⊗ IT =
(
�−1

η −�−1
η �

(
�−1

F +�′�−1
η �

)−1
�′�−1

η

)
⊗ IT . (10)

Note that removing �−1
F from (10) yields a projection matrix corresponding to

“projecting out the factors.” Thus, basing a central sequence on such a projection
matrix would simplify approximating it based on observables by removing the
need to estimate �−1

F and, more importantly, by ensuring that the factors are
projected out. The next lemma shows that using such a projection version ψ∗−1

ε

of ψ−1
ε in the central sequence does not change its asymptotic behavior.

Lemma 3.3. Suppose that Assumptions 2.1–2.4, 2.5(b), and 2.6 hold. Then we
have, under PMP

0,n,T , �̃MP
n,T = �∗

n,T +op(1), where

�∗
n,T = 1√

nT
�Y ′A′(ψ∗−1

ε ⊗ IT)�Y − 1√
n

n∑
i=1

δη,i,T

ω2
η,i,T

, with

ψ∗−1
ε = �−1

η −�−1
η �

(
�′�−1

η �
)−1

�′�−1
η . (11)
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3.3. Asymptotic Normality

Having simplified each framework’s central sequence and Fisher information
separately, we are now ready to show that they are asymptotically equivalent and
the central sequences converge to a normal distribution. We begin this section
by showing that the central sequence in the MP framework is asymptotically
equivalent to the one in the PANIC framework.

Lemma 3.4. Suppose that Assumptions 2.1–2.6 hold. Then we have, under
PPANIC

0,n,T and PMP
0,n,T , �∗

n,T = �n,T +op(1).

Finally, we consider the weak limit of the central sequence �n,T (and therefore
also of �∗

n,T ), showing that both experiments are LAN.

Proposition 3.1. Suppose that Assumptions 2.1–2.6 hold. Then we have, under

PPANIC
0,n,T and PMP

0,n,T , �n,T
d−→ N(0,J) with J = 1

2 .

Remark 3.4. Under the null hypothesis, the model equations of both models
coincide. Hence, the additional distributional Assumption 2.5(b) implies that under
the null, the MP framework is a special case of the PANIC framework. Therefore,
it is sufficient to show the desired convergence for PPANIC

0,n,T . This principle applies
to all calculations under the null hypothesis. As the central sequences are equal
as well and thanks to the LAN result below, it even extends to many calculations
under alternatives, through Le Cam’s third lemma.

Proposition 3.1 is an important result as it establishes that the unit-root testing
problem in both models is LAN, i.e., it is asymptotically equivalent to testing h = 0
against h < 0 based on one observation X ∼ N(Jh,J). This equivalence prescribes
how to perform asymptotically optimal inference and yields the asymptotic local
power envelope and the power functions of various test statistics. The asymptotic
representation theorem (see, for example, Van der Vaart, 2000, Chap. 9) implies
that in our framework no unit-root test can have higher power than the optimal test
in the limit experiment. This best test is clearly rejecting for small values of X,
leading to a power (for a level-α test) of �(�−1(α)− J1/2h). Thus, with J = 1/2,
this constitutes the power envelope for our unit-root testing problems:

Corollary 3.1. Suppose that Assumptions 2.1–2.4, 2.5(a), and 2.6 hold. Let
φn,T = φn,T(Z11, . . . ,ZnT) be a sequence of tests and denote their powers, under
PPANIC

h,n,T , by πn,T(h). If the sequence φn,T is asymptotically of level α ∈ (0,1), i.e.,
limsupn,T→∞ πn,T(0) ≤ α, we have, for all h ≤ 0,

limsup
n,T→∞

πn,T(h) ≤ �

(
�−1(α)− h√

2

)
.

Replacing Assumption 2.5(a) by Assumption 2.5(b), the same bound applies to
powers under PMP

h,n,T .
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The above power envelope would be reached by any of our previously intro-
duced central sequences. This always holds in LAN experiments and follows from
Le Cam’s third lemma (see, for example, Van der Vaart, 2000, Chap. 6). In the
next section, we show that we can approximate these central sequences based on
observables, yielding a feasible test that attains the asymptotic power envelope.
Such a result is nontrivial and requires, roughly speaking, that the information
matrix is block-diagonal. Even in simple parametric problems this is an exception,
let alone in our current case with O(n) nuisance parameters.

Remark 3.5. Note that the level of the local asymptotic power envelope only
depends on the (local) deviation to the unit root. The power loss attributed by Moon
and Perron (2004) and Westerlund (2015) to the heteroskedasticity in ηit is thus a
feature of the test statistics under consideration, rather than of the MP and PANIC
models.

4. AN ASYMPTOTICALLY UMP TEST

In the previous section, we derived a testing procedure that reaches the power
envelope for the unit-root testing problem. This test, however, is not feasible when
the nuisance parameters are unknown. In this section, we demonstrate how to
estimate the nuisance parameters to obtain a feasible version that also attains the
power envelope. We provide a feasible version of �∗

n,T , which is motivated by
the likelihood ratio in the MP experiment. As (11) projects out the factors, basing
our feasible version on �∗

n,T instead of �n,T spares us the approximation of the
idiosyncratic parts.

Recalling our LAN results in Section 3 and that the central sequences are
asymptotically equivalent across the two setups (see Lemma 3.4), it is clear that
a feasible version of �∗

n,T would be optimal. Therefore, we show that replacing
all nuisance parameters with estimates does not change the limiting behavior of
�∗

n,T . Specifically, we need estimates �̂ of the factor loadings, as well as estimates

δ̂η,i and ω̂2
η,i of the (one-sided) long-run variances of each idiosyncratic part. The

feasible test statistic is then

�̂n,T = 1√
nT

T∑
t=2

t−1∑
s=2

�Z′
·,sψ̂

−1
ε �Z·,t − 1√

n

n∑
i=1

δ̂η,i

ω̂2
η,i

, where (12)

ψ̂−1
ε := �̂−1

η − �̂−1
η �̂(�̂′�̂−1

η �̂)−1�̂′�̂−1
η . (13)

Assumption 4.1. Let δ̂η,i, ω̂2
η,i, and �̂ be estimators of δη,i, ω2

η,i, and � satisfy-
ing, under PMP

0,n,T and PPANIC
0,n,T ,

1. maxi=1,...,n E|δ̂η,i − δη,i|2 = o(1/n),
2. maxi=1,...,n E|ω̂2

η,i −ω2
η,i|2 = o(1/n), and

3. for a K × K matrix HK satisfying ‖HK‖F = Op(1) and
∥∥H−1

K

∥∥
F = Op(1), we

have
∥∥∥�HK − �̂

∥∥∥
F

= op(1).
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Under suitable restrictions on the bandwidth and the kernel, conditions Items 1 and
2 hold for kernel spectral density estimates (see Remark 2.9 in Moon et al., 2014).
Items 3, on the other hand, is stronger than the results in Moon and Perron (2004),
so we show in Lemma 4.1 that it indeed holds under our assumptions.

Lemma 4.1. Let �̄ be
√

n times the n × K matrix containing the K orthonor-

mal eigenvectors corresponding to the K largest eigenvalues of �Z̃′�Z̃
nT . Take

�̂ = �Z̃′�Z̃
nT �̄. There exists a K ×K matrix HK such that, under PMP

0,n,T and PPANIC
0,n,T ,∥∥∥�HK − �̂

∥∥∥
F

= op(1) and both ‖HK‖F and
∥∥H−1

K

∥∥
F are Op(1).

Remark 4.1. These factor estimates are the same as those used in Moon and
Perron (2004) and correspond to factor estimates based on classical principal
component analysis. We adapt the proof of Moon and Perron (2004), who have

demonstrated
∥∥∥�HK − �̂

∥∥∥
F

= Op(1), but we treat one term differently (see

Remark A.2 in the Supplementary Material).

Remark 4.2. The factors are only identified up to a “rotation” HK . Note that
�∗

n,T is (indeed) invariant under such rotations, as ψ∗−1
ε also equals

�−1
η −�−1

η �HK
(
H′

K�′�−1
η �HK

)−1
H′

K�′�−1
η .

Lemma 4.2. Under Assumptions 2.1–2.4, 2.6, and 4.1, we have, under PMP
0,n,T

and PPANIC
0,n,T , �̂n,T = �∗

n,T +op(1).

Although Lemma 4.2 only concerns adaptivity under the null hypothesis H0,
we can use Le Cam’s First Lemma to obtain that, thanks to contiguity, also under
PMP

h,n,T or PPANIC
h,n,T , �̂n,T has the same limiting distribution as �∗

n,T , so that tests based

on �̂n,T will be UMP. Formally, the size and power properties of our optimal test
follow from the following theorem.

Theorem 4.1. Let tUMP = √
2�̂n,T . Under Assumptions 2.1–2.6 and 4.1, we

have, under PMP
h,n,T and PPANIC

h,n,T ,

tUMP
d−→ N

(
h√
2
,1

)
.

Rejecting H0 for tUMP ≤ �−1(α), α ∈ (0,1), leads to an asymptotic power of

�
(
�−1(α)− h√

2

)
, implying that tUMP is asymptotically UMP.

Remark 4.3. The asymptotic size of our test can also be obtained under much
weaker assumptions not exploiting Gaussianity (see Remarks A.1 and A.3 in the
Supplementary Material). In such a situation, our test is still valid although perhaps
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nonoptimal. For optimal inference with non-Gaussian innovations, a new analysis
of the likelihood ratio would be needed, but this is not feasible here.

Remark 4.4. Note that the limiting distribution of tUMP, both under the null
hypothesis and under local alternatives, does not depend on the autocorrelations
or the heterogeneity of the long-run variances. This shows that the decrease
in asymptotic power attributed to these features, for example, in Remark 2 of
Westerlund (2015), was due to the specific tests under consideration rather than
being a feature of the unit-root testing problem.

Remark 4.5. Note that �̂n,T only involves differenced data, so that our test is
invariant with respect to the incidental intercepts mi.

Here is one way to obtain the UMP test in practice:

1. Compute an estimator K̂ of the number of common factors on the basis of the
observations �Z·t, t = 2, . . . ,T , using information criteria from Bai and Ng
(2002). As (n,T → ∞), these criteria select the correct number of factors with
probability 1. Therefore, we can treat the number of factors as known in our
asymptotic analyses.

2. Use the observations �Z·t, t = 2, . . . ,T , and K̂ to determine the factor loadings
�̂ and the factor residuals η̂·t, t = 2, . . . ,T , using principal components.

3. Determine estimates ω̂2
η,i of ω2

η,i and δ̂η,i of δη,i from η̂·t, t = 2, . . . ,T , using

kernel spectral density estimates. Let �̂ = diag(ω̂2
η,1, . . . ,ω̂

2
η,n).

4. Calculate the estimated central sequence �̂n,T as in (12) and reject when
tUMP = √

2�̂n,T ≤ �−1(α). Alternatively, based on small sample considera-
tions, also estimate the empirical Fisher information

Ĵn,T := 1

nT2

T∑
t=2

t−1∑
s=2

�Z′
·,sψ̂

−1
ε

t−1∑
u=2

�Z·,u,

and reject the null hypothesis when temp
UMP := �̂n,T/

√
Ĵn,T ≤ �−1(α).

Remark 4.6. Although the UMP test tUMP does not require a complicated
estimate of the known J = 1/2, it can be undersized in small samples, whereas
the empirical version temp

UMP behaves very well in most DGPs, both in terms of size
and power. Thus, we recommend to use the temp

UMP in small samples. See Section 6
for details.

5. COMPARING POWERS ACROSS TESTS AND FRAMEWORKS

This section derives the asymptotic powers of commonly used tests in both the
Moon and Perron (2004) and the Bai and Ng (2004) frameworks. We start by
formalizing our observation that local powers are equal across the two frameworks.
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Corollary 5.1. Let tn,T be a test statistic that, under PPANIC
0,n,T , converges in

distribution jointly with �n,T . Then, for all x ∈ R, and all h,

lim
(n,T→∞)

PMP
h,n,T [tn,T ≤ x] = lim

(n,T→∞)
PPANIC

h,n,T [tn,T ≤ x].

If, more specifically, tn,T
PPANIC

0,n,T→ N(0,1) and if tn,T and �n,T are jointly asymptoti-
cally normal under PPANIC

0,n,T with asymptotic covariance σ�,t, its limiting distribution
under local alternatives is given by

tn,T
PPANIC

h,n,T→ N(hσ�,t,1), and tn,T
PMP

h,n,T→ N(hσ�,t,1).

Once again, our result on the asymptotic equivalence of the two experiments allows
us to obtain results for both frameworks at the same time. By demonstrating the
joint normality under the null as in Corollary 5.1, we obtain simple proofs of
the powers of commonly used tests in these frameworks, without ever relying on
triangular array calculations. To show the elegance of this approach, we include
here the full argument for the first part of this corollary. The second part follows
immediately from a more specific version of Le Cam’s third lemma, which directly
prescribes the desired normal distribution under alternatives. We can use this
simple way to obtain powers under local alternatives thanks to our LAN results
of Section 3.

Denote the weak limit of (tn,T,�n,T) under PMP
0,n,T by (t,�). Thanks to our

results in Section 3, both (tn,T,
dPPANIC

h,n,T

dPPANIC
0,n,T

) and (tn,T,
dPMP

h,n,T

dPMP
0,n,T

) converge in distribution to

(t, exp(h�−h2/4)). By a general form of Le Cam’s third lemma, the distribution
of tn.T under local alternatives only depends on this joint limiting law and is thus
equal across the two frameworks (see Theorem 6.6 in Van der Vaart, 2000).

Remark 5.1. The equality of powers across the two frameworks applies to the
practically relevant case of the factors being unobserved. In the PANIC setting,
observing the factors does not yield any additional power. This is sharp contrast to
other DGPs, used in the literature on panel unit roots, where observing factors or
correlated covariates does yield additional power (see, for example, Pesaran et al.,
2013; Becheri et al., 2015b; Juodis and Westerlund, 2019).

Before we apply Corollary 5.1 to derive asymptotic powers, we first describe
the relevant test statistics in some detail. We focus on the tests proposed in Bai
and Ng (2010) (“BN tests”) and Moon and Perron (2004) (“MP tests”). Following
these papers, we denote

ω2 = lim
n→∞

1

n

n∑
i=1

ω2
η,i, φ4 = lim

n→∞
1

n

n∑
i=1

(
ω2

η,i

)2
, δ = lim

n→∞
1

n

n∑
i=1

δη,i,
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all assumed to be positive, and their estimated counterparts

ω̂2 = 1

n

n∑
i=1

ω̂2
η,i, φ̂4 = 1

n

n∑
i=1

(
ω̂2

η,i

)2
, and δ̂ = 1

n

n∑
i=1

δ̂η,i.

Finally, we define ω4 = (ω2)2 and ω̂4 = (ω̂2)2.
Both the MP and BN tests rely on a two-stage procedure. In the first stage,

the unobserved idiosyncratic innovations E are estimated. Subsequently, a pooled
regression procedure is used to estimate the (pooled) autoregression parameter.
This pooled estimator is then used to construct a t-test. The main difference
between the MP and the BN procedures lies in the way the idiosyncratic inno-
vations are estimated.

Bai and Ng (2010) propose to estimate the idiosyncratic errors E by the PANIC
approach introduced in Bai and Ng (2004), which in turn relies on principal
component analysis applied to the differences �Yit. Denoting this estimator of
Ei by Êi, the BN tests are

Pa =
√

nT(ρ̂+ −1)√
2φ̂4/ω̂4

and

Pb =√
nT(ρ̂+ −1)

√√√√ 1

nT2

n∑
i=1

Ê′
−1,iÊ−1,i

ω̂2

φ̂4
, where

ρ̂+ =
∑n

i=1 Ê′
−1,iÊi −nT δ̂∑n

i=1 Ê′
−1,iÊ−1,i

is a bias-corrected pooled estimator for the autoregressive coefficients.

Remark 5.2. Recall that temp
UMP is a modification of tUMP that replaces the

asymptotic Fisher Information J = 1/2, with its finite-sample equivalent in the MP
setup, J̃MP

n,T . The resulting statistics can be considered a version of Pb: In the case
of homogeneous long-run variances, inserting the true long-run variances into
temp
UMP yields Pb. Conversely, temp

UMP is a version of Pb that takes into account the
heterogeneity in the long-run variances.

The MP tests are based on a different estimator of ρ. The idiosyncratic compo-
nents Ei are estimated by projecting the data on the space orthogonal to the com-
mon factors. Let �̂ be a consistent estimators for � as defined in Moon and Perron
(2004, pp. 89–90), and Y·,t = (Y1t, . . . ,Ynt)

′. Then the MP test statistics are given by

ta =
√

nT(ρ+
pool −1)√

2φ̂4/ω̂4

, and
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tb =√
nT(ρ+

pool −1)

√√√√ 1

nT2

T∑
t=1

Y ′
·,t−1Qγ̂ Y·,t−1

ω̂2

φ̂4
, where

ρ+
pool =

∑T
t=1 Y ′·,tQγ̂ Y·,t−1 −nT δ̂∑T

t=1 Y ′
·,t−1Qγ̂ Y·,t−1

, and Qγ̂ = I − �̂(�̂′�̂)−1�̂′.

We are now ready to compute the asymptotic behavior of the MP and BN tests
under local alternatives by an application of Corollary 5.1. The power of the MP
tests in the MP framework has been derived in Moon and Perron (2004) and that
of the BN tests in the PANIC framework has been derived in Westerlund (2015).
Given our LAN result, we can provide simple independent proofs of these results.
These rely on the second part of Corollary 5.1; we demonstrate the required
joint asymptotic normality in the Supplementary Material. More importantly, our
approach also leads to new results, namely the asymptotic powers of the MP test
in the PANIC framework and the asymptotic powers of the BN tests in the MP
framework. In fact, those results can be considered an immediate consequence of
the first part of Corollary 5.1 and the existing power results in the literature.

Proposition 5.1. Suppose that Assumptions 2.1–2.6 and 4.1 hold. Then, under
PPANIC

h,n,T or PMP
h,n,T , as (n,T → ∞), the test statistics Pa,Pb,ta, and tb all converge in

distribution to a normal distribution with mean h
√

ω4

2φ4 and variance one. Rejecting

for small values of any of these statistics leads to an asymptotic power for a level-α

test of �(�−1(α)−h
√

ω4

2φ4 ) in both frameworks.

Remark 5.3. It turns out that the powers are equal, no matter which test statistic
and which framework is considered. We have discussed in some detail that, for
a given test, the equality of powers across frameworks is a general phenomenon.
The fact that in each framework, the power of the MP tests is equal to that of
the BN tests, on the other hand, is a “coincidence.” Originally, the MP tests have
been developed for the MP experiment, whereas the BN tests are designed for the
PANIC experiment. It has been noted in Bai and Ng (2010) that the MP tests are
valid in terms of size in the PANIC setup for testing the idiosyncratic component of
the innovation for a unit root but their (local and asymptotic) power in the PANIC
framework has not been considered. More discussion on the use of the MP tests in
the PANIC setup can be found in Bai and Ng (2010) and Gengenbach, Palm, and
Urbain (2010). Similarly, to the best of our knowledge, there are no studies on the
local asymptotic power of the BN tests in the MP framework.

The Cauchy–Schwarz inequality implies ω4

φ4 ≤ 1; thus, Proposition 5.1 shows
that, in general, the local asymptotic power of the MP and BN tests lies below the
power envelope. In fact, they are all asymptotically UMP only when ω4

φ4 = 1. This
condition is satisfied when the long-run variances of the idiosyncratic shocks ηit are
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homogeneous across i. The proposed test tUMP is asymptotically UMP irrespective
of possible heterogeneity. In Section 6, we assess whether the asymptotic power
gains, compared to the MP and BN tests, are also reflected in finite samples for
realistic parametric settings.

Remark 5.4. It should be noted that the results in this section depend on the
localizing rate that is used. As stated in Assumption 2.6, this paper uses the
contiguity rate T−1n−1/2 as localizing rate and obtain local asymptotic powers
at the distance hT−1n−1/2. For h large the local power is close to one. For other
localizing rates, alternative approaches are needed. For example, Phillips and
Magdalinos (2007) have proposed, for univariate time series with a (near) unit
root, to use different localizing rates—representing moderate deviations from a
unit root—in order to get insight into the discontinuities between stationary, unit-
root, and explosive autoregressions. Yamamoto and Horie (2023) have used such
moderately local to unity rates in order to analyze the power of right-tailed versions
of the PANIC tests when the common and/or the idiosyncratic components are
moderately explosive.

6. SIMULATION RESULTS

This section reports the results of a Monte Carlo study with three main goals: first,
to assess the finite-sample performance of our proposed test tUMP; second, to see
how the asymptotic equivalence between the Moon and Perron (2004) and PANIC
setups is reflected in finite samples; and, finally, to check the robustness of our
results to deviations from our assumptions.

6.1. The DGPs

We generate the data from Equations (1)–(4) with mi = 0. Recall that our tests are
invariant with respect to mi. Using sample sizes n = 25,50,100 and T = n,2n,4n,
we simulate both the MP and the PANIC setups. Recall that, for a local alternative
h, we take ρ = 1+ h√

nT
in both setups. In the MP case, we also set ρk = ρ, whereas

in the PANIC case, we set ρk = 1 under the null and all alternatives. The factor
loadings � are drawn from a normal distribution with mean K−1/2 and covariance
matrix K−1IK . As done in Moon and Perron (2004), we scale by

√
K to ensure

the contribution of the factors is comparable across specifications. Most of the
simulations are run with K = 1, but we also explore what happens with more
factors. Throughout this section, we assume the number of factors to be known.
This number can be estimated consistently, so this makes no difference for the
asymptotic analysis. See, for example, Section 2.3 in Moon and Perron (2004) and
Section 5 in Bai and Ng (2010) for a discussion of this issue. For the innovation
processes fkt and ηit, we examine Gaussian i.i.d., MA(1), and AR(1) processes.
We fix the MA or AR parameter at 0.4 and set the variance such that the long-
run variances of the fkt equal one, and the long-run variance of the ηit is ω2

i . The
ω2

i are drawn i.i.d. from a lognormal distribution whose parameters are chosen to
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match different values of ω4/φ4 and a mean of one. Recall from Section 5 that
the asymptotic relative efficiency of the existing tests compared to our UMP test
depends on the heterogeneity of the long-run variances and more specifically on
the ratio ω4/φ4. Therefore, the sample size at which it becomes worthwhile to
estimate the heterogeneous long-run variances (i.e., use the asymptotically UMP
tests suggested here) mainly depends on this ratio. We present simulation results
for

√
ω4/φ4 between 0.6 and 1, where lower values indicate more heterogeneity.

A cursory look at a few typical applications reveals that these ratios are mostly
between 0.6 and 0.8 and match the skewed nature of the lognormal distribution.

6.1.1. The Test Statistics. In addition to the tests proposed in Section 4, tUMP

and temp
UMP, we consider the MP tests of Moon and Perron (2004) and the BN tests

of Bai and Ng (2010). However, the powers and sizes of the (MP) tb and (BN) Pb

tests were very similar also in finite samples, so we only report results for Pb. We
omit the comparison with Pa and ta since they tend to show large biases in terms
of size (see, for example, the Monte Carlo studies in Gengenbach et al. (2010) and
Bai and Ng (2010)).

The sizes of all considered tests are highly sensitive to estimation of the (one-
sided) long-run variances. We have considered a variety of methods, for example,
using a Bartlett or quadratic spectral kernel and selection of the bandwidth
according to the Newey and West (1994) or the Andrews (1991) rule with/without
various forms of prewhitening. Whereas the differences from using different
kernels are small, the selection of both the bandwidth and the prewhitening are
essential. Our preferred method employs a Bartlett kernel with prewhitening. As
in Moon et al. (2014), the prewhitening model is selected based on the BIC between
four simple ARMA models. There is a size-power tradeoff between using the
Andrews (1991) and the Newey and West (1994) bandwidth selection: the Andrews
(1991) bandwidth leads to higher powers for the smallest sample sizes, but an
oversized test when the innovations have a strong MA component. The decision
about which bandwidth to use thus depends on the preferences of the researcher.
In this section, all results are based on the Andrews (1991) bandwidth. However,
the sizes and powers based on the Newey and West (1994) bandwidth can be found
in the Supplementary Material.

6.2. Sizes

Table 1 reports the sizes, for the setting
√

ω4/φ4 = 0.8, of our tests for the
baseline DGP based on the Andrews bandwidth. Table B.1 in the Supplementary
Material contains the sizes for

√
ω4/φ4 ∈ {0.6,1}. The Supplementary Material

also considers many other specifications. Recall that the sizes depend considerably
on how the long-run variances are estimated. Using the method described above,
the sizes of temp

UMP are reasonable across most DGPs and generally comparable to
those of Pb. tUMP, on the other hand, is undersized in many specifications, so
that we focus on its empirical version temp

UMP in the remainder. Only in the MA(1)
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Table 1. Sizes (in percent) of nominal 5% level tests with no heterogeneity in
the alternatives and

√
ω4/φ4 = 0.8. Based on 1,000,000 replications. Andrews

Bandwidth.

i.i.d. AR(1) MA(1)

n T tUMP temp
UMP Pb tUMP temp

UMP Pb tUMP temp
UMP Pb

25 25 0.9 3.1 3.5 1.8 4.3 4.7 2.4 6.7 6.4

25 50 1.8 5.1 4.6 1.7 4.4 4.0 3.2 8.3 7.2

25 100 2.3 5.8 5.2 2.2 5.3 4.6 3.9 9.3 7.8

50 50 2.4 4.6 4.2 2.4 4.2 4.2 5.1 9.3 8.3

50 100 3.0 5.4 4.8 2.6 4.6 4.3 5.9 10.1 8.5

50 200 3.3 5.7 5.2 3.1 5.2 4.7 5.0 8.4 7.1

100 100 3.5 5.1 4.6 3.1 4.4 4.4 8.7 12.3 10.4

100 200 3.8 5.5 5.0 3.3 4.7 4.5 6.6 9.2 7.9

100 400 3.9 5.5 5.1 3.9 5.5 5.0 4.7 6.6 5.9

Figure 1. Difference between powers in the MP vs. the PANIC framework as a function of −h
with i.i.d. factor innovations and i.i.d. idiosyncratic parts and

√
ω4/φ4 = 0.8. Based on 1,000,000

replications.

example, both temp
UMP and Pb are oversized (temp

UMP is more oversized for the smallest
sample sizes and marginally less oversized in the larger ones). Thus, when a strong
MA component is suspected, we recommend to use tests based on the Newey
and West (1994) bandwidth. Generally, the Newey and West (1994) bandwidth
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Figure 2. Size-corrected power of unit-root tests as a function of −h for varying sample sizes in the
PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts and

√
ω4/φ4 = 0.8. Based

on 100,000 replications.

provides better sizes, especially in the MA case. However, small sample powers
are slightly lower. Both sizes and powers based on the Newey and West (1994)
bandwidth can be found in the Supplementary Material.

6.3. Powers

We start this subsection by investigating the finite-sample differences between
the MP and the PANIC setups. Recall that we have shown that the asymptotic,
local power functions are the same and that (under some regularity conditions)
all tests have the same asymptotic power in the MP framework as they do in the
PANIC framework. Figure 1 compares the powers of temp

UMP and Pb across the two
frameworks. Indeed, also in small samples, the powers are very similar. Moreover,
both a larger n and a larger T contribute to reduce the difference. When the factor is
stationary under the alternative hypothesis, the difference is considerably smaller
still. Noting the small scale on the y-axis in these plots, in the remainder, we will
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Figure 3. (Size-corrected) power gains from using temp
UMP over Pb for varying values of

√
ω4/φ4 and

sample sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts. Based
on 100,000 replications.

only present results for the PANIC framework, as the lines would otherwise be
mostly indistinguishable.

We now turn to comparing the performance of the UMP tests to existing ones.
As discussed in Section 4, we need to estimate the individual long-run variance
of each idiosyncratic part in order to attain the power envelope. Of course, this
becomes easier with a larger time series dimension and is more beneficial when
the long-run variances differ substantially between series.

Figure 2 presents the baseline power results for a medium amount of hetero-
geneity (

√
ω4/φ4 = 0.8). It is evident that even for relatively small samples using

the optimal test pays off: except for n = T = 25, the power of temp
UMP is uniformly

higher than that of Pb.
Next, Figure 3 presents the power difference between the optimal test and

Pb for varying degrees of heterogeneity. As expected, the higher the amount of
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heterogeneity, the more beneficial it is to use the optimal test, also in finite samples.
In the case of perfect homogeneity, the losses from estimating individual long-run
variances are minor, except for the n = T = 25 case.

In the Supplementary Material, we investigate the effects of serial correlation
and multiple factors. Qualitatively, the power results are not affected by these
variations in the DGP. We also consider the robustness of our results to deviations
of our assumptions: we consider the power against heterogeneous alternatives and
investigate the effects of non-Gaussian innovations.

7. CONCLUSION AND DISCUSSION

This paper shows that restricted versions of the MP and PANIC frameworks are
equivalent, for unit-root testing, from a local and asymptotic point of view. Using
the underlying LAN result, the local asymptotic power envelope for the MP and
PANIC frameworks readily follows. We show that the tests proposed in Moon and
Perron (2004) and Bai and Ng (2010) only attain this bound in cases where the
long-run variances of the idiosyncratic component are sufficiently homogeneous.
We develop an asymptotically UMP test; a Monte Carlo study demonstrates that
this test also improves on existing tests for finite samples.

To obtain the local and asymptotic equivalence of the MP and PANIC frame-
works, we need to impose some restrictions. First, we assume that the driving
innovations are Gaussian. Second, we do not allow for (incidental) trends. And
third, we impose the deviations to the unit root, under the alternative hypothesis,
to be the same for all panel units.

The Gaussianity facilitates a relatively easy proof of the LAN result and it
seems to be rather difficult to generalize this assumption. Indeed, only recently
a semiparametric analysis has been conducted for a first-generation framework
(see Van den Akker, Werker, and Zhou, 2023). For the proposed asymptotically
UMP test, we stress that Gaussianity is not required for its validity.

To allow for incidental trends, the proper strategy seems to be to first determine
the maximal invariant (i.e., determine which transformation of the observations is
invariant with respect to transformations of the form Yit → ai +bit+Yit). The next
step is to determine the likelihood of this maximal invariant and to analyze if a
LAN type of expansion holds true (at conjectured localizing rate n−1/4T−1 in line
with Moon et al. (2007)). As this expansion will be different from the one in this
paper, this steps needs its own proofs. If a LAN expansion can indeed be obtained,
similar steps as in this paper are expected to provide asymptotically optimal tests
for the unit-root hypothesis.

In view of Becheri et al. (2015a), we do not expect that imposing constant devi-
ations to the unit root, under the alternative hypothesis, affects our main results.
The Monte Carlo results seem to confirm this conjecture for finite samples. Here,
we give an outline to obtain the same limiting experiment in cases where we use,
in (1)–(4), instead of ρ the following local parameterization with heterogeneous
alternatives:
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ρi = ρ
(n,T)
i = 1+ h√

nT
Ui,

where U1, . . . ,Un are i.i.d. with mean 1. The log-likelihood ratio in this extended
experiment, where the factors F and the perturbations U are also observed, is given
by

h√
n

n∑
i=1

Ui

�E′
iA

′	−1
η,i �Ei

T
− h2

n

n∑
i=1

U2
i

�E′
iA

′	−1
η,i �Ei

T2

≡ h√
n

n∑
i=1

UiXni − h2

n

n∑
i=1

U2
i Jni. (∗)

So, the log-likelihood ratio expansion for the setting with observed heterogeneity
has exactly the same structure as in Theorem 3.1 in Becheri et al. (2015a). With
Ui = 1, we just get the expression on page 9. Using the derivations in the proofs
of Lemma 3.1 and Lemma A.5 in the Supplementary Material, one readily verifies
1
n

∑n
i=1 X2

ni
P→ 1

2 and 1
n

∑n
i=1 Jni

P→ 1
2 . Assume additionally, maxi=1,...,n

Xni√
n

= oP(1)

and maxi=1,...,n
Jni
n = oP(1) (CLT and WLLN results are still applicable for the

various panel units, so the panel units are not too different). Finally, assume
the existence of the moment generating function of the Ui’s. Then, according to
Theorem 3.1 of Becheri et al. (2015a), the log-likelihood ratio in the extended
experiment, where the factors F are still observed but the heterogeneity due to
the perturbations U are unknown, is given by, up to a op(1)-term, to (∗) with
Ui replaced by 1. Hence, we obtain the same limit experiment, and hence power
envelope, as in the homogeneous setting.

This paper, in line with the setup in Moon and Perron (2004), Moon et al. (2007,
2014), and Bai and Ng (2010), focuses on “large n and T.” In practice, however,
one commonly encounters relatively short time series and one could expect that
asymptotic results based on T fixed and n → ∞ provide better approximations to
finite-sample distributions. An extension of the Nickell bias for cross-sectionally
dependent panels with a unit root with “T small, n large” is discussed in Phillips
and Sul (2003); Phillips and Sul (2007) developed for this setting, a bias-corrected
least-squares estimator using mean unbiased functions. It is still an interesting open
question, outside the scope of this paper and left for further research, whether it
is possible to use the proof lines of this paper in deriving optimality of (existing)
unit-root tests for this setting with T fixed and n → ∞.

SUPPLEMENTARY MATERIAL

Wichert, O., I.G. Becheri, F.C. Drost, and R. Van den Akker (2024): Sup-
plement to “Asymptotically uniformly most powerful tests for unit roots
in Gaussian panels with cross-sectional dependence generated by common
factors,” Econometric Theory Supplementary Material. To view, please visit:
https://doi.org/10.1017/S0266466624000112
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