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ON POLARIZED NORMAL VARIETIES, I

T. MATSUSAKA1)

Introduction

In this paper, we deal with the first part of an application of our

Riemann-Roch type inequalities (cf. [13], [23]) toward deformations of

polarized normal varieties. In Chapter I, we discuss the problem of elimi-

nating fixed components from complete linear systems defined by multiples

of a given divisor. Let Un be a complete normal variety and Yo an ample

Cartier divisor on U. The main result of the chapter is that there is a

positive integer c0, predicted by the first two leading coefficients of the

polynomial X(U, Θ(mY0)), such that the complete linear system Λ(rcQY0)

has no fixed component whenever r is a positive integer (which is essen-

tially contained in Theorem 1.1 (cf. [13], Lemma 5.2)). An easy conse-

quence of this result is that when n = 2, we can find another positive integer

cu predicted by the same coefficients as above, such that TC^QYQ is very

ample on U whenever r is a positive integer. Even though this has been

generalized to n — 3 by J. Kollar (cf. [12]), we have included this in Sec-

tion 3 since it is very simple.

Let Ωo be the set of pairs (Un, YQ) of normal projective varieties U

and ample Cartier divisors Yo on U with a fixed polynomial P0(x) such

that P0(m) = X(U, Θ(mY0)). We let Y = c0Y0 for the sake of simplicity,

where c0 is as above. In Chapter II, we consider two problems.

(1) Find a positive integer cl9 depending only on the two leading

coefficients of the polynomial X(U, Θ(mY)), such that a suitable vector sub-

space L of the vector space L{cxY) has the following two properties:

(i) A non-degenerate rational map / of U defined by L is a bira-

tional transformation of U;

(ii) When p denotes the projection map of the graph T of / on the

image of/, p" 1 has no (set-theoretic) fibre of positive dimension.
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176 T. MATSUSAKA

(2) Find the estimation of £(rY) in the form

\£(rY)-χ(U,Φ(rY))\<φ(r),

where φ(x) is a polynomial of degree at most n — 2 with rational coeffi-

cients, which depends only on the first two leading coefficients of X(U,

Θ(mY%

We first show that (1) has a solution, which is contained in Proposi-

tion 2.2. As a consequence of this result, we can construct a finite union

93 of irreducible algebraic families of pairs (Vn, X) of non-singular sub-

varieties V of a projective space and semi-ample divisors X of V such

that whenever (Un, Yo) e β0, there is a member (V, X) of S8 and a bira-

tional morphism p of V on U with p*(c0Y0) ~ X (Theorem 2.1). A solu-

tion of (2) which is a special case of a result of S. Cutkosky is reproduced

in Theorem 2.3 for the sake of convenience. Then returning to the prob-

lem (1), these results are used to obtain a sharper result in which the

vector subspace L defines a linear subsystem Λ(cλY) without fixed com-

ponent (Proposition 2.5). An effect of this sharper result is contained in

Theorem 2.2.

The last paragraph of Chapter II deals with an immediate application

of our results. Let Ω'o be the subset of β0, consisting of those pairs (Un, Yo)

such that singularities of U are rational singularities only. We show the

existence of a positive integer c such that whenever (U, Y0)eΩ'Q, rcY0 is

very ample on Ϊ7and /**([/, Φ(rcY0)) = 0 for i > 0 for all positive integers r.

The result has some close relation with [4].

Basically we shall follow definitions, terminology and conventions of

[20] and [5], Basic foundational results contained in these will be used

freely without detailed references except in some delicate cases. The fol-

lowing is a partial list of notations and conventions which will be used

without further explanations.

KLr : Canonical divisors on a normal variety U.

~ : Linear equivalence of divisors.

Λ(D) : The complete linear system determined by a divisor D.

Λred : The reduced part of a linear system A of divisors, i.e.

Aτeά — A — the fixed part.

L(D) : The vector space of functions g with div(g) + D > 0.

£(D) : dim L(D).

f{W} : The total transform of a subvariety or a closed subset W

by a rational transformation.
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POLARIZED NORMAL VARIETIES 177

f'1{W) : The complete inverse image of a closed subset W by a ra-

tional transformation /.

f[W] : The proper transform of W by a rational map /.

f(W) : The intersection-theoretically defined transform of W by /.

Z—>Z' ref. k : Z' is a specialization of Z over &.

The vanishing theorem for invertible sheaves defined by divisors of

the form Kv + X on a non-singular projective variety has been proved

and generalized in [11], [6], [8], [19]. In order to avoid repeated references

to these articles, we shall simply use the phrases such as "according to

the vanishing theorem," "by the vanishing theorem," etc. When W is a

complete variety, non-singular in codimension 1 and D a positive divisor

on W, a vector subspace L of L(D) of positive dimension defines a non-

degenerate rational map / of W into a projective space on one hand, it

defines also a linear subsystem A of Λ(D). Conversely, A defines the vec-

tor subspace ΊJ of L{D')y D' ~ D, uniquely such that A is a linear sub-

system of A(D) = A(Df) defined by ZΛ L and U are isomorphic as vector

spaces, and they define the same non-degenerate rational maps of Winto

a projective space up to a projective transformation. Therefore we shall

quite often refer to / as a non-degenerate rational map of W into a pro-

jective space defined by A.

We shall assume throughout the paper that the characteristic of the

universal domain is 0, even though some of the results are valid in

characteristic p too.

The author owes some improvements of the original manuscript to

J. Kollar and S. Cutkosky to whom he wishes to express his appreciation.

CHAPTER I

§ 1 .

LEMMA 1.1. Let Un be a complete variety, non-singular in codimension

1 and Z, D two positive U-divίsors. Assume that £(Z + D) > £(Z). Let F

be the fixed part of A(Z + D) and D = 2 atDt the reduced expression for

D. Then the set I of indices i such that the coefficient b[ of Dt in F satis-

fies b[ < ai is not empty. Let bt = at — fc and Όf = 7]7 bDL. When j e I

satisfies

bjldj >̂ bjdi for every i in I,
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Dj is not a fixed component of Λ(T), where T = afi + b3Ό.

Proof. The first assertion is obvious. Let B = b3Ό — aΊD'. B is a

positive [/-divisor and D3 is not a component of B. Define A by A —

Z + Π. D3 is not a fixed component of Λ(A) and Γ = a3A + 5. It fol-

lows that Dj is not a fixed component of Λ{T).

COROLLARY. With the same notations and assumptions of the Lemma,

let s = a3 + bj. Assume further that D is the fixed part of Λ(Z). Then ΰ ,

is not a fixed component of Λ(sZ).

Proof Let W be a member of Λ(Z)τed. As afi + bjD + b3W ~ sZ

and Λ(W) has no fixed component, D3 cannot be a fixed component of

Λ(sZ) by the Lemma above.

LEMMA 1.2. Let Vn be a non-singular projective variety, X a numeri-

cally effective V-dίvisor with X{n) > 0 and Λ a linear subsystem of Λ{X) with

the fixed part F. Assume that X and A satisfy the following conditions.

( i ) £(X) > 0 and there is a positive integer c such that

\£(rX) - (X

for all positive integers r.

(ii) A general divisor W of Λτea is absolutely irreducible and there

are positive integers c', c" such that when r > &',

h\W9 Θ(rX. W)) ̂  (wl(n - l)l)rn-1 + c'V*"2,

where w = I(W, X(n-1}).

(iii) I(F,X{nl))>0.

Then there is a positive integer e > c', which depends only on c, c\ c", X{n>

and n, such that whenever m > e, £((m — j)X + F) > £((n — j)X) for some

j with cr ^ m — j < m.

Proof. Let m be an integer with m > cf and assume that for all

positive integers j , equalities £((m — j)X + F) = £((m — j)X) hold when-

ever c' !g m — j < m. The equality implies

£(sX) = dimTrΐΓL(sX) + S((s - ί)X), s = m - j ,

as is well known. When we sum these relations up, we find that

m

S(mX) £ Σ h\W, G(iX. W)) + £(c' X)
e'+l
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Our assumption (ii) and a simple estimation then show that

£(mX) ^ (wlnlXm + 1)* + (c"ln)(m + I)"" 1 + ^ ,

where &is a constant which depends only on d' ,ch\X(n) and n. X{n) — 1 ̂ > w

by (iii) and w ^> 0 (cf. [10]). When that is so, e can be found from the

above inequality and from (i).

COROLLARY 1. Let the notations and assumptions be as in our Lemma

and a the maximum of the coefficients of the components of F in its reduced

expression. Then there is a positive integer v ̂  a(e + 1) such that a certain

component F3 of F is not a fixed component of Λ(vX).

Proof. Let u be a positive integer of the above Lemma with u ^ β

such that £{uX + F) > £(uX). By Lemma 1.1, there are two positive in-

tegers av bj satisfying a I> α7 ̂ > b3 > 0 such that a certain component Fό

of F is not a fixed component of the complete linear system defined by

aμX + bjF. Then the same is true with the one defined by aμX +

bjF + bjW ~ {aμ + bj)X. The Corollary follows from this at once.

COROLLARY 2. Let the notations and assumptions be as in our Lemma

and assume further that X is semi-ample. Let F = F' + F" in which every

component Ft (resp, Fj) of Fr (resp. F") satisfies I(Fί} X
(nl)) = 0 (resp.

I{Fj, X(7l~1}) > 0). Let a be the maximal of the coefficients of components of

Fn in its reduced expression. Then there is a positive integer v ^ a(e + 1)

such that a certain component of F" is not a fixed component of Λ(vX).

Proof. Let u be as in the proof above. As X is semi-ample, L(tX)

defines a birational morphism / of V on a normal protective variety for

large t. Every component of F/ is contracted by /. It follows that £{uX)

= £(uX + F% and consequently S(uX + F' + F") > ί(uX + F'). When

we let Z = uX + F\ D = F" in Lemma 1.1, our Corollary follows in the

same manner as the above corollary.

Remark. (I) When X is semi-ample, the condition (i) of the Lemma

is satisfied by our result (cf. [13]).

(II) When n = 2, the upper bound in (ii) is obtained at once by using

the Riemann-Roch theorem on curves.

(III) We shall prove in Section 2 the upper bound formula in (ii) in

general when X is semi-ample. But it can be obtained also for n — 2
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rather easily when we impose a mild condition on W. We shall include

the result here as a Proposition.

PROPOSITION 1.1. Let V be a non-singular projective variety of dimen-

sion 3, X a numerically effective V-dίvίsor with X(3) > 0 and A a linear sub-

system of Λ(X). Let L be the vector subspace of Λ(X) which defines A and

assume that L defines a non-degenerate rational map of V with a ^-dimen-

sional image. Denote by T a general divisor of the minimum sum of Aτeά

taken m-times with m JΞ> 4. Then

h\T, Θ(rX, T)) £ (x/2)r2 + 2, x == I(T, X<2>).

Proof We may prove our result after applying a finite sequence of

monoidal transformations with non-singular centers. Therefore we may

assume that Aτeύ has no base point (cf. [7]). Let W be a general divisor

of Areύ. We have T - m W and both W and T are non-singular by the

theorem of Bertini. W and T are semi-ample by our assumption on L.

It follows that £(KV + uW) > 0 for some positive integer u <: 4 by the

vanishing theorem. It follows that £(KV + T) > 0 by our choice of m and

that pg(T) > 0 by the adjunction formula.

Let X' = X. T. Since we are interested in β{rXf), we may assume

that A(rX')red h a s n o base point by applying the same procedure as above.

Let Z be a general divisor of this linear system and F the fixed part of

A(rX). By our assumption on L and by a theorem of Bertini, Z is an

absolutely irreducible non-singular curve on T, and pg(T) > 0 as a

monoidal transformation of a non-singular projective surface does not

change pg(T). Then when Zf ~ Z such that Z' Π Z is proper on T, Z'.Z

is a special divisor on Z and we have £(Z'.Z) £ (1/2)Z(2) + 1 by the theo-

rem of Clifford. This implies that

£{rX') = £(Z) ^ (1/2)Z(2> + 2.

Since Xf and Z are both numerically effective on T, we have

(rX'Y2) = I{rX\ Z+ F) ^ I(rX', Z) > Z<2>.

Our Proposition follows from this at once.

§2.

Let Vn be a non-singular projective variety and X a semi-ample V-

divisor. Let u be a positive integer such that n + l ^ u ^ 2 n + l and
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that £(KV + uX) > 0. Such u exists by the vanishing theorem. Let D

be an arbitrary but fixed divisor contained in Λ(KV + uX). Then we have

shown in Section 3, [13] that there is a positive divisor Df such that

D - U > 0, I(D\ Xin~^) = 0 and that I(KV + uX - D\ Z, X ^ ) is non-

negative for all positive divisors Z on V in particular (cf. [13], Cor., Prop.

3.2). In order to find the upper bound formula in (ii), Lemma 1.2, in which

the dependence of constants c', c" on the polynomial X(V, Φ(mX)) is made

clear, we need the following generalization of the above result.2)

PROPOSITION 1.2. Let Vn be a non-singular protective variety and the

At n — 2 semi-ample V-divisors such that Ax 0 Π An_2 is proper on V.

Assume that X = Σΐ^ciiAi satisfies the following conditions:

(a) The at are non-negative integers and at Φ 0 for some i;

(b) Whenever D is a positive V-dίvίsor, I(D, X(7i"1}) = 0 implies

I(D, X, A, . . . An_2) = 0 and I(D, A,, A, • An_2) = 0

for all ί. Then there is a positive integer u with n + l<^u<z2n + l such

that Λ{KV + uX) is not empty. When D is a divisor in it, there is a posi-

tive V-dίvίsor Ώf such that D - Df > 0, I(D\ X^-^) = 0 and that whenever

Z is a positive V-dίvisor, I(KV + uX — D\ Z, Aγ An_ϊ) JΞ> 0.

We shall not give a proof of this here. Essentially a reproduction of

discussions in Sections 2, 3 in [13] with a few obvious changes will prove

our version of Proposition 3.2 there. Modifications needed for Sections

2, 3 in [13], Proposition 2.3 will be included in the Appendix.

PROPOSITION 1.3. Let Vn be a non-singular projectίve variety, X a semi-

ample V-divίsor with £(X) > 1, A a linear subsystem of Λ(X) of positive

dimensions such that Aΐeύ has no base point and W a general divisor of

yίred, which is assumed to be absolutely irreducible. Then

I{KV + W, W, X{n~2)) ^ 2n"1(4Λι + 2d + ξ),

where d = X'n\ ξ = I(KV, X^^).

Proof. By our assumption, X + W is semi-ample. There is a positive

integer u such that £(KV + u(X + W)) > 0 and that n + l<Lu<L2n + l

2) The following two Propositions are used to prove Proposition 1.4 which makes
the dependence of the inequality of the Proposition on c0 and χ(V,@(mXo)) explicit. The
inequality can be proved using Theorem 2.1, without depending on the two Propositions,
when (V, X) is a member of the family V of the above quoted theorem. Therefore
Theorem 1.1 can be established for (V,X)e^ without using* these two Propositions too.
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182 T. MATSUSAKA

by the vanishing theorem. We shall apply Proposition 1.2 n — 1 times.

First we let A, = X + W for all I Then A, = X, A, = X + W for £ > 1,

in general Ai ~ ~ Ar ~ X, A r + 1 ~ . . ~ An_2 ~ X + W and finally

A^ = X for all i. We first show that the conditions in (b) are satisfied

when we let X + W to be X in the Proposition. When Z is a positive

V-divisor, 7(Z,(X + WO01"1') - 0 if and only if I(Z, X{r\ W(s)) = 0 for all

non-negative integers r and s with r + s = n — 1. When that is so, for all

non-negative integers υ, w with υ + w = n — 1, 1(Z, X w , (X + WYW)) = 0.

Thus our choices satisfy the condition (b) in all cases.

Our assumptions imply that we have

I(KV + W, W, X(n~2)) £ I(KV + u(X + W), X + W, (X + W0(n"2>) = I,.

By Proposition 1.2, there is a positive divisor Z^ having the properties

stated in the Proposition for X + W and A, - X + W for all i. It fol-

lows that

I = i(κv + u(x +W)-D19X+ w, (x + wyn-^)
+ u(X + W\ X, (X + WYn~2))

+ u(X + W), X + W, X.(X + W)(n-8)) - 2I2.

In general, let I(KV + ι/(X + W), X + W, X(rK(X + WY») = 7r+1, where r

and s are non-negative integers such that r + s = n — 2, r < n — 2. There

is a positive divisor Z)r+1 on V with the stated properties for X + W,

A, ~ X (1 ̂  M ̂  r) and A, ^ X + W (r + 1 ^ j ^ n - 2) in the Proposi-

tion. Then

ir+1 = i{κv + u(x +w)- Dr+19x+w,x^.(x + wy>)
^ 2I(KV + u(X + W), X, X(?) .(X + ^ ) ( s ) )

= 2i(κv + w(x + w), x + w, x(r+1) .(x + wys-^) = 2ir+2.

It follows by induction that I, £ 2niI(Kv + w(X + W),X{n~l)) and our

Proposition follows from this.

PROPOSITION 1.4. Let Vn, n > 1, be a non-singular projective variety,

Xo a semi-ample V-divisor and X = c0X0. Assume that a vector subspace

L of L(X) defines a rational transformation of V with an n-dimensional

image. Let A be the linear subsystem of Λ(X) defined by L and W a gen-

eral divisor of Λτed. Then W is absolutely irreducible and there is a posi-

tive integer & which depends only on cQ and X(V, Θ(mX0)) such that

https://doi.org/10.1017/S0027763000022741 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022741


POLARIZED NORMAL VARIETIES 183

h%W, Θ(rX. W)) £ (wl(n - ΐ)ϊ)rn~ι + c'rn~2

for all positive integers r, where w = I{W,XLn~λ)).

Proof, W is absolutely irreducible by our assumption on L and by

the theorem of Bertini. Let g: V -» V be a birational morphism such

that g~ι is a succession of monoidal transformations with non-singular

centers and that 1/ = {/ o g9 f e L} defines a linear system Λf on V with-

out base point (cf. [7]). g'^W] = W is a general divisor of Λ'. When we

let X' = g-\X)9 we have X<»> = X'<»>, I(KV9 X*-1)) = I(Kr,, X'*^) and

I(W,Xίn-l)) = I(W\ X'{n-l)). It follows that there is a positive integer s

which depends only on c0 and χ(V, Θ(mX0)) such that J(UL,Γ,, X
/(β-2)) £ s by

Proposition 1.3. Next we shall find a lower bound for I(KW,, X/(n~2)).

W/{n) > 0 by our assumption and W is semi-ample on V\ It follows that

UXQ + W/ is also semi-ample for all positive integers u, where X'Q — g~\Xύ).

We can find a positive integer u such that u ^ n + 1 and that ί{Kv,, uX'o)

> 0 by the vanishing theorem. Fixing one such u, we find that

I(KV, + uX'Q + W, W, X/{n~2)) = I(KW, + uXl W, X/(Λ-20 ^ 0.

It follows from this that I(Kw,9X
nn-2>) ^ - (n + l)c7i~ιXt Finally 0 <

I{W\ X'^-'Ϊ) ^ X'^ = cjX£n). Thus we have found an upper bound s' for

IiW'yX'^-v), \I{Kwt,X
nn~^)\ which depends only on c0 and the polynomial

X(V,Φ(mXJ).

When that is so, there is a finite set {PXx)} of polynomials determined

by s/ such that one of them is the polynomial X(W\ Θ(mX', W')) by Lemma

5.2, [13]. Then we can find a positive integer c\ depending only on c0 and

X(V, Θ(mXJ) such that

h°(W, Θ(rXf. W)) ̂  (w/(n - ΐ)!)^'1 + c'rn~2

by the main theorem in [13]. As h\W, O(rX. W)) £ h%W\ Θ{rXf. W'))9 our

Proposition is proved.

LEMMA 1.3. Let Vn be a non-singular projectiυe variety and X a

semi-ample V-divisor. When a vector subspace L of L{mX) satisfies dim L >̂

X{n)mn~ι + n, L defines a non-degenerate rational map of V with an n-dίmen-

sional image.

Proof. This is an easy consequence of [15], Theorem 3 and a similar

proof as [16], Proposition 2.5 works.
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THEOREM 1.1. Let V be a non-singular projectίve variety of dimension

n > 1 and Xo a semi-ample V-divisor. Then we can find a positive integer

c*, depending only on X(Vf Θ(mX0)) = P0(m), such that for some positive

integer r <. c* the complete linear system Λ(rX0) has no fixed component G

with I(G, Xon~1}) > 0 and L(rX<ϊ) defines a non-degenerate rational map of

V with an n-dίmensίonal image.

Proof. We can find a positive integer c, depending only on the poly-

nomial P0(x)f such that

\£(mX0) - (X^/nl)mn\ ^ cm71'1

for all positive integers m (cf. [13]). Therefore we can find a positive

integer c0, depending only on PQ(x), such that L(cQX0) defines a rational

map of V with an ^-dimensional image by Lemma 1.3. This shows that

when we let X — c0X0 and c = ccί?""1, the condition (i) of Lemma 1.2 is

satisfied by V and Xo.

Let W be a general divisor of Λ(X)reά and F the fixed part of Λ(X).

Since n > 1, W is absolutely irreducible by a theorem of Bertini and by

our choice of c0. Moreover, Proposition 1.4 shows that a positive integer

d can be found, depending only on P0(x), so that the latter part of Lemma

1.2, (ii) is also satisfied for all positive integers r. Therefore we may ap-

ply Lemma 1.2 when I(F, X{n~^) > 0. The set of distinct fixed components

of Λ(tX) forms a non-increasing sequence of sets as t increases. Let G

be the set of those components Gt of F with /(G,,X(W-1}) > 0 and a the

maximum among the coefficients of the Ĝ  in the reduced expression for

F. a and the number of distinct Gt are both bounded by I(X, XQ1'^) =

coX
(

o

n\ We can now apply Lemma 1.2 and its Corollary 2 to our situation.

According to them, there is a positive integer c", which depends only on

P0(x), such that some Gt in G is not a fixed component of Λ(vX) for some

positive integer v < a{c" + 1). Our proof will be completed when we re-

place X by υX and repeat the above process at most c0X
{

Q

n) times.

§3. An application

Let U be a normal protective surface and Yo an ample Cartier divisor

on U. Let V be a non-singular projective surface and g a birational

morphism of Von U. When we let Xo = g*(Y0), X(V, (9(mX0)) is determined

by the two leading coefficients d0, ξ0 of X(U, (9(mY0)) up to finitely many

ambiguities (cf. [13], Lemma 5.2). Therefore, we can find a positive integer
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c, depending only on dQ, f0, such that Λ(rY0) has no fixed component and

L(rYQ) defines a rational map of U with a 2-dimensional image for some

positive integer r < c by Theorem 1.1. Let Y/ ~ rY0 and we choose Yf

so that supp(Y') does not contain a singular point of U. This is possible

as Yo is a Cartier divisor on a normal projective surface V. Let Y be a

general divisor of Λ(Y'), which is absolutely irreducible by a theorem of

Bertini.

The problem of finding a positive integer e, depending only on d0 and

ξ0, such that Λ(mY) has no base point and that L(mY) defines a projec-

tive embedding for m > e was solved by us. Subsequently, J. Kollar

generalized it to dimension 3 (cf. [12]). Moreover, the case of normal

surfaces can be deduced from his proofs. However his proofs are rather

complex. Therefore it may be worthwhile to discuss brief outline of our

original proof for normal surfaces here as it is rather simple.

First note that pa(mY) - (l/2)Y(2>m2 + (1/2)I(KU9 Y)m + 1 as Y is a

Cartier divisor. Then we consider an exact sequence of invertible sheaves

0 > Θ(iY; - Y) > Θ{iY') > Θγ(it)) > 0 ,

where ΐ) = Y/. Y. In the cohomology exact sequence derived from the

above, let μt be the homomorphism: H°(U, Θ{iY)) ~> H°(Y, 0(£tj)) We note

two basic facts on curves with singularities, (a) When deg(iί)) > 2pa(Y)

- 2, h\Y, C{ίϊ))) = 0 (cf. [17]). (b) When deg(^) > 2pα(Y), H°(Y, Θ(i\))) de-

fines a complete linear system Λ(iΐj) of Cartier divisors containing a posi-

tive Y-divisor of the same degree as it) (cf. [15]). Consequently it is base

point free when deg(ή)) > 2pΩ(Y) + 1.

We have an upper bound formula £(mY) ^ d0r
2/n2/2 + cm, where c is

a positive integer which depends only on dQ, ξ0 and r (cf. [13]). Let c1 be the

smallest positive integer such that deg(c^) > I(Kσ + Y, Y) = 2pa(Y) — 2.

Then an implication of (a) above is that h2(U, Θ(jY)) = 0, that {h\U, Θ(iY))}

is monotone non-increasing and that h\U, Φ(jY)) ^ ccx for j >̂ cx. Take

jf ^ ct + 2. If h\U, Θ{jY)) = h\U, Θ{jY + Y)) for such j , μJ+1 is surjective

and Λ((j + 1)Y) has no base point because of (b). If the above equality

does not occur until j = d + 2 + ccly the h\U, Θ(jY)) decrease strictly and

h\U, Θ(jY)) = 0 for all j ^ cx + 2 + ccx. In this case, μJ+1 is surjective

for all such j and Λ((j + 1)Y) as no base point. It follows that there is

a positive integer s ^ cx + 3 + cc1 such that Λ(msY) has no base point for

all positive integers m. Then the existence of e with the stated property
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follows from [10], Chap. II, § 1, Proposition 1 and Theorem 1, since U is

normal.

CHAPTER II

§1.

First we shall review the concept of variable cycles of a linear system.

Let Wn be a variety which is non-singular in codimension 1 and k &

field of definition of W. Let A be a linear system of W-divisors, defined

over k, defined by a vector space L of functions on W in the function

field over k. Denote by h a non-degenerate rational map of W into a

projective space P defined by L and let Hl9 , Hs be independent generic

hyperplanes in P over k. The cycle / i " 1 ^ Hs) defined in terms of

the intersection theory is by definition a variable (n — s)-cycle of A over k.

It is a strictly positive W-cycle when s <* dimlm/i. Otherwise it is the

zero cycle. Numerical equivalence class defined by h~ι(Hι Hs) is de-

noted by Aίn~sl when W is non-singular. The variable cycle of A over k

is uniquely determined, up to a generic specialization over k.

An alternative definition which does not use h is as follows. Let the

Zί be s independent generic divisors of A over k. Let the Dt be the

proper components oΐ Zί f) f] Zs on W with the multiplicities dt such

that the ^-closures of the supp(A) are W. Then Σ ^ A = h'\Hx - H,)

when the Ht are suitably chosen. We need the following elementary but

basic fact concerning the variable cycles3).

LEMMA 2.1. Let Wn be a projective variety, non-singular in codimen-

sίon 1, A a linear system of W-dίvίsors and A! a linear subsystem of A. Let

k be a common field of definition of W, A and Λ!\ let further J and Jf be

variable s-cycles of A and A1 over k. Then there is a positive s-cycle R on

W such that Jr + R is a specialization of J over k.

Proof. Let Zi9 , Zn_s (resp. Z[, , Z^_s) be independent generic

divisors of A (resp. A') over k. We may assume, without loss of gener-

ality, that

3) Lemma 1.2 in [16] is valid only for r = 0 as stated and proved there. [16] uses
only this case of the Lemma. The following Lemma and the Corollaries which follow
are general results valid for all r = s with 0 ̂  s ^ n.
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where Δ (resp. Δ') is a positive s-cycle on W such that supp(J) (resp.

supp(J')) is contained in the base locus of A (resp. Λf). (Z') is a special-

ization of (Z) over k. Let

J + Δ > A + Δ ref. k

be an arbitrary extension of the specialization (Z) -> (Z') ref. k to that of

J + J, where zί denotes a specialization of Δ over £. Let i?' be a proper

component of Z[ Π Π Z^_s, containing a generic point of W over A

(i.e. the ^-closure of supp(£") is W) of multiplicity e. Then 2?' is a com-

ponent of J 7 of multiplicity e and vice versa. It follows that E' is a

component of A of multiplicity β (cf. [18], Theorem 11), since no compo-

nent of Δ can contain a generic point of W over k. This implies that

A — J 7 > 0. This proves our lemma.

COROLLARY 1. With the same notations and assumptions of the above

Lemma, let D be an ample Cartier divisor on W. Then we have

I(D(S\ Λ^-^) > I(D(S\ Λ'ίn-'i).

COROLLARY 2. With the same notations and assumptions of the above

Lemma, assume further that W is non-singular. Let D be a numerically

effective divisor on W. Then we have I(D(S\ Λίn-sΊ) > I(D(S\ A/in~sl).

Proofs. These two Corollaries follow from the Lemma and from the

compatibility of specializations with the operation of intersection-product

(cf. [18], Theorem 11).

§2.

We shall fix the following notations and assumptions throughout the

remainder of this Chapter. Ωo denotes the set of pairs (17, Yo) of normal

protective varieties of dimension n > 1 and ample Cartier divisors Yo on

U such that the polynomial P0(x) defined by P0(m) = X(U, Θ(mY0)) is shared

by all members of Ωo. Let d0 = Y(

o

n\ ξ0 = I(Kϋ9 Y^). When p is a bira-

tional morphism of a projective non-singular variety V on U and /o*(Yo)

= X0, we have d0 = Xp\ ξ0 = I(KV9 X^) and X(V, (P(mX0)) is uniquely

determined by d0 and ξ0 within finitely many ambiguities (cf. [13], Lemma

5.2). And there is a polynomial φo(x) with rational coefficients of degree

at most n — 1, which depends only on d0, ξ0, such that
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\£(rYo)-dor
nlnl\<φQ(r)

for all positive integers by [13]. By [16] and its generalization in [14],

there is a positive integer c'o which depends only on d0, ξ0 such that

L(mCoYo) defines a birational transformation of U for all m > 0. When

we apply Theorem 1.1 to our situation, a positive integer c0, which is a

multiple of Co, can be determined depending only on P(x) such that Λ(mcQY0)

contains an absolutely irreducible divisor4). We let Y = c0Y0 and denote

by Ω the set of pairs (U, Y) with (U, Y0)eΩQ. We define φ(x) by φ(x) =

φo(cox) and P(x) by P(x) = Po(cox). The first two leading coefficients of

P(x) are d = c%d0, ξ — c j " 1 ^ and inequalities above for (U, Y) of Ω can be

expressed as

\6{rY)-drnln\\<φ{r).

From now on, we shall fix one (U, X) e Ω until the end of this section.

We fix the smallest positive integer cλ such that

(1) dmn\n\ - φ(m) - Σ Yin)™>j > Y(n)mn-ί + n > 0
1

for all positive integers m ^ cx. cγ depends only on d and ξ.

The main purpose of this section is to look for a vector subspace L

of L(mY), for some m ^ cl9 which defines a birational transformation of

U satisfying the condition (c) of Proposition 2.1. For this purpose, we

start with a vector subspace Lo (resp. linear subsystem A defined by Lo)

of L(mY) (resp. Λ(mY)) satisfying

(2) dimL0 > Y^m71-1 + n (resp. dim A > Y^m71'1 + n - 1).

Let f0 be a non-degenerate rational map of U into a projective space Pf

defined by Lo. We shall make the following assumption.

ASSUMPTION (A). The graph T of f0 contains a subvariety Fn~r such

that its projection F/ in Pr has dimension n — r -- j , j > 0.

Let k be a common field of definition for U, T and W the image of

f0. The above assumption is equivalent to the following:

There is a point wf in W such that dim(Γ Π U x u/) > 0. It is also

equivalent to the following:

There is a point (u; w;) on T such that dimfc k(u\ wf) > dim*. k(w').

4) The results of §2, § 3 will not use the fact that Λ(mc0Y0) contains an absolutely-
irreducible divisor, cf. Footnote 2).
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Among subvarieties of T which satisfy the condition in (A), there is a

maximal one. Among such maximal subvarieties, we choose one with the

maximum dimension. One such subvariety will be denoted by F. As

above we let dimF = n — r, F/ the projection of F in P/ and dimF; —

n — r — j .

LEMMA 2.2. Let k be a common field of definition for U, f0, F over

which Y is rational and y a generic point of Ff over k. Let p2 be the pro-

jection of T into Pf, Then dimp^1^} = j . Moreover there is a component

A of P2X{y) contained in F, and dim A = j .

Proof. Assume that there is a component B of p^iy} with dimΰ > j .

When G denotes the ^-closure of supp (B), we have dim G — dim B +

dimF / > n — r and its projection in Pf is F\ This is against the choice

of F. Let P2 be the projection of F into P''. Every component A of

Pτ~ι{y] has dimension j and is contained in p2"
1{j/} ^ follows that A is

also a component of p^iy}* This proves the Lemma.

LEMMA 2.3. Using the same notations and assumption of the above

Lemma, let the Hi be n — j independent generic hyperplanes in P' over

k(y), containing y. When P denotes the ambient projectίve space of U,

TΓ)PχH1Γ}--Γ}PχHί, l £ i £ n - j

is a proper intersection in P X P\ When A is a component of P2~
1{3/} w^n

dim A = j , it is a component of the above intersection for ί = n — j .

Proof. T Π P X Ht is clearly proper on P X Pf as dimlm/ = n by

Lemma 1.3 and by (2). Assume that the above intersection is proper for

i ^ s < n — j and let Ws be the intersection for i — s. Ws Π P X Hs+1

is not proper in P X P' if and only if a component of Ws has the projec-

tion which is contained in Hs+1. By the definition of the Ht, this is pos-

sible if and only if a component B of Ws has the projection y in P'. As

dim B <lj by Lemma 2.2, this is impossible when we count the dimension

of the intersection. A is contained in the intersection for ail L Since

the intersection is proper in P X Pr for i = n — j as we have shown

above, the last assertion is also proved.

LEMMA 2.4. Under the assumption (A), we can find a vector sub space

Lx of Lo which defines a linear subsystem Λι of A, having the following

properties:
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(a) dim Lx = dim Lo — 1.

(b) There is a positive integer j with j < n, and a common field kf of

definition for U, A, A1 such that when J, Jλ respectively denote variable j-

cycles of Λ, Λx over k\ there is a strictly positive cycle Δ in the ambient

projectίve space P of U such that Jx -\- Δ is a specialization of J over k\

Proof We shall use the same notations and assumptions of the above

two Lemmas. The subset Λ[ of Λΐeά, consisting of ^YV[T.(U X H)] for all

hyperplanes H in Pf containing y'9 defines a linear subsystem of Aϊeά of

dimension 1 less. We claim that Λ1 = Λ[ + (the fixed part of A) has the

properties (a), (b) of the Lemma.

Let the Hf be n — j independent generic hyperplanes in P' over k\y).

pr^ [T.(U X Hf - - - H%_j)] is a variable -cycle of A over kr(y). It is abso-

lutely irreducible since dimlm/o = n by Lemma 1.3 and j > 0. Moreover

pr t, [T.(U x Hf • • • H*_j)] = pr P [T.(P x Hf • • • H*_j)]

as the latter is also absolutely irreducible as dimlm/o = n and >0 by a

theorem of Bertini. Hence the latter is a variable j-cycle of A over kf(y).

Next we show that

p r P [T.(P XH,'" Hn_j)] ^ J, + p r P A .

T and P x Hγ Hn_j intersect properly on P X Pf and a component A

of the intersection is a component of pϊτ{y}, contained in F by Lemmas

2.1, 2.2. As A projects to the point y in P\ prPA is a strictly positive

cycle in P and is a component of the left hand side above. Letting

Zt = Wu [T.(U X Hi)], we compare three cycles prP [T\(P X Hx Hn_j)]9

prL [T.(U X Hλ Hn_j)] and Zλ Zn_5. First we have an obvious relation

piV [T.(P X Hx Hn.j)] > Wu [T.(U X fl; ίΓn_,)] ,

when the latter is identified with a P-cycle. Also we have

p r , , [ T . ( U X Hx H n _ , ) ] = %••• Z n _ 5 + E ,

where every component of E has the property that fQ is not defined along

it (cf. [20], Chapter VIII, Theorem 11 and Lemma 2.2). Finally, as the Zt

are independent generic divisors of /lUΐeά, over k'(y), we have

Z, •Zn.]^J1,

where J, denotes a variable ./-cycle of Λ, over k'(y). Therefore every com-

https://doi.org/10.1017/S0027763000022741 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022741


POLARIZED NORMAL VARIETIES 191

ponent of Jj contains a generic point of U over k'(y). Then these three

facts imply that prP [T.(P X H1 Hn_ά)] — Jλ > 0. As prP A is algebraic

over k'(y), our assertion has been proved.

Hι - Hn_j is a specialization of iff Ή*_3 over k'(y). Then

piV [Γ.(P X Hf #?-,)] • > prP [T.(P X H, • #,_,)] ref. &'(;y)

by the compatibility of specializations with the operations of intersection-

product and algebraic projection (cf. [18]). Since the former is a variable

7-cycle J of A over kf(y), our Lemma has been proved.,

COROLLARY.

U YU)) ^

in general.

Proof. The first inequality follows from our Lemma and from the

compatibility of specializations with the operation of intersection-product

(cf. [18]). The second inequalities follow from Lemma 2.1 and from the

fact that A is a linear subsystem of A(mY).

PROPOSITION 2.1. Let m be an arbitrary positive integer satisfying

m >̂ cλ. Then there is a positive integer s with the following properties:

(a) s ^ Σi'1 Y{n)m\

(b) There is a linear subsystem A* of A(mY) such that

dim/I* = dim A(mY) — s

and that A* defines a rational map f of U into a projective space such that

dimlmf = n.

(c) Let Imf= Uf and T the graph of f on U X U\ Then every point

u' of U' satisfies dim(T Π U X u') - 0.

Proof. Assume that a non-degenerate rational map / defined by A(mY)

satisfies the assumption (A). Otherwise, there is nothing to prove. Then

there is a linear subsystem A1 of A(mY), having the properties described

in Lemma 2.4 and its Corollary. By our choice of m (cf. (1)), we have

dim A, = dim A(mY) - 1 ̂  Y^m71"1 + n - 1 > 0,
7 2 - 1 n - 1

Σ I(Λψ, YH)) £ Σ Ywm* - 1.
1 1
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Assume that a linear subsystem Λt of Λt^ has been already defined

by applying Lemma 2.4, due to the fact that the Λu for i < t, satisfy the

assumption (A). Then Λt satisfies

dimΛ = dimΛ(mY) — t.

Since the hand side of the first inequality is non-negative, t satisfies

TO-l

t fj 2ll Y mz.
1

When that is so, (1) and Lemma 1.3 show that a non-dengerate rational

map ft of U defined by Λt has the property that dimlm/^ = n.

Assume further that the assumption (A) is still valid for ft. Then

Λt+1 can be found by applying Lemma 2.4. Λt+ί satisfies

dimΛί+1 = dim Λ(mY) - (t + 1),

1

The second inequality shows that t + 1 <̂  ^ ί " 1 Yin)m*. It also shows that

Λt+ί defines a non-degenerate rational map of U with an n-dimensional

image by the same reason as above and that our operations cannot be

continued more than Σ i " 1 Y^m* times. It follows that there is a Λ8,

Σΐ"1Σ ΐ Y^m* such that Λs does not satisfy the assumption (A) and that

Λs defines a non-degenerate rational map with an n-dimensional image.

Our Proposition is thereby proved.

In order to strengthen our result, we first prove the following lemma.

LEMMA 2.5. Let Λ* and Λ(mY) be as in the above Proposition, Z a

member of Λ* and M a vector subspace of L(Z) which defines Λ*. Let

1 = £o>£i> ' ',gr be a basis of M and N a finite dimensional vector space

of rational functions on U containing 1. Then the vector space

L = ±N.g,
0

defines a non-degenerate rational map μ of U with an n-dimensional image,

and the graph of μ satisfies (c) of the Proposition. Furthermore, when N

defines a bίrational transformation of U, μ is also a birational transforma-

tion.
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Proof. The first and the last assertions are obviously true. Let k"

be a field of definition for U satisfying the following conditions: Y is

rational over k"\ the functions gt are in the function field k/;(U); N has

a basis 1 = h0, hu , hs in k"{U). Then L is spanned by the functions

higj. Let T be the graph of a rational map of U defined over k" by

u — > (ho(u)gϋ(u): • : ht(ύ)g£u): : K(u)gr(u)).

In order to prove the second assertion of the Lemma, it is enough to

prove that T has the property (c) of the last Proposition. Let (u, w) be

a generic point of T over k" and (u', wf) an arbitrary point of Γ. There

is a place ζ of k"(u9 w) over k" such that ζ(w, w) = (u\ wf). There are

indices p, q such that ζ is finite on

( . . . , hi(u)lhp(u), ) , ( •, gj(u)lgq(ul ) •

Let their images by ζ be respectively (£'), (ι/) Then ( , £ ι/J, •) is a

set of affine coordinates of wf and (t')9 (vf) are contained in it as subsets.

A non-degenerate rational map of U defined by M satisfies (c) of the last

Proposition. It follows that dim&- k"(μ\ (ι/)) ^ diπv k"((υf)). It follows

that άimk»k"(u, ιvf) ^ άimk,,k"(ιvf). Our Lemma follows from this.

PROPOSITION 2.2. Let m be an arbitrary positive integer such that

m I> Cj. Then there is a vector subspace L of L(mY) with the following

properties:

(a) A non-degenerate rational map f defined by L is a birational trans-

formation;

(b) The graph of f satisfies (c), Proposition 2.1.

Proof By definition, the vector space L(Y) defines a birational trans-

formation of U. Let Z, M and the gt be as in the above Lemma. When

L is defined by L = ^χlL{Y)gu Lemma 2.5 above shows that L has the

properties (a) and* (b) of our Proposition.

s *"

The main purpose of this section is to show the existence of an

algebraic family 33 of finite type such that whenever (U, Y) is a member

of Ω, there is a member V of S3, which is non-singular and projective,

and a birational morphism p of V on U. In order to carry this out, we

shall fix the following convention. By an irreducible algebraic family, we
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understand a triple [W; Z, A] where W and A are absolutely irreducible

non-singular varieties, Z a cycle on W X A and Z has the property that

w X A |Ί Z is a proper intersection on W X A for every point w on W.

The members of the family consist of Z(w) defined by (w X A).Z =

w X Z(w). When [W; Z, A] and [W; D, A] are two irreducible algebraic

families such that Z(w) is absolutely irreducible and that D(w) is a cycle

on Z(w)f we shall say that [W; (Z, D), A] is an irreducible family of pairs

(Z(W),D(w)), etc.

LEMMA 2.6. Let (U,Y)eΩ, m an arbitrary positive integer and f a

non-degenerate rational map of U into a protective space P defined by

L(mY). Then

dim P < dmn\n\ + φ{m), deglm/ ̂  Y^mn .

Proof. The first inequality follows from the upper bound formula in

Section 2. The second follows from the fact that the degree of the inter-

section-product of n general divisors in Λ(tmY) for large t is at least equal

to that of the intersection-product of n general hypersurface sections of

Im/ by hypersurfaces of degree t.

The following Lemma is well-known (cf. [16], Appendix, Lemma 8).

LEMMA 2.7. Let 2ί be an irreducible algebraic family of absolutely

irreducible subvarίetίes of a protective space P. Then there are two finite

union of irreducible families U, [W<; Bu Pr\ U J ^ ; Tu P X P'], where P

denotes a protective space, with the following properties:

(a) Whenever w, is a point of Wi9 B^w^) is an absolutely irreducible

subvariety of P\ non-singular in codimensίon 1, and T^w^) is the graph

of a birational morphism of B^Wi) on a certain member A of 21.

(b) There is a positive integers st such that whenever (B^Wi), T^w^, A)

is as in (a), h the birational morphism of B%(w^) on A defined by T^w^)

and whenever C is a hyperplane section of A,

Sih*(C) ~ L

holds, where L is a hyperplane section of B^Wi).

(c) Conversely, when A is a member of 21, there is an index i and a

point Wι on Wt such that (B^Wi), T^w^), A) has the properties described in

(a) and (b).

LEMMA 2.8. Let % be an irreducible algebraic family of absolutely

irreducible subvarieties of a protective space P which are assumed to be
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non-singular in codimensίon 1. Then there are two finite unions of irre-

ducible families (J* [W,; Bu P'], (J< [W,; Tu P X P'] with the following

properties:

(a) Whenever wt is a point of Wu Bt{w^ is an absolutely irreducible

non-singular subvarίety of Pf and T^w^) is the graph of a bίrational mor-

phism of B^Wi) on a certain member A of SI.

(b) Let Bi(wz), Ti(Wi), A be as above and h the birational morphism

of Bi(Wi) on A defined by T^w^). Then there is a positive integer tu which

depends only on the index i such that h~ι is defined by a linear subsystem

of the linear system of hypersurface sections of A by hypersurfaces of degree

tu containing absolutely irreducible A-dίvίsors.

(c) Conversely, when A is a member of 21, there is an index i and a

point Wi on Wt such that (B^Wi), T^Wi), A) has the properties described in

(a) and (b).

Proof. This is also well-known and we shall not go into details of

a proof. It can be proved, as in the case of Lemma 2.7, using results

contained in [16], Appendix, by using two facts (i) and (ii) below which

are well-known too.

(i) When [W; T, P] is an irreducible family of irreducible subvari-

eties of P, the set of points w on W such that T(w) has a singular point

is a closed subset of W.

(ii) Let Z be an absolutely irreducible subvariety of a protective

space and Λ(t) the linear system of hypersurface sections of Z by hyper-

surfaces of degree t. Then a monoidal transformation of Z with an

absolutely irreducible non-singular center is denned by a linear subsystem

of Λ(t), containing an absolutely irreducible hypersurface section by a

hypersurface of degree t, by taking large t (cf. [21]). Moreover, finite suc-

cession of such transformations desingularize Z (cf. [7]).

THEOREM 2.1. There is a positive integer c2 and a finite union 2? of

irreducible algebraic families with the following properties.

(a) Member of 33 are of the form (V, X), where V is an absolutely

irreducible non-singular subvariety of a fixed projectίve space and X a posi-

tive V-dίvisor, satisfying άegX <; c2Y
{n).

(b) When (U, Y)eΩ, there is a member (V, X)e93 with a birational

morphism p of V on U such that p*(Y) ~ X.

Proof. Using the results of Proposition 2.2, let / be a non-degenerate

https://doi.org/10.1017/S0027763000022741 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022741


196 T. MATSUSAKA

birational transformation of U, (U, Y) e Ω, into a projective space which
is defined by a vector subspace L of L{cxY), having the property (c) of
Proposition 2.1. By Lemma 2.6, we may assume that Im/ is contained in
the projective space of dimension dcl\n\ + φ(c^) with the degree ^ clY{n).
Then Im/ is contained in a finite union SI of irreducible algebraic families
of absolutely irreducible varieties (cf. [3]).

Fixing one member (U, Y)eΩ, let / be as above and A the image of /.
A is a member of 21. By Lemma 2.7, there is a finite union S3 of irredu-
cible algebraic families corresponding to 2ί having the properties described
in the Lemma. In particular, there is a member B of 93, which is non-
singular in codimension 1 and a birational morphism h of B on A. By
Lemma 2.8, there is a finite union 33 of irreducible algebraic families of
non-singular subvarieties of a projective space, corresponding to the family
S3 with the properties described in the Lemma. In particular, there is a
member V and a birational morphism g of V on B.

Let pf = f~ιoh and p = ρf °g. Since / has the property (c) of Prop-
osition 2.1, p is easily seen to be a birational morphism. Let Yf be a
member of Λ(Y) and X = p*(Y'). X is a positive semi-ample F-divisor.
Let Z be a general divisor of the linear system without fixed component,
defined by the vector space L. By the definition of /, we have f[Z] — CA,
a general hyperplane section of A. By Lemma 2.7, (b), there is a positive
integer s such that s/r^CJ — CB where CB denotes a general hyperplane
section of B. g~l[CB] = g~\CB) = g*(CB). h~ι[CA] is a general divisor of

a linear system of Cartier divisors on B without base point. It follows
that g-χ[h~ι[CAλ = g*(h-ι[CA) and that sg^h^CA) - g*(CB). By Lemma
2.8, (b), there is a positive integer t such that tg*(CB) ~ Cv + G, where

G > 0 and Cv is a hyperplane section of V.
Cv + G and hence

This shows that p~ι[stZ] -

p*(stClY) ~ Cv F, F > 0 .
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Let G + F = F'. Note that X is semi-ample on V and

st^X. Then, letting C = CF, we can estimate I(X, C(n~1}) easily as follows:

'"-1') ^ I(X, C + F', C(w~2))

Since there are only finitely many possibilities for s and t by Lemma 2.7,

(b) and Lemma 2.8, (b), we define c2 to be the maximum of (stc^71'1. Since

Xis a positive divisor on V with degX <ΞJ c2Y
(n), we can find a finite union

93' of irreducible algebraic families of pairs (V, X), where V e 93 and X a

positive V-divisor with 0 < degX<Ξ c2Y
(n\ by the main results on Chow

forms and incidence correspondences (cf. [3]). This proves our Theorem.

THEOREM 2.2. Assume that there is a positive integer c[ ̂ > cί9 which

depends only on Ω, such that whenever (U, Y)eΩ, a vector subspace U of

L{c[Y) has the properties (a), (b) of Proposition 2.2 and defines a linear

subsystem of Λ(c[Y) without fixed component. Then Theorem 2.1 is valid

as it is {with possibly different c2 and 93). Moreover, there is a positive

integer c3, which depends only on Ω, such that when (V, X) e 93 corresponds

to (U, Y)eΩ in the sense of (b), Theorem 2.1, czX ~ C + G, where C is a

very ample divisor on V and every component of G is contracted by p.

Proof We shall use the same notations of the above proof, except

that c1 is replaced by c[ and 93 denotes the family of Theorem 2.1, corre-

sponding to the constant c[. Our result will follow by analyzing G and

F in the above proof. Let CB%t be a general hypersurface section of B

by a hypersurface of degree t. By Lemma 2.8, (b), g'1 is defined by a

linear subsystem of hypersurface sections of B by hypersurfaces of degree

t, containing an absolutely irreducible divisor. Let CB)t denote one such

divisor. Then g*(C'Bit) — Cv + Gr, Gf > 0 and every component of G' is

contracted by g. g*(C'Btt) - g*(CBtt) - tg*(CB) ~ Cv + G, where G is a

positive divisor in the last proof. Hence G = G' and every component of

G is contracted by g. When that is so, every component of G is con-

tracted by pr o g = p as h is a birational morphism and / has the property

(c) of Proposition 2.1. The divisor Z in this case is an absolutely irre-

ducible divisor in A(c[Y) by our assumption. It follows that p*(stc[Y) ~

p*(stZ) — p~ι[stZ] + F, where every component of F is contracted by p. It

follows that p*(stc[Y) - Cv + F', Ff > 0, and every component of F' is

contracted by p. Since there are only finitely many possibilities for s
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and t, we define c3 to the L.C.M. of the stc[. Then c3 has the desired

property.

§4.δ)

We shall prove first a Riernann-Roch type inequalities for a semi-

ample divisor on a non-singular projective variety V, which coincides

with the X-value in the first two highest degree terms. This unfortunately

depends not only on the polynomial X(V, Θ(mX)) but also on a choice of a

very ample V-divisor. But it provides us with a sharper estimation of

£(rY) than that of [13] whenever (U, Y) e Ω in view of Theorem 2.1 (cf.

also [13], Lemma 5.2). The inequalities will be used to justify the assump-

tion of Theorem 2.2 among others.

LEMMA 2.9. Let Vn be a non-singular variety and C a very ample V-

divisor. Then there is a non-negative integer s, which depends only on

C(n) and I(KV, C^"^), such that Kv + mC is very ample for m ^ s.

Proof. There is a non-negative integer u fg n + 1 such that £(KV +

uC) > 0 by the vanishing theorem. Then when we let

s' = (I(KV, C*"-1') + uC^).(Cw - 2) + (u + ί)C(n),

Kv + mC is very ample on V for m >̂ s' (cf. [20], Chap. IX, Corollary,

Theorem 13). Our Lemma follows from this at once.

LEMMA 2.10. Let Vn be a non-singular projective variety, C a very

ample V-divisor and X a semi-ample divisor on V. Let s be the integer

in Lemma 2.9. Then there is a positive integer s, which depends only on

Z( V, Θ{vJ£v + v2X + vzC)), such that £{sX - Kv - sC) > 0.

Proof. Let E be an absolutely irreducible non-singular divisor such

that E — Kv + sC. We have the following well-known equality

S(mX) - S(mX - E) + dimTrEL(mX).

Let X' - X.E. £(mX - E) = 0 implies that £(mX) ^ £(E; mX% Xf{n~l) and

J(UL£,X
/(n-20 are determined by the polynomial X(V, e(vxKv + v2X + vzC))

5) Contents of this paragraph are not new and are essentially reproduction of a
part of the works of S. Cutkosky in the special case of semi-ample divisors. The results
make dependence of estimations on invariants clear. The lower bound similar to that
of Proposition 2.3 and Theorem 2.3, (b) may be obtained also from the results of [19],
[22] when we use the main result of [16].
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and s. It follows that there is a positive integer s', determined only by

the given data in our Lemma, such that

£(E; mX') < X/{n~l)mn-ιl(n - 1)! + s'mn'z

for all positive integers by [13], Theorem 2 and Lemma 5.2. Therefore,

the equality £(mX - E) = 0 leads to

X^mn\n\ - Q(m) < X'^-W'/fa - 1)! + s'm71'2,

where Q(x) is a polynomial with rational coefficients of degree at most

n- 1, which depends only on X<*> and I(KV, X^n~l)) (cf. [13]). Our Lemma

follows from this easily.

PROPOSITION 2.3. Let Vn be a non-singular protective variety, X a

semi-ample V-divίsor and C a very ample V-dίvisor. Let r be a positive

integer and assume that rX + D is semi-ample on V. Then there is a polyno-

mial R(x) of degree at most n — 2 with rational coefficients, which depends

only on X(V, Θ{υxKv + v2X + u3C + D)) such that

X(V, Θ(rX + D)) - R(r) £ ί(rX + D).

Proof. Let Z = rX + D. By Lemma 2.9, we can find a positive in-

teger s depending on the polynomial above such that Λ{KV + sC) contains

an absolutely irreducible ample non-singular divisor E. We have a well-

known equality

£(Z + E) = £(Z) + dimTrEL(Z + E).

There is a positive integer u ^ n + 1 such that ί{Kv + uX) > 0 by the vani-

shing theorem. Then we have £(E; KE + (uX + Z).E) ^ dimTr^L(Z + E)

by our choice of u and by the adjunction formula. It follows that

£{Z) ̂  £(Z + E)~ £(E; KE + (uX +Z).E).

Z + E ~ Kv + Z + sC. uX + Z and Z + sC are both semi-ample on V by

our assumption. When that is so, £(E; KE + (uX + Z).E) = X(E, Θ(KE 4-

(uX + Z).E) and £(Z + E) - X(V, Θ{Z + E)) by the vanishing theorem.

Then a straight forward calculations show the existence of R(x) as as-

serted in our Proposition.

PROPOSITION 2.4. Let the notations and assumptions be as in the above

Proposition. Let s be the positive integer of Lemma 2.10. Let r be a posi-

tive integer such that r — s > 0 and assume that (r — s)X + D is semi-
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ample on V. Then there is a polynomial R'(x) of degree at most n — 2 with

rational coefficients, which depends only on the polynomial X(V,Θ(v1Kr +

v2X + vzC + D)), such that

£(rX +D)^ X(V, ΘirX + D)) + R'(r).

Proof. Letting sX ~ Kv + Δ, Δ > 0, we shall use the same notations

of the proof of the above Proposition. We first observe that Z + Kv + sC ~

2KV + sC + Z- sX + Δ. LetF = 2Kv + sC + Z- sX. As L(F) is a vector

subspace of L(KV + sC + Z) and as Kv + sC — E by definition, we find

an inequality

£(Z + E) ^ £(Z) + dimTr^L(F)

from the first equality in the above proof. We have an exact sequence

of invertible sheaves

0 > Θ(F - E) > Θ(F) > ΘE(F.E) > 0 .

Z — sX = (r — s)X + D is semi-ample on V. Then higher cohomology

groups of all three sheaves above vanish by the vanishing theorem as

Kv + sC is very ample. It follows in particular that dimTr^L(F) —

£(E; KE + (Z — sX). E). Then straight forward calculations show the ex-

istence of R'(x) as claimed in our Proposition.

THEOREM 2.3. Let 93* be an irreducible algebraic family consisting of

triplet (V,X,D) where V is a non-singular subvarίety of a fixed protective

space and X, D are V-diυisors respectively. Then there are two polynomials

R(x) and Rf{x) with rational coefficients of degrees at most n — 2 with the

following properties.

(a) Let (V, X, D) be a member of 93* such that X is semi-ample on

V and r a positive integer. Assume that rX + D is semi-ample on V.

Then we have

£(rX + D) ^ X(V, Θ(rX + D)) - R(r).

(b) There is a positive integer s with the following properties. Let

(V, X, D) be a member of 93* such that X is semi-ample on V. Let r be a

positive integer such that r — s > 0 and assume that (r — s)X + D is semi-

ample on V. Then we have

£{rX + D) ^ X(V, Θ(rX + D)) + R'(r).
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Proof. This follows at once from Lemmas 2.9, 2.10 and Propositions 2.3,

2.4.

COROLLARY. There are finitely many pairs (Ri(x), Ri(x)) of polynomials

with rational coefficients of degrees at most n — 2 and a positive integer c4

with the following properties: Whenever (U, Y)eΩ, there is an index i

such that

ί(rY) ^ drn/nl - ξrn~η2.{n - 1)! - Rt(r)

for all positive integers r and

£(rY) £ drn/n\ - ξrn~uβ.{n - 1)! + R\{r)

for all positive integers r satisfying r — c4 > 0,

Proof. This follows from the Theorem and from Theorem 2.1.

We shall prove here with the aid of the results of Section 4 that

there is a positive integer c[ and a linear subsystem of Λ(c[Y) without

fixed component for every (£7, Y) e Ω having two properties (a), (b) of Propo-

sition 2.2. As a consequence, the assumption in Theorem 2.2 is fulfilled

when we take cί >̂ cx.

We start with the following situation. We let sQ = Cj. According to

Proposition 2.2? there is a vector subspace Uo of L(s0Y) for every (U, Y) e Ω,

such that a non-degenerate rational map f0 of U defined by L'Q is a bira-

tional transformation of U and that the graph of f0 has the property (c)

of Proposition 2.1.

We shall fix one member (U, Y) in Ω for the sake of our discussions.

Let Ao be the linear subsystem of Λ(s0Y) defined by Uo and B the fixed

part of ΛQ. Let AQ be a general fixed divisor of ΛQiTeύ. Let A be a func-

tion U such that div(/ι) = sQY ~ (AQ + B). Then LQ = h.L[ is a vector

subspace of L(A0 + B) containing 1. Let {1 = gQfglf -9ga} be a basis of

Lo. We shall also assume that B Φ 0.

LEMMA 2.11. Let B; be a U-divisor with 0 < Bf <Ξ B. Assume that

Λ(sT + Bf) has no fixed component for some s > 0. Then the vector space

U defined by

https://doi.org/10.1017/S0027763000022741 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022741


202 T. MATSUSAKA

has the properties (a), (b) of Proposition 2.2. Moreover, U defines a linear

subsystem of Λ{sY + Ao + Bf) without fixed component.

Proof. The first part of our Lemma follows from Lemma 2.5, as L(sY)

and hence L(sY + Bf) defines a birational transformation of U by the

definition of Ω. The second assertion follows at once from the definitions.

LEMMA 2.12. Let B — 2 &Λ be the reduced expression for B. Then

the bi9 Σbi and I(BU Y^"1)) are bounded above by s0Y
w.

Proof. This follows from the linear equivalence relation sQY ~ AQ + B

and from the fact that Y is an ample Cartier divisor on U.

LEMMA 2.13. Let Bλ be a component of B and s a positive integer such

that s > s0. Then Λ(sY — B^) is not empty, and when F — B1 is the fixed

part of yl(sY — B^), it satisfies 0 < F <̂  B. Moreover, when we denote by

A! the minimum sum of A((s — sQ)Y) and A^ΐeά, we have the following

relations:

Λ(sY) =) Λ{sY -F) + Fi)Λf + B.

Proof. sY - (s - sϋ)Y + s0Y and s0Y - Ao + B. It follows that

A(s Y — Si) is not empty. Y defines a complete linear system without

fixed component and the same is true with Ao by our definitions. There-

fore, when we note that sY — (s — s0)Y + Ao + (B — B^ + Bu we must

have F-B^B-B,. When that is so, Λ(sY) D Λ(sY - F) + FZD Af + B.

LEMMA 2.14. Using the same notations and assumptions of the above

Lemma, we can find a positive integer rs, depending only on s and Ω, such

that

β((rs - s)Y + F)> S(rs - s)Y).

Proof. By the definition of F, A(sY — F) has no fixed component.

Moreover, it contains A! + (£> — F) as a linear subsystem by the above

Lemma. By the definition of Af and by the fact that Λ0,red is not com-

posed of a pencil as LQ defines a birational transformation, A(sY — F) is

not composed of a pencil. It follows that a general divisor E of A(s Y — E)

is absolutely irreducible by a theorem of Bertini. Let m be a positive

integer such that m > s and assume that £((m — s)Y + F) = £((m — s)Y).

When we note that E + F — sY, we find that the following equality holds:

£((m - s)Y) + dimTr^L(7nY) = £(mY).
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In order to show that this is impossible beyond a certain value of m, we

shall seek an upper bound of dimTr£L(mY).

Let g: V—>Uhe a desingularization of U with the following properties:

(i) g is a birational morphism; (ii) The complete linear system A on V

consisting of counter images of divisors in Λ(sY — F) by g has the prop-

erty that yired has no base point (cf. [7]). Then g'ι[E\ = Z, which is a

general divisor of /lred, is an absolutely irreducible and non-singular divisor

by the theorems of Bertini. When we let X = g*(Y), there is a positive

divisor G with

Λ + G c A(sX), G^Lg-ι[F],

as E + F ~ s Y. A and hence A(s Y — F) defines a birational transforma-

tion of U. It follows that A defines a birational transformation of V. In

order to apply Proposition 1.4, we let m = rs where r is a positive integer.

According to the Proposition, there is a positive integer v, which depends

only on s and the polynomial X(V, Θ(tX)) such that

£(Z; rsX.Z) ^ (7(Z, X^)sn-χl(n - I)!)/-""1 + vrn~2.

1{ V, Θ(tX)) is one of the finitely many polynomials determined by d and

ξ (cf. [13], Lemma 5.2). We choose the largest possible v among finitely

many possible υ's so that it is determined uniquely by s, d and ξ. We have

I(E, Y'"-1') - I(sY - F, Y^-1)) ^ sY^ - 1,

and I(E, Y(w-1}) - I(Z,X^~^). Moreover, dimTr£L(τnY) < άimΎrzL(mX) ^

£(Z; mX.Z). It follows that

dimTrEL(rsY) ^ (snd - sn-ι)rn-ιl{n - 1)! + vrn~\

where d = Y(n).

Let 772 — 5 = rs — s > c4. Then by the Corollary to Theorem 2.3, we

have

P(rs - s) + R&rs - s) + (swd - sn~ι)rn-ιj{n - 1)! + urn"2

^ P(rs) - i?,(rs) ,

where (Ri(x), Ri(x)) is one of the finitely many pairs of polynomials of the

Corollary. Since these two polynomials are of degree at most n — 2 with

rational coefficients, straight forward calculations show the existence of

the smallest positive integer r0 such that the above inequality is impos-

sible for r >̂ r0, irrespective of the choice of the pair (Ri(x), R&x)). This

proves our Lemma.
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COROLLARY 1. With the same notations and assumptions of our Lemma,

there is a positive divisor F' with B ^> F > F' > 0 such that A((r — s)Y

+ F;) has no fixed component.

Proof. This follows at once from our Lemma.

COROLLARY 2.

(a) Σ%L((rs — s)Y + F')gt = L[ has the properties (a), (b) of Proposi-

tion 2.2.

(b) L[ is a vector subspace of L((rs — s)Y + Ao + B). When Λx is the

linear subsystem of Λ((rs ~ s + so)Y) defined by L[, the fixed part BiΌ of

Aλ is given by B — F; and B > B(1).

Proof (a) follows from Lemma 2.5. The first part of (b) follows from

the definition of the gt. The latter half of (b) follows from Lemma 2.11

and from the above Corollary 1.

PROPOSITION 2.5. We can find a positive integer c5, depending only on

Ω, having the following properties:

(a) There is a vector subspace M of L(c5Y) which has the properties

(a), (b) of Proposition 2.2;

(b) M defines a linear subsystem of Λ(cbY) without fixed component.

Proof. We start by letting s — s0 in Lemma 2.11. Let rs0 — s be the

positive integer of Lemma 2.14. Since s is determined, depending only on

Ω, the same is true with sγ. Let L1 be the vector subspace of L(sxY),

isomorphic to the vector space L[ of Corollary 2, Lemma 2.14. The linear

subsystem Λ1 of Λ{s1Y) defined by L{ has the fixed part B(1), which satisfies

s0Y^ > KB, Y'"-1') > I(B(1), Y'*-1))

by Lemma 2.12 and by Corollary 2, Lemma 2.14. Then the above process

can be started again with Lu L(SiY) and the fixed part JB(1) of Ax. It can

be continued until we get a vector subspace Lt of L(stY) such that the

linear subsystem Λt of A(stY) defined by Lt has no fixed component. The

process terminates at most by s0Y
{n)-steps, since the degrees of the fixed

parts we obtain decrease step by step by (b), Corollary 2, Lemma 2.14.

This proves our Proposition.

§ £*
Ό

We shall apply here the earlier results of Chapters I and II to the
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subset Ωf which consists of pairs (U, Y) in Ω such that the singularities

of U are only rational singularities.

LEMMA 2.15. Let Zn be a normal projective variety, W a non-singular

projectίve variety and g a biratίonal morphίsm of W on Z. Let Y be an

ample Cartier divisor on Z and X = g*(Y). Assume that Z has rational

singularities only. Then 1{W, Θ{mX)) = X(Z, Θ{mY)) and h\W, Θ{mY)) =

h*(Z, Θ(mY)) for all i > 0 and m.

Proof. Let & = Ow ® Θw(g*(mY)) = Θw(mX). Rqg*& is coherent on

Z for q > 0 and there is a Leray spectral sequence

Eξ>* = HP(Z, R?g*&) = > Ep + q = Hp + q(W, S

(cf. [5]). The well known projection formula shows that

{Rqg*Ow) (x) Θz{mY)

and Rqg*Θw — 0 for q > 0 by our assumption on singularities of Z (cf.

[9]). This implies that HP(Z, Rqg^) = E\« = 0 for q > 0 and the spectral

sequence degenerates. It follows that EP'° ^ Ep for p > 0, which is equi-

valent to

H*(Z, B?g*&) s i/p(W, JO for p > 0 .

Since g is a birational morphism on a normal projective variety Z,

R°g*&w = giflw = ^ and R?g%!F = Θz(mY) by the above projection formula.

Our Lemma follows from this and from the definition of the Euler-Poincare

characteristic.

Let Ω be the set of pairs (£/, Y) defined in Chap. II, Section 2 and Ω/

a subset of Ω. Let 93 be a finite union of irreducible algebraic families

with the following properties:

(a) Members of S3 are of the form (V, X) where V is a non-singular

subvariety of a fixed projective space and X a V-divisor;

(b) Whenever (£7, Y)eΩ\ there is a member (V, X)eS3 and a bira-

tional morphism p: V-> E7 such that X — />*(¥);

(c) There is a positive integer c such that whenever (U, Y), (V, X)

and /? are as in (b), cX ~ C + G> where C is a very ample F-divisor and

G a positive F-divisor such that every component of it is contracted by p;

(d) When SŜ  is a component family of 93, it contains a pair (V, X)

which corresponds to a member (J7, Y) e β r in the sense of (b).

When V satisfies these conditions, we shall say that 93 is an algebraic
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family associated with Ωf. When (17, Y) and (V, X) are as in (b), we shall

say that (U, Y) corresponds to (V, X) and that (V, X) corresponds to (U, Y).

Theorem 2.2 and Proposition 2.5 show that there is an algebraic family

93 which is associated with Ω. When that is so, we can find an algebraic

family associated with Ω' at once from 93 by deleting some component

families, if necessary. From now on, we shall assume that Ω' is a set

of ([/, Y) in Ω such that singularities of U are rational singularities and

that 93 is an algebraic family associated with Ω'.

LEMMA 2.16. Let 93̂  be a component family of 93. Let (V, , XJ) be a

fixed member of 93 ̂  corresponding to a member (Ϊ7 , Y0 in Ω/ for each ί.

Then we can find a positive integer c6, depending only on Ωf, having the

following properties:

( i ) h'(V'i9 0(cβX{)) - 0 for j > 0 for all i;

(ii) Λ(c6X0 has no base point for all i;

(iii) For each i, we can find a non-empty open irreducible subfamily

93; of %$ί9 such that whenever (F, X)e93 , Λ(c6X) has no base point and

β(c6X) = £(c6X0.

Proof. Since Y is an ample Cartier divisor on a normal projective

variety U'i9 (ί) and (ii) follow at once from Lemma 2.15. Let k be a field

over which every 93* is defined. Let us omit the index i for the sake of

simplicity from this point on. Let (V, X) be a generic pair of 93 over k.

We have hj(V, Θ(c6X)) = 0 for j > 0 by the upper semi-continuity. It fol-

lows that

by the invariance of the Euler-Poincare characteristic by specialization.

Let T be the support of the Chow-variety of Λ(c6X) and (V, X\ T) SL

specialization of (V, X, T) over the specialization (V, X) -> (V, Xf) ref. k.

The invariance of linear equivalence by specialization (cf. [18]) shows that

Tf is contained in the support of the Chow-variety of Λ(c6X'). Then

β(c6X) = £(c6X') implies that Tf is the support of the Chow-variety of

Λ(c6X'). The absence of base points in Λ(c6X) follows from this easily.

The rest of (iii) then follows from the Lemma in Appendix 1.

THEOREM 2.4. We can find a positive integer c7 such that whenever

(U, Y) is a member of Ω', cΊY is very ample on U and hj(U, Θ(mc1Y)) = 0

for j > 0, whenever m is a positive integer.
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Proof. By applying the above Lemma finitely many times, we can

find a positive integer d such that whenever (V, X) is a member of $8,

corresponding to a member (£7, Y) of β', then Λ(dX) has no base point.

Let p be the birational morphism of V on £7. Λ(dX) consists of ρ*(Z)

with Ze(cΎ). Hence Λ(cΎ) cannot have a base point.

When we use the Riemann-Roch inequality \i{rY) — drnjn\\ < φ(r) in

Section 2, we can find a positive integer c" such that

H°(U, Θ(mcΎ)) <g> H°(U, Θ{cΎ)) • H°(U, 0((m + V)cΎ))

is surjective and h\U, (9{mcΎ)) = 0 for i > 0, m > c" by [10], Chap. II,

Proposition 1 and Theorem 1. The first implies in particular that md Y is

very ample for such m as U is normal. Our theorem follows from this.

APPENDIX I

LEMMA. Let [M;{W,Z),P] be an irreducible algebraic family satisfy-

ing the following conditions: (i) For every ur in M, W(u') is absolutely

irreducible and non-singular in codimension 1; (ii) Z(uf) is a positive divisor

on W(uf). Then there is a non-empty open subset Mf of M and irreducible

algebraic families [M'\ T, P X P'] and [M' F, P] with the following prop-

erties :

(a) Whenever u', uff are points of M\ £(Z(u')) - £{Z(u")) and T(u') is

a non-degenerate rational map of W(uf) into a projective space Pf defined

by L(Z(u%

(b) When uf is a point of M\ F(uf) is the fixed part of Λ{Z(u;)).

Proof. The first part of (a) follows from Proposition 1, Appendix in

[16], when we take a suitable open subset Mo of M.

Let k be an algebraically closed field of definition for [M;(W,Z),P]

over which Mo is £-open. Let u be a generic point of M over k. As

W(u) is non-singular in codimension 1, L(Z(u)) has a basis over k(u). It

follows that there is a non-degenerate rational map fu of W(u), defined

over k(u), mapping W(u) into a projective space P;. Let Tu be the graph

of fu. Since Tu is defined over k(u), there is an absolutely irreducible

subvariety T of M x P X P ; , defined over k, such that T(u) = Tu. The

set Mx of points u' of M such that every component of υ! X P X Pr Π T

is proper and T(u') is absolutely irreducible is £-open on M (cf. Lemmas
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1, 2, Appendix, [16]). When we use the technique of Chow-forms and in-

cidence correspondence (cf. [3]), we see that the set M2 of points of Mx

such that the projection of T(u') in P' is not contained in a hyperplane

is £-open on Mx and hence on M. Let Mf = Mo Γ) M2. For every u' in

M', T{u') is the graph of a rational map of W(u') into P' by the compati-

bility of specializations with the operation of algebraic projection (cf. [18]).

Further, note that when Hf is a general hyperplane in Pf with respect to

W(u'), Ww(w) [T(u).(W(uf) X Hf)] is a general member of the linear system

on W(uf) which defines T{uf). This shows that the degree of such a

general divisor remains constant on Mf as specializations do not change

degrees.

Let Fu be the fixed part of A(Z(u)), which is rational over k{u). There

is a positive cycle F rational over k on M X P such that F(u) = Fu. Let

(u\ Ff), ur e M', be a specialization of (u, F(u)) over k. We can find a

generic hyperplane H (resp. H') in P' over k(u) (resp. k(u')) such that

(u\ F', H') is a specialization of (u, F(u), H) over k. When that is so, the

compatibility of specializations with the intersection product and algebraic

projection, with the additional fact that linear equivalence is preserved

by specialization, imply that

Ww{u) [T(u).(W(u) X H)] + F(u)

> P W ) [ 7 V ) . ( Ϊ W X H')] + Ff ref. k ,

and the latter is a member of Λ(Z(u')). When that is so, Ff is easily seen

to be the fixed part of Λ(Z{u')) and that it is the unique specialization of

F(u) over the specialization u-^uf ref. k. This shows that every com-

ponent of υ! X P Π E is proper and F(u) — Ff by the compatibility of

specialization with the operation of intersection product. Thus (b) and the

second half of (a) are proved.

APPENDIX II

Here we shall generalize the contents of Section 2 and Section 3 of

[13]. First we shall fix the notations and assumptions. We shall denote

by Vn a nonsingular projective variety and the At (1 <̂  ί <̂  n — 2) semi-

ample V-divisors. Let k be an algebraically closed field of definition for

V over which the At are rational. We fix a large positive integer t such
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that A(tAt) has no base point and that L(tAi) defines a birational mor-

phism of V for all i. Let the A^ί) be independent generic divisors of the

n — 2 complete linear systems over k, U2 = Ax(t) Aa_JJ) and k! the

smallest field which contains k over which U2 is defined.

We define X to be a linear combination 2H?~2 α̂ Â  with non-negative

coefficient such that at least one of the coefficients is positive. Furthermore,

we shall assume that the divisor X satisfies the following two conditions:

I(D, X'*-1)) = 0 implies I(D, X, U) = 0 and I(D, Au E7) = 0

for all i, whenever D is a subvariety of V of codimensίon 1.

Remark. We have ί{Kv + uX) > 0 for some integer u with 1 <̂  u ^

n + 1 by the vanishing theorem.

With these essentially all results contained in Sections 2, 3 in [13] are

valid as they are. In particular we have the following result:

PROPOSITION. Let u be as in the above Remark and £]< Dt an element

of Λ(KV + uX). Then there is a positive V-dίvisor J^j D, such that J^t Dt —

ΣJDJ > 0 and the Kv + uX — ΣJDJ induces on U a numerically effective

divisor. The Dό satisfy I(Dj, Xin~l)) = 0 and hence

I(DP X, U) = I(Dj9 Au C7) = 0 for all i.

Very little change is needed in the original discussions. We shall

list below some remarks or changes needed.

§2 Lemmas 2.1, 2.2, 2.3, 2.4 and (a) of Lemma 2.5 are valid as they

are, together with the Corollaries of Lemma 2.1, except the following

deletion and change are made:

In Corollary 2, Lemma 2.1, the conclusion should be I(KV + nX +

A A U) ̂  0.
In Lemma 2.2, (i), delete "Dr is an absolutely irreducible curve."

In Lemma 2.4, (c) delete "C = Όt. U and."

Lemma 2.5, (b) and (c) have to be slightly modified as follows:

Revised version of Lemma 2.5, (b) and (c):

(b) I ( A , X { n ~ l ) ) = 0 and every component C of D..Usatisfies I(C,X) = 0.

(c) Each component of Di.U is an exceptional curve of the first kind

on U.

Proof. We shall omit the index i. (a) implies that I(KV + uX, D,U)<0.
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If I(D, X{n-^) > 0, we have I(KV + uX, D,U)^0 by Lemma 2.4, (a) and

(c). It follows that I(D, X(n~^) = 0. This implies that I(D, X, U) = 0 by

our assumption on X and /(C, X) = 0 follows from Lemma 2.4, (a).

C(2) < 0 follows from the same reason as in the original proof. Then

I(KV, C) < 0 by the assumption of the Lemma by (b). The divisor class

of Kv + ΣΊ~2 Ai(t) induces that of Kv on U. (b) and the assumption on

X implies that I(D, Ajt U) = 0 for all j. When that is so, we have

I(Kϋ9 C) < 0. The rest of the original proof of (c) then works as they are.

§ 3 Virtually no change is required except that in the proofs of

Lemmas 3.2 and 3.3, Kv ~ (Kv + t J ]Γ 2 A,). U and hence K" + t Σΐ~2 A'/ -

Kυ,, when we follow notations and conventions there. Our Proposition is

thus a generalized version of Corollary 1 to Proposition 3.2.
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