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The whirling helical structure obtained when pouring honey onto toast may seem
like an easy enough problem to solve at breakfast. Specifically, one would hope that
a quick back-of-the-envelope scaling argument would help rationalize the observed
behaviour and predict the coiling frequency. Not quite: multiple forces come into play,
both in the part of the flow stretched by gravity and in the coil itself, which buckles
and bends like a rope. In fact, the resulting abundance of regimes requires the careful
numerical continuation method reported by Ribe (J. Fluid Mech., vol. 812, 2017, R2)
to build a complete phase diagram of the problem and untangle this sticky situation.
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1. Introduction

Consider the breakfast table experiment that consists in pouring honey, syrup or
any sufficiently viscous liquid onto a piece of toast or a stack of pancakes. While
its mundane nature would suggest that the behaviour should be easily predictable,
the liquid rope-coil effect displayed by such a drizzling thread is a sticky situation
that has long resisted the onslaughts of theoreticians aiming to elucidate its intricate
dynamics. This anomaly may be even more of a surprise to fluid dynamicists, who
would anticipate that the low dimensionality of the problem – a thread is essentially
a one-dimensional object defined along its centreline – would facilitate its theoretical
treatment. Perhaps such theoretical difficulties are best illustrated by noting that this
type of flow behaves like an elastic medium rather than a conventional free-surface
flow. In particular, the stream maintains its topological integrity throughout the entire
dynamics, and does not immediately spread on the substrate upon impact – by
contrast with an axisymmetric stagnation flow – but instead buckles into a helical
structure similar to that observed when a mountaineer’s rope falls on the ground.
As a consequence, the classical toolbox of fluid mechanics, such as linear stability
analysis or – at the other end of the spectrum – numerical methods such as the
volume-of-fluid approach, are not easily applicable to this problem. Instead, viscous
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rods are more amenable to a dimensionally reduced version of the Navier–Stokes
equations, which takes the form of the Kirchhoff equations for elastic rods, and which
accounts for the dynamics of the thread’s centreline endowed with finite resistance to
stretching, bending and twisting (Ribe 2004; Ribe et al. 2006; Brun, Ribe & Audoly
2012; Audoly et al. 2013). Additionally, this problem is made more tractable by
taking advantage of two key features: coiling is a steady problem when viewed in
the co-rotating reference frame and surface tension is not essential to the problem
and thus may be neglected.

Because viscous threads occur frequently in nature and in a broad range of
engineering processes, liquid rope coiling and related problems have been studied
extensively using experimental, theoretical and numerical approaches. While traditional
applications include non-woven textile production, it has recently been shown that
coiling instabilities may be controlled and harnessed to create new fabrication
pathways in ‘3D printing’. Despite significant progress in recent years in identifying
the different modes of coiling depending on the relative magnitudes of viscous
stresses, gravity and inertia (see Ribe et al. (2012) for a review), a complete regime
diagram as a function of the control parameters of the problem was lacking.

2. Overview

Along a freely falling stream of liquid, the gravity-induced stretching of the thread
is resisted by viscous forces and inertia, yielding a typical length scale, L?= (ν2/g)1/3,
and time scale, T?= (ν/g2)1/3. Here, ν is the fluid viscosity and g the acceleration of
gravity. For heights of fall H < L?, viscous stresses balance gravity, whereas inertia
dominates the dynamics for larger values of H. In the coiling problem defined in
figure 1(a), the flow naturally divides into two parts. In the upper part or tail, the
thread is mostly accelerated vertically and deformation is solely by stretching. At
the lowest point of the tail, the thread of radius a1 connects to a boundary layer
that buckles and coils. Scaling arguments may be used to estimate the arcwise extent
of this region, δ? = (νQ/g)1/4, where Q is the flow rate imposed at the nozzle
with diameter d. In the coil, the thread’s radius is nearly constant and the thread
mostly deforms by bending and twisting so as to accommodate the no-slip boundary
condition on the substrate. Specifically, the flow speed in the coil derived from mass
conservation, Uc = Q/(πa2

1), imposes the speed of coiling given by the product RΩ ,
where R is the coiling radius and Ω the coiling frequency.

Dimensional analysis applied to the problem, neglecting capillary effects, reveals
the existence of four independent dimensionless groups. The dimensionless coiling
frequency ΠΩ =ΩT? is thus a function of the dimensionless height of fall ΠH=H/L?,
the dimensionless flow rate ΠQ = QT?/L?3 and the dimensionless nozzle diameter
Πd = d/δ?. Ribe (2017) proposes a complete phase diagram of the problem in the
form of contour plots of ΠΩ as a function of ΠH , ΠQ and Πd, an example of which
is provided in figure 1(c). A natural starting point of this approach is the investigation
of the existence of coiling solutions in the (ΠH , ΠQ, Πd) phase space. To this end,
Ribe (2017) uses a self-intersection geometric criteria: coiling is possible only if the
thread’s radius in the coil, a1, is less than the radius of coiling R, otherwise, the rope
would self-intersect. The implementation of this condition builds on the numerical
algorithm of Ribe (2004), here used to determine a1(ΠH,ΠQ,Πd) and R(ΠH,ΠQ,Πd).
In practice, for a given value of Πd, a valid coiling solution with a1 < R is used as
starting point, and parameters are changed in the (ΠH, ΠQ) space until the condition
a1= R is met. Such a limit solution is then continued so as to draw the curve in the
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FIGURE 1. (a) Statement of the problem: the thread comprises a tail and a coil. Inset:
a typical trajectory of the contact point between the thread and the substrate obtained
while varying H. (b) Contours of a1= R in the (ΠH, ΠQ) space for several values of Πd.
They separate regions where coiling solutions exist from regions where they do not exist.
(c) Complete phase diagram showing iso-contours of ΠΩ in the (ΠH, ΠQ) space for a
value of Πd (adapted from Ribe (2017)).

plane that separates regions where coiling solutions exist from regions where they do
not exist (figure 1b).

These results can be examined in light of the mechanics at play in the coil.
Specifically, the viscous forces that resist bending in this boundary layer may act
alone (defining the viscous regime V), or be balanced by gravity (regime G), inertia
(regime I) or a combination of both (regime IG, where ΠΩ is multivalued). These
regimes appear in the order V/G/IG/I as the fall height increases. Despite the wealth
of regimes, Ribe (2017) obtains remarkably simple expressions for the boundaries of
the domain of existence of steady coiling solutions. They are reported in figure 1(b)
and are colour-coded according to the regime from which they are derived. Within the
domain of existence of coiling, the same numerical method may be used to map the
iso-contours of ΠΩ (or equivalently the radius of coiling). For the regimes V, G and I,
ΠΩ is single valued (see the plots in figure 1(c) obtained for a representative value of
Πd). However, in the regime IG ΠΩ is multivalued, giving rise to sudden transitions
in Ω (and R) and hysteresis as multiple coiling solutions are in competition. In
figure 1(a), the radius of coiling is shown to suddenly increase dramatically as H
is decreased. This transition corresponds to a fold in the coiling solution such that
the system jumps from one solution branch to another. This regime originates from
the coupling between the thread’s whirling modes and the inner machinery of the
coil. The IG regimes are represented by shaded areas in the diagram, owing to the
multivaluedness of the function in these regions. Nevertheless, the value(s) of ΠΩ is
known at any point of the (ΠH, ΠQ) plane so that these diagrams fully characterize
the coiling frequency for given values of the control parameters of the problem: fall
height, flow rate, viscosity and nozzle diameter.

3. Future

With the complete phase diagram for the coiling frequency and expressions for its
boundaries and iso-contours, it appears that the dynamics of a thread impacting a flat
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substrate is very well understood. In particular, this base of knowledge is of practical
interest in the context of engineering applications. Future work will consist in building
on these theoretical results to devise design guidelines in ‘extreme’ environments, i.e.
where traditional fabrication techniques fail and alternative instability-mediated routes
are needed or preferable.

While this point is valid, viscous threads have not yet yielded up all their secrets.
A direct continuation of the work of Ribe (2017) consists in pushing further the
analysis of the interplay between tail and coil in the IG regime. In this regime, the
fold points of the ΠΩ(ΠH) coiling solutions match the thread’s resonant modes in
virtue of their coupling with the coil’s dynamics. This interplay is directly relevant
to the fluid mechanical sewing machine, i.e. a thread falling onto a conveyor belt
– a direct analogue of 3D printing (see Chiu-Webster & Lister 2006). In this case,
the cylindrical symmetry of coiling is broken by the belt so that non-trivial steady
solutions are impossible, giving rise to a variety of ‘stitching’ patterns. Past work
has shown the immediate applicability of steady coiling results to rationalizing the
formation of such patterns. Specifically, Brun et al. (2015) have shown that the coiling
speed is the relevant scale to compare to the belt’s speed and that the trajectory of the
thread’s contact point with the belt is analogous to steady coiling, both in terms of
radius of curvature and Fourier spectrum (these quantities are related to 1/R and Ω ,
respectively). In the IG regime, these quantities are multivalued, so that the results of
Brun et al. (2015) are not directly applicable. This point is all the more fascinating,
since complex patterns, possibly chaotic, are observed. Further insight into the delicate
coupling between tail and coil would help reveal the blueprint of such patterns.

Returning to steady coiling, a crucial approximation is made in the work of Ribe
(2017): that the thread immediately stops when it makes contact with the substrate
(no-slip boundary condition). This boundary condition is central to the problem, as it
is the one creating the deceleration that yields buckling. While it is in general the best
condition to impose, it does not always fully represent the physical problem. Indeed,
the thread can either build up a corkscrew-like structure, whose size varies over time,
or else spread after impact, sometimes generating propagating spiral waves of air
bubbles. Such behaviours cannot be directly modelled with the present method, and
their treatment would require some coupling with a more traditional fluid mechanics
solver (such as direct numerical simulation) or a lubrication-like approach. This
observation completes our initial statement on the theoretical difficulties in modelling
coiling. Liquid threads behave like rods for the most part, yet in the end their fluidic
nature prevails: a sticky situation.
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