
UNION RESULTS FOR THIN SETS
by KATHRYN E. HAREf

(Received 8 November, 1988; revised 24 April, 1989)

0. Introduction. Let G be a compact abelian group and let F be its (discrete) dual
group. Denote by M(G) the space of complex regular Borel measures on G.

Let £ be a subset of T. Then:
(i) E is called a Rajchman set if, for all fieM(G), limsup/x(y) = 0 implies

limsup/i(y) = 0[15]; YeFNE

y

(ii) E is called a set of continuity if given e > 0 there exists 6 > 0 such that if
H 6 M(G), ||/i|| < 1 and lim sup |/2(y)| < 6, then lim sup |/i(y)| < e [6]; and

yelAE yeE
(iii) E is called a parallelepiped of dimension N if |£ | = 2N and there are two-element

N

sets {&, Vi} c T, j = 1, . . . , TV so that E = U {xh i/\} [5]. (The multiplication indicated
here is the group operation.)

The classical result of Rajchman [16] to the effect that Z+ and Z~ are Rajchman sets
inspired the first definition. Subsequently, de Leeuw and Katznelson [2] proved that Z+

and Z~ are sets of continuity. Clearly any set of continuity is a Rajchman set, but the
converse is not true [5]. As Z+ U IT is neither a Rajchman set nor a set of continuity it is
natural to ask under what conditions the union of two Rajchman sets (sets of continuity)
is another Rajchman set (set of continuity). In Section 1 we establish the following
results.

THEOREM A. The union of a Rajchman set with a set which does not contain
parallelepipeds of arbitrarily large dimension is again a Rajchman set.

THEOREM B. The union of a proportional set of continuity or a strong set of continuity
with a set not containing parallelepipeds of arbitrarily large dimension is a set of continuity.
(See Section 1 for definitions.)

As examples of thin sets which do not contain arbitrarily large parallelepipeds
include A(p) sets [9], Theorem A extends Pigno's results in [15] to the effect that the
union of a Rajchman set and a Sidon set is a Rajchman set, as is the union of Z~ and
certain A(p) sets. Theorem B extends a result of Fournier and Pigno [5] that the union of
Z+ and a set not containing arbitrarily large parallelepipeds is a set of continuity, as Z+ is
a proportional set of continuity.

In Section 2 we show that the absence of parallelepipeds of arbitrarily large
dimension does not characterize A(p) sets for p > 2. This extends a similar result in [9]
which requires p > 8/3.

1. Union results. Our proofs of Theorems A and B are basically combinatorial
arguments which depend on the arithmetic characterizations of Rajchman sets and sets of
continuity discovered by Host and Parreau [10,11]. We need the following definition and
notation to describe these characterizations.
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242 KATHRYN E. HARE

A set {0,};&i s F is called a dissociate set if for each positive integer N, the relation

II 0/' = 1 with Ej = 0, ±1, ±2 implies dp = 1 for all j = 1, . . . , N.

NOTATION. For a dissociate set 6 = {dj}j3.u let

and ., N

[dp-.e^O, ±1, 1 | £

The characterization of Rajchman sets and sets of continuity are:

THEOREM I [11, Theorem 1] (see also [10, Theorem 1]). A set E c F is a Rajchman set
if and only if E does not contain aQ(9) for any aeT and infinite dissociate set 0 c F.

THEOREM II [10, Theorem 3]. A set E c T is a set of continuity if and only if for some
positive integer n, E does not contain aQn(6) for any aeT and infinite dissociate set

Theorem II suggests ways one could modify the notion of a set of continuity. Call E a
strong set of continuity if there exists a positive integer n so that E does not contain
aQ({dlt..., 6n}) for any aeT and dissociate set {0,-}"=1. Call E a proportional set of
continuity if there is a constant C < 1 (called the proportionality constant) and a positive
integer n0 such that for a e F, an infinite dissociate set {0;}y^i and n 3= no,

u..., eN})\ * a

(Here |-| denotes cardinality.)
Obviously sets which do not contain parallelepipeds of arbitrarily large dimension are

strong sets of continuity. We will show, and use the fact later, that they are also
proportional sets of continuity.

It is unknown if there are sets of continuity which are not proportional sets of
continuity.

To facilitate the presentation we will assume that the dissociate sets contain no
elements of order 2. Our theorems remain true without this assumption. The technical
details with respect to removing this assumption are given at the end of Section 1. Before
proceeding to the proofs of these results we establish a preliminary proposition.

NOTATION. For positive integers d and N and characters %i, • • •, Xd e F let

A4N, * i , . . . , = f ft Xj'- sup Kl ̂  N
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UNION RESULTS FOR THIN SETS 243

PROPOSITION 1.1. For each positive integer n there are constants 0 < e(n) < 1 and C(n)
so that if E contains no parallelepipeds of dimension n and a eT then

\E D aAJF, Xi,..., Xd)\ =s C(n)(2N + l)d£<n)

for every d, N e N and a, X\ , • • • , Xd 6 T.

REMARK. Related results may be found in [13, Ch. 6].

Proof. This result is stated in [9, Corollary 2.6], but the proof given there only shows
that there are constants C^n) and 0< £i(«)< 1 so that

\E D ctAJN, XL-..,X*)\* Cx{n)2d^"\2N + l)dE'("> (1)

for all d,NeN and a, X\, • ••» XdeT.
We will prove that

\E n ccAJiN, Xi,---,Xd)\* C2(n)(2N + 1 ) ^ " > + 3 (2)

for all d, NeN and a, Xi, • • • . XdeT.
Once this has been established then by choosing e(n) with maxte^n), £2(«)) <

e(n)<l , dx = 3(e(n) - E2(n))~1 and C(n) = max(C,(n)2dlEl("), C2(n)), we obtain the
conclusion of the proposition by using (1) if d ^ dx and (2) if d > dx.

To prove (2) we use the method of proof of [14, Theorem 1] and proceed inductively
on n. Since E contains no parallelepipeds of dimension n if and only if Ea~l contains no
parallelepipeds of dimension n we may assume without loss of generality that a = 1.
Suppose n =2. Let Ex = E n Am(N, X\, • • • , Xd)- Since E contains no parallelepipeds of
dimension two, â eo "̂1 + G^COJ1 if (ox, a>2, (o3, a)4 are four distinct elements of E. Thus

But
X u . . - , X d ) . A ^ N , X u - - - , X d V \ * ( 4 N + 1)".

Combining these facts we see that \EX\ == 3(4N + l)dn, so if we let C(2) = 3 and
e(2) = \ log2N+1(4N + 1) < 1 we obtain \EX\ =£ C(2)(2N + l)dE(2).

Now assume inductively that

\EClAm{N, X u - . . , Xd)\ ^ C(n)(2N + 1 ) " ' ^ ^ -

if E is any set which contains no parallelepipeds of dimension n, n & 2.
Let £ be a set which contains no parellelepipeds of dimension n + 1. For / the least

integer satisfying

- 1 + 32 - n

let /; = II A^N, Xi)- (Note that / > 0. If j = 0 let 7y = {1}.) Then \I,lj*\ < (4N + iy so

IjIfi\{l} = {fiu • • •, Pk} with k<(2N + l)v. Let nx be a maximal collection of two
element sets Pi = {Xh V/} w i t h Xi, ^ ,e^ i» XMT* = fi\ and satisfying ^ n / ^ is empty if
i ^j. Inductively construct nt a maximal collection of two element sets {x, ty} with
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244 KATHRYN E. HARE

i = i

and satisfying the disjointness condition.
If n, = {{Xi, Vi} : ' zJi} then {Xi}iej, cannot contain any parallelepipeds of dimension

n, for otherwise {#,, t/>,-: i e /,} c £ would contain a parallelepiped of dimension n + 1. By
the induction assumption

Observe that if x e r is chosen so that

X?j ^ Aa^N, Xi, • • • , Xd)
then

k
\J{a:aeP, Pen,}
1=1

contains all the elements of #/; n E except for possibly one point. Since
d

11 AX{A, xd • Ij = Aa(N, Xi, • - - , Xd)

and

I! Ax(N,Xi) < (2N +1)"''

it follows that

\EnA»(N,Xu-..,Xd)\^2C(n)(2N +

The choice of j (even in the case ; = 0) ensures that

\EnAa(N,Xu---,Xd)\^4C(n)(2N

Setting e(n + 1) = (2 + e(n))/3 < 1 and C(n + 1) = 4C(/i) we complete the induction
step. •

Proof of Theorem A. Suppose Ex contains no parallelepipeds of dimension n and
EzsEi is not a Rajchman set. We will show that E\El cannot be a Rajchman set. By
Host and Parreau's characterization of Rajchman sets (Theorem I) we may asume
(without loss of generality) that E contains Q(d) for some infinite dissociate set

Observe that Q({du ..., dk}) = AJl, 6U .. . , 6k), thus by Proposition 1.1 there
are constants C(n) and 0< e(n) < 1 so that

...,flfc})|sC(n)3*«W. (3)

In particular, if s(0) is chosen sufficiently large we can find a)oe Q({6i, . .. , 0i(

We proceed inductively to select s(k) and a dissociate set

coo, o)u...,(oke Q ( { 0 1 ( . . . , ds(k)})
with

i,. . . , a)k}) c E\EV
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UNION RESULTS FOR THIN SETS 245

Now choose s(k 4- 1) satisfying
y(k+l)-s(k) _

For each /S * 1 and /S e Q({0 J ( * ) + 1 , . . . , 0J(*+1)}) let

Clearly {o)o, a>u . . . , cok, /S} form a dissociate set. Moreover,

l (uo£2({(Ui,... , o)k}) otherwise.

Hence if ExC\Ap is non-empty for every j 3 e Q ( { 6 s W + i , . . . , 0J(*+1)})\{1} we would
have

\EXnQ({eu..., es(k+l)})\>i(|Q({0,(t)+1,..., e1

But this contradicts (3). Thus ApcE\Et for some such /3. Now set cok+1 = p. This
inductive construction shows that E\EX contains o)oQ(d') for an infinite dissociate set
0'. •

DEFINITIONS. (1) Given 0 < p < ° ° we say £ c r is a A(p) set if for some 0<r<p
there exists a constant C such that | |/ | |p < C ||/ | | r whenever supp/ is a finite subset of E.

(2) Given 1 < p < 2 call E a p-Sidon set if there is a constant C so that ||/||p < C | | / | | .
whenever supp/is a finite subset of E. A 1-Sidon set is usually called a Sidon set.

COROLLARY 1.2. If E is a A(p) set for some p>0 or a p-Sidon set for 1 < p < 2,
f/ie Mmon o/ £ wif/i a/i)' Rajchman set is another Rajchman set.

Proof. It is essentially shown in [12, Lemma 1] that p-Sidon sets cannot contain
parallelepipeds of arbitrarily large dimension. This fact for A(p) sets, p >0, is proved in
[9, Theorem 1.2]. (Earlier partial results can be found in [5] and (14].) •

REMARK. For another example of a class of thin sets which do not contain
parallelepipeds of arbitrarily large dimension see [5].

Proof of Theorem B. Actually we will prove two stronger results, Theorems 1.3
and 1.4.

THEOREM 1.3. The union of a strong set of continuity and a set which does not contain
parallelepipeds of arbitrarily large dimension is a strong set of continuity.

Proof. The arguments are very similar to those of Theorem A. We suppose £,
contains no parallelepipeds of dimension n and E ZD E\ is not a strong set of continuity.
Fix a positive integer m. Let M = s(m) where the function s is as in the proof of Theorem
A. Without loss of generality assume E contains Q({0t , . . . , 0^}) for {0 , , . . . , 6M} a
dissociate subset of T. The proof of Theorem A shows that we may select a dissociate
subset co0, cou . . . , (ome Q({du . . . , 8M}) with a)0Q({a>u . . ., com})cE\Ei. As m was
arbitrary this proves that E\EX is not a strong set of continuity. •
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246 KATHRYN E. HARE

THEOREM 1.4. The union of a proportional set of continuity and a set which does not
contain parallelepipeds of arbitrarily large dimension is a proportional set of continuity.

For the proof of Theorem 1.4 we need the following lemma which is similar in spirit
to Proposition 1.1.

LEMMA 1.5. There are constants C(n) and 0< e(n)< 1 so that if £ c F contains no
parallelepipeds of dimension n then, for any positive integers m and N, a e F and
dissociate set {0i, . . . , 6N} c F,

\E n aQm({0i, ..-, 6N})\ < C(n) £ )2*'(->.

Proof. Without loss of generality assume a = 1. For k = 1, 2, . .. , let

[ 0?:e, = O, ±1, 2 l«*l =
l i = l

For a = {ii, . . . , ik} cz {1, . . . , N} consider the parallelepiped of dimension k

7 = 1

It is clear that Mk({dx,.. ., dN}) = {JPa where the union is taken over all subsets a of
{0lt. .. , 6N} of cardinality k. It is known [9, Proposition 2.2] that there are constants
C(n) > 1 and 0 < e(n) < 1 such that

|£nPa|<C(n)2*E ( n ) .

Since Qm({e,,. . . , 0N}) = {1} U U Mk{{0u ..., 6N}) we have that
*=i

\EnQm({fl,,..., eN})\<i + i \ E n M k { { o u . . . , eN})\
k=l

COROLLARY 1.6. Suppose EcT does no/ contain parallelepipeds of arbitrarily large
dimension. Then for every 6>0 there exists an integer m0 such that for all m s mQ, any
infinite dissociate set 0 = {0,} c F, and a e F

i, • • •, eN})\

In particular, E is a proportional set of continuity.

Proof. This follows easily from the lemma since

Proof of Theorem 1.4. Suppose ^ c T contains no parallelepipeds of dimension n.
Suppose E2 is a proportional set of continuity with proportionality constant C < 1.
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UNION RESULTS FOR THIN SETS 247

Choose Ci with C<C1<1. Choose m0 ̂  n0 (n0 as in the definition of a proportional set
of continuity) so large that if m ̂  m0 then

for any 6 = {0,}1&i an infinite dissociate set and a e T. Thus i fmsm O j

.. . f|(fi1ufi2)narQw({fl1,...,eA,})|
hm mi ——-7— r~rr;

|orfim({0!, . . . , 0^})|

0 } ) |

Thus £j U £ 2 is a proportional set of continuity. •

COROLLARY 1.7. The union of a proportional set of continuity and either a A(p) set
for some p>0 or a p-Sidon set for 1 ^p < 2 is a proportional set of continuity.

REMARK. For Theorems A and 1.3 it is not difficult to handle the case when there are
elements of order 2. Consider the situation in Theorem A. Suppose E 3 Q(0) for some
infinite dissociate set 6. Let 6 = 6X U 6Z where 6^ consists of those elements of 6 which
are of order 2 and 62 consists of those which are not of order 2. At least one of 6^ or 82 is
an infinite set. If 82 is an infinite set then since E => Q(d2), from the non-order 2 version
of Theorem A we conclude that E\EX is not a Rajchman set, which is a contradiction.

If 0j is an infinite set we first use arguments similar to those used in Proposition 1.1
to prove

PROPOSITION 1.1'. For each positive integer n there are constants 0<e(n)<l and
C{n) such that if E contains no parallelepipeds of dimension n and a eT then

\E D aAj^N, Xu-.., X*)\ * C{n)(N + 1)*<">

for every d, N e f**J and a, %\, • • • . X<t e F with %\ > • • • > Xd each having order 2.

The main point here is that, in this case, {A^N, Xi, • • • > Xd)\ ^{N + 1)". Theorem A
can then be proved by restricting our attention to 6X = {xi) and using the fact that

|Q({*i . . - . , *«.})! = 2'.

Theorem 1.3 can be proved similarly.
To prove Theorem 1.4 we cannot, unfortunately, restrict our attention to one of 61

or d2. Instead we use the fact that Corollary 1.6 remains true if the dissociate set contains
elements of order 2. The ideas are again combinatorial, but are more involved. An
outline of the proof is given below.

Proof of Corollary 1.6 when the dissociate set may contain elements of order 2.
First we remark that without loss of generality we may assume <x = l. Let 0 = {0,}
be an infinite dissociate set. For each positive integer N, let {xtYffi ^ {&i}o=\ consist
of those elements of order 2, and let {ifdfi'P Q {di}?=i be the remaining terms. If
sup/(/V) =70<°° then, for any positive integer m,
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Thus

|Qm({01( •••> 0"})l a

and hence this version of Corollary 1.6 follows from the case where the order is not
equal to 2.

Thus we may assume lim J(N) = sup J(N) = °°. As

, . . . , eN}) = Qm({x2,... ,

we may without loss of generality assume J(N) is even. We will use the same notation as
in the proof of Lemma 1.5. We will write J(N) for J(N)/2 as it arises frequently.

Observe that

Mn{{6x, ..., dN)) = \jMk({Xu ...,

where the union is over fc>0 with n -L(N)<k^min(n, J(N)) (let Mo = {1}). Since we
are interested in the behaviour as N—K*> we may assume k<n^J(N). As in Lemma 1.5

Mn_k is a union of ( 1 parallelepipeds Pa of dimension n-k.
\f% K/

For n = {!„. . . , 4} s {1, . . . , / (AO) let

For those positive integers j such that k - 2/ 2= 0 let

T(/) = { / ! , . . . , i y } U { / ! , . . . ,
where

{*!, . . . , ij} C {1, . . . ,

j k-2j

Rxu)=n xv,-iX2i, n {Z24-1, xv
s=\ (=1

(with the usual convention that the empty product is 1). Note that there are

( j choices for n and

choices for T(;) .
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Since for k<J(N)

we see that

Since PaQn and PORTQ) are parallelepipeds of dimension at most n,

\EHPaQll\^C2ne and \EC\PoRr(j)\ <C2"E

for some constant C and 0 < e < 1 [9, Proposition 2.2]. Thus, since

Mn({6x, . . . , 6N}) = U PoQ« U U Pa^.0)
a, ji a, r(y)

we have

where E' denotes the sum over those k such that

max(0, n - L(N)) < k < n.

Furthermore,

!«•«• W)I-?'(T)(^)^
By combining (4), (5), (6) and the fact that

m sup " u -rr^ s im sup , (7)
N | Q ( { 0 1 ) . . . , eN})\ N F » ' W

1+ L |

tedious calculations now establish the desired result. An interested reader can find the
remaining details in the Appendix. •

2. Random thin sets. It is unknown if there is an arithmetic property which
characterizes A(p) sets. In [9, Section 4] probabilistic methods of Erdos & R6nyi [4] (see
also [7, 4.5-4.8]) are used to show that for every p > 8/3 there is a set E(p) c Z which
does not contain parallelepipeds of arbitrarily large dimension and yet is not a A(p) set.
We use similar methods here to extend this result to any p>2. Actually, the sets which
we will construct have an even stronger arithmetic property.

DEFINITION 2.1. A subset E of Z is said to contain a square of size N2 if there are
TV-element sets A, B a Z, with A + B c E and \A + B\ = N2. (As is customary we use
addition to denote the group operation on Z.)

Observe that if E contains a parallelepiped of dimension IN, then E contains a
square of size 22N
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It is well known that Sidon sets cannot contain arbitrarily large squares [13, Theorem
1.4]. A consequence of the work of Blei [1] is that for each 1 £/? < 2 there are sets which
do not contain arbitrarily large squares and yet are not p-Sidon. The random construction
we give below yields this fact as well.

THEOREM 2.2. For every 0 < a < 1 there is a set E(a) c Z which does not contain
arbitrarily large squares and yet \E(a) D [1, N]\ 1

Proof. Let 0 < a< 1 and let {£n}Z=2 be a sequence of independent random variables
such that P(£n = l)=pn = l/na and P(£n = 0) = 1 - /?„ . Let {v*} denote the values of n
(in increasing order) with ffn = 1. Thus pn is the probability that n is contained in {vk}.

Choose an integer N>2/a. Observe that if {v*} contains a square of size N2 then
{vk} contains a square of size N2 of the form {a, + 6; :i,j = l,...,N} with at, b} ^ 1.

Since the numbers {a, + &,}*=i are distinct

= n Tz^m"-
a + °)

By using the inequality a + b ^ ambm for a, b s 0 we see that

{V*}) N
"1

Thus if E' denotes the sum over those positive integers ax,. . ., aN, bu .. . , bN such that

since N>2/a.

An application of the Borel-Cantelli lemma shows that {vk} contains only finitely
many squares of size N2 a.s.

Since

%n) > 0, lim

and
\/oWfc \

till— — V i - ^ t-ILL < V : <oo

by a variant of the strong law of large numbers (cf. [8, p. 140])

lim = 1 a.s.

i s n
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Thus
Pi

hm = hm = 1 a.s.hm
k *-.= (1 — a)k

and so there is a c > 0 such that for all N sufficiently large,
\{vk} cN1'" a.s.

Let £(a) be such a set {vk} with the finitely many squares of size N2 deleted. Since
E(a) and {vk} have the same asymptotic density the theorem is proved. •

COROLLARY 2.3. For every p>2 there is a set E(p) which does not contain arbitrarily
large squares, and so in particular does not contain parallelepipeds of arbitrarily large
dimension, and yet is not a A(p) set.

Proof. Choose 0 < a < 1 with 1 - a > Up and take £(p) equal to the set E(a) as
constructed in the theorem. If E(p) was a A(p) set then by [17, Theorem 3.5]

\E n [1, N]\ < CN»",
but this not so. •

COROLLARY 2.4. There is a set E which does not contain arbitrarily large squares but is
not a p-Sidon set for any 1 < p < 2.

Proof. It is shown in [3, Corollary 2.6] that if £ is a p-Sidon set then

|£n[i , iv] |<c(iogiv)1 / 2 a

where a = 2p/(3p - 2). Thus E(a) is never p-Sidon for any 0 < a < 1 and 1 ^ p < 2. •

Appendix. Completion of the proof of Corollary 1.6 when the dissociate set may
contain elements of order 2. We continue using the notation described in the earlier
outline of the proof.

Choose r > 1 so that 1/r + e < 1. Equation (4) implies that for it s n ^J(N)

y T - ; y
(If k/(2r) < 1 omit the second term on the right.)

From (5), (6), (8) and the trivial fact that for positive numbers a,, b,
M

\EnMn({eu...,eN})\
\Mn({eu..., eN})\

Te

<limsupC—
N I

2*

/L(A0\|7/(A0\ , [Y] (J(N)\(HN) -J\]
Aw-fc/lA k I fax j ) \ k-2j ) \

(L(N)\/J(N)\
\n-k)\ k )

[k!2\

T" +

(J(N

MN)\
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Observe that for ; = [k/(2r)] + 1,. . . , [k/2]

Also,

Thus

for J(N) sufficiently

um sup

large,

(J(N)\
\ k )

•, eN})\

eN})\

~ k\

lim sup 4 ^ 1 , 2 - + 2 X
N 2 L [

* Hm ŝup ( C — y — + C - ^

Furthermore we note that from (6) again

|Afn({0j, . . . , 6N})\

Suppose w =£ [ffi/3]. If lim sup L(N) < oo then

- /J(N)\/L(N)\k

\ k )\n-k)

\mn\\Oi, . . . , UNI)\ • USAcSn \ A. / ; = 0 \ /
hm sup r-rrr ^ hm sup

N |Mm({C7i, . . . , ON))\ N

m

Mw/3]/ n

< hm sup 77^~- = 0.

\ m /

If lim sup L(N) = oo then
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Hence
[m/3]

l i m « s u p

Finally, returning to equation (7) we have

l i m , s u p , . . . . eN})\
[m/31

< hm sup 2 2ma — max
N 3 o *

\n — k)
max

3 os*sn / L(N)/ L(N) \
\m-k)

< hm sup 2~2m'3 - \,,J = 0.

(L(N)\
\[m/3]J

C2-n(1-£-(1/r»n (by (9) & (10))

3 / L(N)
\m - [m/3]

\
J

h m , s u p

As e + (1/r) < 1 this can be made less than 6 provided m is chosen sufficiently large.
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