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Abstract

We show that the complete symmetric digraph DKn, n>5, can be decomposed into each of
the four oriented pentagons if and only if n = 0 or 1 (mod 5).
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1. Introduction

Hung and Mendelsohn (1973) have found a necessary and sufficient condition for
the partitioning of the set of arcs of a complete symmetric digraph into each of the
two oriented triangles. In a recent paper, Harary and others (1978) have considered
the same problem for each of the four oriented quadrilaterals. In doing so they
have made strong use of the fact that each orientation of a triangle and quadri-
lateral is self-converse. Also, Harary and others (1967) had earlier shown that the
only graphs for which every orientation is self-converse are the two smallest
complete graphs Kx and K2 and the three smallest cycles C3 (the triangle), Q (the
quadrilateral) and C5 (the pentagon). The object of this paper is to settle the one
remaining case, that is, to find necessary and sufficient conditions so that the set
of arcs of a complete symmetric digraph can be partitioned into each of the four
oriented pentagons shown in Figure 1.

FIGURE 1.
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2. Definitions

For the definitions of graph, digraph and other related elementary concepts, we
refer to Behzad and Chartrand (1971) or Harary (1969). We shall use the same
notations as used in the above books. We shall denote the complete symmetric
digraph with n vertices by DKn. A digraph is said to be self-converse if it is iso-
morphic to its converse. The union Gx u G2 of two graphs G1 and G2 is a graph with
V(G1 u G2) = V(Gt) u V(G2) and E{G1 u G2) = £(GX) u E(G2). For a connected graph
G, nG denotes the graph with n components each of which is isomorphic to G. The
join Gj + G2 of two graphs G1 and G2 is their union G1 u G2 together with all edges
joining the vertices of V{G±) with the vertices of K(G2). It is easy to see that

with the vertex set of the complete bipartite graph Kmn chosen appropriately.
Given a graph G and graphs Ht,H2, ...,HS, if there exists a partition of E(G)

such that the resulting subgraphs of G are isomorphic to Hlt H2,..., Ha, we say that
the graph G has been decomposed into the graphs HX,H2, ...,HS. In particular, if
every H^, i = l,...,s, is isomorphic to some graph H, the decomposition of G is
called an isomorphic factorization of G and we write H\ G. If G cannot be iso-
morphically factored into graphs isomorphic to H, we write HJfG.

The following known results shall be used.

THEOREM 2.1. C5| Kn, n^5, if and only ifn=\ or 5 (mod 10).

THEOREM 2.2. For any oddn^3, Kn can be decomposed into 3-cycles and 5-cycles.

THEOREM 2.3. For any n>2, K2n — I, where I is a l-factor of K2n, can be decom-
posed into 3-cycles and 5-cycles.

Theorem 2.1 was proved by Rosa and Huang (1975) and independently proved
by Bermond and Sotteau (1977). Theorem 2.2 is proved by observing that Kn can
be decomposed into triangles when n=\ or 3 (mod6) as is well known. When
n=5 (mod 6), it was shown by Wilson (1974) that Kn can be decomposed into
triangles and exactly one Ks. The K5 can be decomposed into two 5-cycles.
Theorem 2.3 then follows quickly from the same results by deleting a vertex not
contained in a Ks and all edges incident with the vertex. The resulting graph has
even order, contains a l-factor from the triangles that contained the deleted
vertex, and the remaining edges can be partitioned into triangles and 5-cycles.
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3. Preliminary results

Throughout the rest of the paper Av A2, A3 and At denote the four orientations
of C5 as shown in Figure 1.

THEOREM 3.1. If At\ DKn, i = 1,2,3,4, then n=0,1,5or6 (mod 10).

PROOF. For / = 1,2,3,4, At \ DKn implies that 51 n(n - 1 ) , that is, n s 0 or 1 (mod 5)
or equivalently n=0, 1, 5 or 6 (mod 10).

Since each oriented Cs is self-converse, we have the following results.

LEMMA 3.2. IfCb\Kn, then At\DKnfor / = 1, 2, 3 and 4.

Theorem 2.1 together with Lemma 3.2 give the following result.

THEOREM 3.3. Ifn= 1 or 5 (mod 10), then Ai\DKnfor i = 1, 2, 3 and4.

The cases when n=0 or 6 (mod 10) are dealt with in Section 4. We now prove
some lemmas to be used in that section.

LEMMA 3.4. C5|AT555.

PROOF. Let {w1; «2, u3, w4, w5}, {vt, v2, v3, vt, vj and {wlt w2, w3, w4, w5} be the three
sets of independent vertices of A"5A5. The following gives a decomposition of
K5 5 5 into C5's. Five of the C5's are

Ulvlu&vSw*ul> « 2 u 2 « 4 l ; 4 » v 3 M 2 ; U3 VS " l W2 V5 M31 M4 ^ 1 W 5 V2 W3 «4 5 M4175 W4 ^ W2 M4.

The rest then are obtained by rotating ut into ^ into wf into Mj for i = 1,2,3,4,5 in
the above 5-cycles.

Define a graph V as follows: F(F) = Uf=i Vt such that | Vt\ = 5 for each / = 1, 2,
3, 4, 5 and the edge set of F consists of exactly all possible edges between vertices
of Vi and Vi+1, i= 1,..., 5, where the subscripts are taken modulo 5. In the notation
of Harary (1969), V is the composition Cb[R5] of the graphs C5 and R5.

LEMMA 3.5. C6 |F.

PROOF. Let

V1 = {«!, a2, a3, o4, a5}, F2 = {bv b2, b3,64, b6},

Vs = (ci> C2. C3» ci> C5}> vi = Wi> d2, d3, rf4, rf5},

V& = {e1,e2,e3,ei,e5}.
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Following is a decomposition of F into C5's where all subscripts are taken modulo
5 a n d / = 1,2,3,4,5.

ai bi+2 Ci+i di+6 ei+& ai>

ai bi+Z Ci+6 di+f> ei+VL ai>

ai ^t+4 ci+8 ^t+12 ei+16 ai-

LEMMA 3.6. C5 isomorphically factors the n-partite graph K5^ 5 where n is odd.

PROOF. With the n-partite graph K55 5, we can associate a complete graph Kn

with each vertex of Kn corresponding to an independent set of vertices of the n-partite
graph and an edge of Kn corresponding to all the edges between two independent sets
of vertices in the n-partite graph. Since n is odd, by Theorem2.2 ATncanbe decomposed
into 3-cycles and 5-cycles. Under the correspondence between Kn and the n-partite
graph, this implies that KS5 & can be decomposed into factors that are either K555

or F. The result then follows from Lemmas 3.4 and 3.5.

COROLLARY 3.7. For each / = 1,2,3,4, Ai\DKb5 5 the directed n-partite graph
with n odd.

LEMMA 3.8. A^DK^for i =1 ,2 ,3 ,4 .

PROOF. Let abcdea be a 5-cycle. Henceforth, we agree to write the four orienta-
tions of it as

Ax:

A2:

Let V(DK6) = {w1; M2, «3, M4, M5, M6}. We list below the decomposition of
into each At. The direction of an edge is as given by the cycle at the top.

M2 M3

UX U6 U5 ui M 3 U 1 «4 M3 "l "6 «5 «4

M6 «2 «5 Mx W4 «6 «6 «2 M5 «! M4 M6

M6 Mj M2 M5 U3 M6 «6 M3 M5 M2 »! M6

«2 "4 «6 "3 «1 M2 «2 "l «3 M6 M4 M2

M3 M5 Mx M4 M2 U3 MX M5 M3 M2 «4 "l

https://doi.org/10.1017/S1446788700012313 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012313


[5] Decompositions of complete symmetric digraphs 357

A3:

«5 "4 «3 «2 «6

«4 "5 «6 «1 «3

M6 M4

W5 « 2

M 2 M 4

«5 U 2

"6

US M l

W5 Mx M4 «2 M3 M5

LEMMA 3.9. A^DK^for i= 1,2,3,4.

PROOF. We write

«2 «6 "5 «4

«3 »5 «1 «4 U3

« "64 5 6 1 "2 "4

«5 M3 "l «6 »2 M5

«6 M4 «2 "l "3 "6

"l «5 M2 «3 M4 «1

Klo = 6 t 6 4 4j6

Let K(A:6) = {w0, ML M2, M3, M4> M5} and F(/s:4) = {»!, v2, v3, r j . The two independent
sets of vertices of Kt „ are K(̂ T6) and K(AT4). By Lemma 3.8, we know each of At \ DK6

for / = 1,2,3,4. This leaves the graph KtuKifi. It can be decomposed into the

FIGURE 2

graph of Figure 2 and the following four C8's: u1v1viu3v2u1, u2v2v1uiv3

u2,u3v3viu2v1u3 and M4f4«1f3f2W4- Since each Af is self-converse, At\DCb for
i = 1,2,3,4. Thus, the proof is complete if we decompose DH, where H is the
graph in Figure 2, into each of the four A^s.
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For Ax we have

and
u0 -<- vx -+ u5 *- v2 -+ v4 -> M0.

For A2 we have

and

For y43 we have

and

Finally, for At we have the 5-cycles

a n d

4. Main results

THEOREM 4.1. Jfn=6 (mod 10), At\ DKnfor i = 1,2,

PROOF. Let n = 10fc+6. We write

5 5,

where the vertex set of the complete multipartite graph K5fit # is chosen appro-
priately. The result then follows from Corollary 3.7 and Lemma 3.8.

THEOREM 4.2. Ifn=0(mod 10) andn^20, then Ai\DKnfor i = 1,2,3W4.

PROOF. The result has been proved for n - 10 in Lemma 3.9. So let n = \0k
with k > 2. We write

In view of Lemma 3.9, it suffices to show that At \ £^io,io,...,io f° r ' = 1 > 2,3,4. With
•̂ 10,10,...,io w e c a n associate a graph K2k—I, where / i s a 1-factor of K2k, as follows.
Let Vi = {«i, M|, . . . ,MJ0}, 1 ^ i < ^ , be the maximal independent subsets of vertices in
^io,io,...io- Then let St = {i[,u\, ...,u§ and Si+k = {u\,u1j, ...,i/|0} for / = 1,2, ...,/r.
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We define V(K2k) = {S^S* ...,S2k} and S* adjacent to S, if and only iij^i+k or
ijtj+k. Notice that the edges SiSi+k for 1 <i<fc form a 1-factor for K2k as just
defined.

By Theorem 2.3, K2k-I can be decomposed into 3-cycles and 5-cycles. This
amounts to the fact that the A>partite graph K1010y 10 can be decomposed into the
factors A:55J5 and T. The result then follows from Lemmas 3.4 and 3.5.

THEOREM 4.3. At| DKW for / = 1,2,3,4.

PROOF. We write K^ as K20 = 2K10uKWil0 with the vertex set of the complete
bipartite graph chosen appropriately. We shall show that Ai \ D(K10 u K1010) for
/ = 1,2,3,4. This together with Lemma 3.9 will prove the result. Let the vertex
set of the two K10's be {u^Mg, ...,M10} and {v^v* ...,vw}. Then K10uK10ilo can be
decomposed into the graph A shown in Figure 3 and twenty-five disjoint 5-cycles

v .
10

v

V ,

FIGURE 3
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as follows:

C: i / l 5vvu2,v3 , t>4,ut; C: ux,v3,M7,V2,vb,ux; C": ultv8,u10,v7,v9,ut

and

<pkC,<pkC (1*SA:<9) and <p2kC" (l^k^4),

where 95 = (1 2 . . . 10) is a cyclic permutation of the ten subscripts and subscripts
are taken modulo 10.

We show next that Ai | DA for / = 2,3,4, by listing the copies of A2, A3 and At

respectively in the decomposition of DA. This together with the fact that each
Ai (i — 1,2,3,4) is self-converse shall prove the result for 1 = 2, 3 and 4.

A2. a->b->c->d-*-e<-a a->b->c->d-*-e<-a

v8 v6 vt v2 v10 v8 vs v2 vt v9 v3 va

v6 vz v8 vt v10 v6 vt v6 vx v5 v10 vt

v9 v5 vx t>7 v3 v9 v7 v2 v6 v8 v3 v7

V2 V7 V! V6 V10 V2 Vb V9 l>4 V8 VW Vb

A3: a-+b-*-c->d->e't-a a->b^c->d-j>e-<^a

v2 vt v6 v8 v10 v2 vt v2 v8 v3 v9 vt

vA v8 v2 v6 v10 v4 v10 v5 vt v6 Vi v10

Vl Vl

v1 v5 v9 v3 v7 vt vt v2 v8 v3 v9 vt

"2 v6 ^10 vt »s V2 v* v10 v5 vx v6 vt

v2 vt v6 v8 v10 v2 v5 v10 v8 »4 v9 vs

V3 V8 V6 V2 V7 V3 V6 Vx D7 V2 V10 V6

Now to show that Ax \ D(K10 u K101(^), let H be a graph defined by

where C* is the 5-cycle v2, v6, v10, v4, v8, v2. Then K10 u K1010 can be decomposed into
the graph H and twenty-four disjoint 5-cycles: C*, C, C", (pkC, <pkC

", (p6C" and <p9C".
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Since Ax is self-converse, it is enough to show that Ax \ DH. We list below the
copies of Ax in the decomposition of DH.

Ax:

v9 r>4 v2 vx0 v5 v6 vt v2 H 4 vx v6
VS V6 Vi V9 V3 V2 V7 Vl V3 «5 V2Vi V9

Vl " l V5 V2 «7

v8 v10 v2 v1 v3 vB v9 v3 u7 v2 v5 v9
M5 V2 Ut VX V3 U5 V6 Vt Vi V3 UX V5

Finally, the results of the Theorems 3.1, 3.3, 4.1, 4.2 and 4.3 can be put together
into a single theorem.

THEOREM 4.4. A{ \ DKn, n> 5, for i= 1,2, 3 or 4 if and only ifn=0or\ (mod 5).

The above theorem can also be proved using results and techniques in the survey
paper by Bermond and Sotteau (1975). The proof in our paper is elementary and
easily extended to other values for the cycle length.
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