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EFFICIENT SIMULATION OF TAIL PROBABILITIES OF
SUMS OF DEPENDENT RANDOM VARIABLES

BY JOSE H. BLANCHET AND LEONARDO ROJAS-NANDAYAPA

Abstract

We study asymptotically optimal simulation algorithms for approximating the tail
probability of P(eX1 + · · · + eXd > u) as u → ∞. The first algorithm proposed is based
on conditional Monte Carlo and assumes that (X1, . . . , Xd) has an elliptical distribution
with very mild assumptions on the radial component. This algorithm is applicable to
a large class of models in finance, as we demonstrate with examples. In addition, we
propose an importance sampling algorithm for an arbitrary dependence structure that is
shown to be asymptotically optimal under mild assumptions on the marginal distributions
and, basically, that we can simulate efficiently (X1, . . . , Xd | Xj > b) for large b.
Extensions that allow us to handle portfolios of financial options are also discussed.

Keywords: Rare-event simulation; efficiency; dependence; heavy-tailed distribution;
log-elliptical distribution; tail probability; variance reduction; importance sampling;
conditional Monte Carlo
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1. Introduction

Efficient rare-event simulation for sums of heavy-tailed random variables is a challenging
problem of significant relevance in several disciplines, such as queueing theory, insurance, and
finance. This research area was fundamentally shaped by the contributions of Søren Asmussen
and his collaborators; the first class of provably efficient algorithms in this type of setting was
proposed in [6]. The difficulties inherent to rare-event simulation with heavy tails were further
fleshed out in [10]. Since then, this research area has attracted a considerable amount of interest
and has rapidly grown into a major subject in rare-event simulation.

In order to discuss our results and put them in perspective relative to the existing literature,
we consider the following mathematical formulation of the problem. Let X = (X1, . . . , Xd) be
a d-dimensional multivariate random vector, and define α(u) := P(eX1 +eX2 +· · ·+eXd > u).
An important number of multivariate models in finance and insurance applications possessing
heavy-tailed marginal distributions arise from the exponential transformations of standard light-
tailed multivariate distributions [33, pp. 86–87].

In this paper we consider the problem of developing asymptotical optimal Monte Carlo
estimators of α(u), but also additional functions beyond the sum (see Example 2). Recall that
a collection of estimators (Zu : u ≥ 0) is said to be asymptotically optimal if Zu is an unbiased
estimator forα(u) and if supu>0 E[Z2

u]/α(u)2−ε < ∞ for all ε > 0. Jensen’s inequality implies
that the second moment of an asymptotically optimal estimator achieves the best possible rate
of decay to 0 on a logarithmic scale. In other words, asymptotic optimality amounts to showing
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that
log E[Z2

u]
2 log(α(u))

→ 1 as u → ∞. (1)

Most of the recent literature on provably efficient rare-event simulation for α(u) concentrates
on the sum of independent and identically distributed heavy-tailed random variables. This
setting is motivated by classical queueing models (tail of the delay in an M/G/1 queue) and
insurance applications (ruin probabilities in the classical risk model); cf. [4, Chapter 1] and [5,
Chapter 3].

The first provably efficient estimator forα(u), based on conditional Monte Carlo (CMC), was
given in [6] for regularly varying increment distributions (power-law heavy tails). A more recent
paper by Asmussen and Kroese [8] proposed refined CMC algorithms that are also applicable
to Weibull-type and lognormal tails. Other provably efficient estimators based on hazard-
rate tilting ideas include those of Juneja and Shahabuddin [28] and Boots and Shahabuddin
[16]. Dupuis et al. [21] proposed a mixture-based importance sampling for regularly varying
increment distributions and proved that their sampler is strongly optimal (i.e. the optimality
criterion above holds with ε = 0). The paper by Blanchet and Li [14] provided an estimator
that can be shown to be strongly optimal, assuming that only the increment distributions are
subexponential. An asymptotically vanishing relative error (i.e. lim supu→∞ E[Z2

u]/α(u)2 = 1)
has been established in a few instances, mostly in the setting of independent heavy-tailed
increments; see, for instance, [13], [24], and [27].

The case where theXis exhibit dependence has been substantially less studied. Asmussen et
al. [11] considered the case in which X is a multidimensional Gaussian vector. This setting is
motivated by considering d correlated asset prices, each following a Black–Scholes dynamic in
which individual stock prices are lognormal. In that paper, several other Monte Carlo estimators
based on importance sampling are proposed and shown to be asymptotically optimal; one of
those estimators is actually shown to have asymptotically vanishing relative error as u ↗ ∞.
A related paper that independently discovered one of the strategies suggested in [15] is [29],
where an exponential tilting of the radial component of X−E X in polar coordinates is proposed.
Related conditional Monte Carlo strategies have been studied in [15], [17], and [18].

On the side of asymptotic approximations, many authors have obtained results for the sum of
dependent heavy-tailed random variables (for a recent account, see [3], [9], [23], [30], [34], and
the references therein). A standard approach consists in taking advantage of the conditional
independence structure to reduce the problem to the (well-understood) case of independent
components. We point out that even when asymptotic approximations are available, efficient
Monte Carlo methods provide a good complement because the error present in any type of
approximation can be reduced at the price of increasing the number of replications. Asymptotic
optimality then provides reassurance that such a number of replications will scale graciously
as the event of interest becomes more rare.

In this paper we develop a methodology applicable to a wide class of models beyond the
Gaussian case treated in [15] and [29]. Our contributions are as follows.

(C1) Let X follow an elliptical distribution with radial component R. Assume that the density
fR(·) of R is eventually positive and satisfies

lim
x→∞

xfR(x)

P(R > x)1−ε = 0 for all ε > 0. (2)

We propose an efficient CMC estimator for α(u); see Theorem 1.
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(C2) Assume that, for every i = 1, . . . , d and all c > 0, it holds that

log P(Xi > b − c)

log P(Xi > b)
→ 1 as b → ∞. (3)

Assume also that an asymptotically optimal importance sampling estimator is available
for E[∑d

i=1 1(Xi > u)] as u ↗ ∞. Based on such an estimator, we construct an
importance sampling estimator that is asymptotically optimal for α(u); see Theorem 2.

(C3) These results can be applied to several situations of interest. To illustrate our contri-
butions, we apply the results in (C1) to the variance-gamma process and to portfolios
containing call options. For the results in (C2), we consider the Kou model [31] for
modeling asset prices. All these applications are discussed in Section 3.

Typically, both estimators in (C1) and (C2) are easy to implement, as we will discuss in
Sections 3 and 4. The first estimator requires the implementation of a numerical algorithm for
finding the roots of a function depending on the spherical component. However, the underlying
function has nice regularity properties that make the root finding procedure fast and reliable;
implementation details are given in Section 4. The second estimator is applicable whenever we
can compute or estimate P(Xi > b) efficiently for each i = 1, . . . , d as well as to be able to
sample (X1, . . . , Xd | Xi > b) efficiently. These requirements, which involve only marginal
computations and marginal conditioning, can often be satisfied using exponential tilting, as we
will illustrate in Section 3. Moreover, in some important cases we can obtain asymptotically
vanishing relative error estimators by using the ideas underlying the second estimator. Such is
the case of jointly Gaussian Xis, which was studied in [15].

The result described in (C1) allows us to deal with virtually any type of tail behavior for the
marginal distributions (within the elliptical framework) as long as the radial component satisfies
the mild assumption (2). The price to pay, of course, is a restrictive dependence structure. In
contrast, the result in (C2) is helpful to deal with more general dependence structures. The
required condition (3) is satisfied if the tails of eXi are suitably heavy tailed: lognormal-type,
Pareto, or power-law tails. Moreover, since the estimator in (C2) is based on importance
sampling, it can also be used to easily estimate conditional expectations of X given the event
{eX1 + eX2 + · · · + eXd > u}; see the related discussion in [2]. Conditional expectations (such
as the conditional overshoot over level u) are of importance, for instance, in quantitative risk
management; see, for instance, [32, p. 243]. Evaluating such conditional expectations is more
complicated when we use a CMC estimator as in (C1). The reason is that when applying CMC,
we need to analytically evaluate the expectation of interest given the conditioning. We can do
so in our case because such conditional expectation involves finding at most two roots, as we
will see in Section 2.

The estimators in (C2) may therefore be thought of as preferable, given their level of
generality in terms of dependence. However, an advantage of the estimator in (C1) is that
it is guaranteed to give variance reduction for all values of u, whereas the asymptotic optimality
proved for the class of estimators in (C2) only guarantees optimal performance for relatively
large values of u. It is often the case that we can apply both estimators to the same problem
instance; in such a situation, we recommend using both for cross validation.

The rest of the paper is organized as follows. In Section 2 we provide the statements of
our main results along with their proofs. In Section 3 we discuss examples. Finally, Section 4
contains numerical experiments and additional discussion on several implementation issues.
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2. Assumptions and asymptotic optimality results

This section is divided into three parts. Subsection 2.1 is devoted to our CMC estimator
applicable to elliptical distributions, while Subsection 2.2 concerns our importance sampling
estimator. Finally, Subsection 2.3 contains the proof of efficiency of our CMC estimator, which
is somewhat technical.
2.1. Conditional Monte Carlo for the sum of log-elliptical distributions

Definition 1. We say that a vector X = (X1, . . . , Xd)
� follows an elliptical distribution with

location parameter µ ∈ R
d , nonnegative definite dispersion matrix �, and radial (cumulative)

distribution FR(·) supported on [0,∞), if X admits the stochastic representation

X
D= µ + RA�,

where AA� = �, R is a random variable with distribution FR(·), and � is a random vector
with a uniform distribution on the unit sphere Sd in R

d , independent of R. In such cases we
write X ∼ E(µ,�, FR).

Additionally, we will say that the random vector (eX1 , . . . , eXd ) follows a log-elliptical
distribution with parameters (µ,�, FR).

A number of important models in the financial literature can be cast in the framework of
elliptical distributions [32, p. 89]. Our first estimator allows us to estimate the tail probability of
a sum of log-elliptical random variables eX1 + · · · + eXd under very mild assumptions. In par-
ticular, we will impose only assumption (2), which is verified using l’Hôpital’s rule in virtually
any model with a continuous distribution for R supported in the whole real line. Interesting
examples are discussed in Section 3. Assumption (2), however, rules out distributions with
compact support.

Motivated by applications in the financial literature, estimated tail probabilities of more
general functions of the vector (X1, . . . , Xd) might also be of interest. For instance, we might
be interested in the tail of a portfolio of call options when the underlying assets follow log-
elliptical distributions (see Example 2 below). In order to formulate a result that is general
enough to handle these types of application, we will represent our random variable of interest
as G(R,�). So, for example, in the case of the sum of log-elliptical distributions we have

G(R,�) =
d∑
i=1

exp(µi + R〈Ai , �〉) =
d∑
i=1

exp(Xi), (4)

where Ai is the ith row of the matrix A. More generally, we will consider any functionG(r, θ)
that, for large values of r and all θ ∈ Sd , behaves like the function in (4). Thus, we will impose
the following assumptions on G(·).
(A1) Suppose that (G(r, θ) : r ≥ 0, θ ∈ Sd) is a positive function, continuous in both variables

and differentiable in r .

(A2) For any δ > 0 and s ∈ Sd , define D(δ, s) = {θ ∈ Sd : ‖θ − s‖ < δ} and assume that
there exist δ0 > 0, s∗ ∈ Sd , r0 > 0, and v > 0 such that, for all 0 < δ ≤ δ0 and all
r > r0,

sup
θ∈Sd

G(r, θ)1−vδ ≤ inf
θ∈D(δ,s∗)

G(r, θ). (5)
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(A3) Suppose also that

sup
r>r0, θ∈D(δ0,s∗)

G(r, θ) = sup
r>r0, θ∈Sd

G(r, θ). (6)

(A4) Finally, suppose that δ1 ∈ (0, 1) can be chosen in such way that, for all r > r0 and
θ ∈ D(δ0, s

∗), it holds that

δ1 ≤ ∂ logG(r, θ)

∂r
≤ 1

δ1
. (7)

These assumptions are verified in the specific case of (4) in Example 1 of Section 3.
Furthermore, sums of call options with log-elliptical underlying assets also satisfy assumptions
(A1)–(A4), as we will see in Example 2 of Section 3.

We are now ready to state our result in the setting of our conditional Monte Carlo estimator.

Theorem 1. Let G(·) satisfy assumptions (A1)–(A4), and suppose that fR(·) satisfies

lim
x→∞

xfR(x)

P(R > x)1−ε = 0 for all ε > 0. (8)

Then, for every ε > 0, there exists u0 > 0 such that if u ≥ u0 then

sup
θ∈Sd

P(G(R, θ) > u)1−ε ≤ P(G(R,�) > u) ≤ sup
θ∈Sd

P(G(R, θ) > u). (9)

Consequently, the conditional Monte Carlo estimator

L(�, u) = P(G(R,�) > u | �) (10)

is asymptotically optimal.

Let us discuss how to implement the estimator L(�, u) in (10) in the setting ofG(·) defined
as in (4). The implementation is done in two steps. First, we need to simulate � uniformly
on Sd ; a standard procedure is to sample a d-dimensional vector of standard Gaussian random
variables and normalize it by its Euclidian norm (for further details, see [7, p. 52]). Second,
given � = θ , we need to compute L(θ, u), which, by independence, is simply P(R ∈ Aθ (u)),
where

Aθ (u) := {r ≥ 0 : G(r, θ) > u}.
Typically, a root finding numerical procedure such as Newton’s method is required to determine
Aθ (u). For instance, for the function G(r, θ) as defined in (4), there are three possibilities
depending on the sign of 〈Ai , θ〉, i = 1, . . . , d.

1. G(·, θ) is decreasing, which occurs if 〈Ai , θ〉 ≤ 0 for all i.

2. G(·, θ) is increasing, which occurs if 〈Ai , θ〉 ≥ 0 for all i.

3. G(·, θ) is strictly convex with a global minimum, which occurs if there exists i = j such
that 〈Ai , θ〉 < 0 and 〈Aj,·, θ〉 > 0.

Given these cases, it is easy to show that the sets Aθ (u) can only take the form (0, r−) ∪
(r+,∞) with 0 ≤ r− ≤ r+ ≤ ∞. For instance, the case Aθ (u) = ∅, which is possible if
G(·, θ) is decreasing and u is sufficiently large, is formally represented by choosing r− = 0
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and r+ = ∞. Therefore, for the implementation, it is only necessary to evaluate the cumulative
distribution function of the random variable R in at most two points; that is,

P(R ∈ Aθ (u)) = FR(r−)+ 1 − FR(r+).

We provide further discussion on how to initialize the root finding algorithm, and locate r− and
r+ in Section 4. As we will see, the formG(·, θ) is useful to guarantee fast global convergence.

2.2. Importance sampling for a class of heavy-tailed sums with arbitrary dependence

Although elliptical distributions have become popular models in practice, the fact is that
the dependence structure in such models is limited. So, in order to cope with more general
models, we present a second result which involves a technique that allows us to translate
asymptotically optimal estimators for the tails of the marginal components into asymptotically
optimal estimators for the tail of the sum. The decomposition implied by the number of
components that exceeds a large threshold (a sum of pieces each involving marginal tail
probabilities) facilitates the design of asymptotically optimal estimators; this will be illustrated
with an example in the next section. However, we need to impose a suitable condition on the tail
behavior of the marginal components. This condition is given in terms of the next definition.

Definition 2. We say that Z is logarithmically long tailed if, for each c ∈ (0,∞),

lim
b→∞

log P(Z > b − c)

log P(Z > b)
= 1.

The term logarithmically long tailed is borrowed from the literature on heavy-tailed random
variables; cf. [22, p. 50]. In that context a random variableZ is said to be long tailed if and only
if limb→∞[P(Z > b− c)/P(Z > b)] = 1 for all c > 0. Clearly, long-tailed random variables
are logarithmically long tailed and, in turn, every subexponential distribution is long tailed. The
class of logarithmically long-tailed distributions includes virtually any heavy-tailed distribution
used in practice but also a large class of light-tailed distributions. In particular, the Gaussian
and gamma distributions are logarithmically long tailed, as well as their mixtures. However,
we should point out that, although logarithmically long-tailed distributions provide substantial
generality, not all distributions that arise naturally in practice can be cast in the framework of
Definition 2. For instance, if eZ is Weibull then Z is not logarithmically long tailed.

Our second result involves the use of importance sampling. Let P̂ satisfy the absolute conti-
nuity condition which states that, for every Borel set A, P̂(X ∈ A, eX1 + · · · + eXd > u) = 0
implies that P(X ∈ A, eX1 +· · ·+eXd > u) = 0. Then we can define the importance sampling
estimator

dP

dP̂
1(eX1 + · · · + eXd > u),

which is clearly unbiased. We now provide a precise statement of our result, and a short and
instructive proof.

Theorem 2. Suppose that the Xis are logarithmically long tailed. Then

logα(u)

log maxi=1,...,d P(eXi > u)
→ 1 as u ↗ ∞. (11)

Moreover, if

L̃(X, b) = dP

dP̂
(X, b)

d∑
i=1

1(Xi > b)
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is an asymptotically optimal estimator for E[∑d
i=1 1(Xi > b)] as b ↗ ∞, then by letting

b := b(u) = log(u)− log(d) we find that the estimator

L′(X, b(u)) = dP

dP̂
(X, b(u)) 1(eX1 + · · · + eXd > u) (12)

is asymptotically optimal for α(u).

Proof. Throughout the proof, we will frequently use the following observation:

{eX1 + · · · + eXd > u} ⊆
d⋃
i=1

{
eXi >

u

d

}
. (13)

In other words, if eX1 + · · · + eXd > u, there is at least one Xi such that eXi > u/d . Using
this observation and the Bonferroni inequality, we obtain

max
i=1,...,d

P(Xi > log u) ≤ α(u)

≤ P

( d⋃
i=1

{
eXi >

u

d

})

≤
d∑
i=1

P(Xi ≥ log u− log d)

≤ d max
i=1,...,d

P(Xi > log u− log d).

Since the Xis are logarithmically long tailed, the limit in (11) follows. Now we examine the
performance of the simulation estimator induced by L̃(X, b). First, if b(u) = log(u)− log(d),
the estimator L′(X, b(u)) is well defined in the sense that the required absolute continuity
condition is satisfied by virtue of (13). Hence, we can write

L′(X, b(u)) = L̃(X, b(u)) 1(eX1 + · · · + eXd > u).

Note that
∑d
i=1 1(Xi > b(u)) has disappeared from the left-hand side due to (13). Now, by

(1), all we need to verify in order to prove asymptotic optimality is that

lim inf
u→∞

log Ê[L′(X, b(u))2]
2 logα(u)

≥ 1.

However, for large enough u, it holds that 1 > Ê[L̃(X, b(u))2] ≥ Ê[L′(X, b(u))2]. Therefore,

log Ê[L′(X, b(u))2]
2 logα(u)

≥ log Ê[L̃(X, b(u))2]
2 log

∑d
i=1 P(Xi ≥ b(u))

log
∑d
i=1 P(Xi ≥ b(u))

logα(u)
. (14)

By assumption, L̃(X, b(u)) is asymptotically optimal. Therefore,

lim inf
u→∞

log Ê[L̃(X, b(u))2]
2 log

∑d
i=1 P(Xi ≥ b(u))

= 1,

and because the Xis are logarithmically long tailed, we obtain

lim
u→∞

log
∑d
i=1 P(Xi ≥ b(u))

logα(u)
= 1.

By combining these two observations after taking limits in (14) we obtain the result.
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2.3. Proof of Theorem 1

To simplify the notation, define H(r, θ) = logG(r, θ). The upper bound in (9) follows
directly by independence:

P(G(R,�) > u) = E[P(G(R,�) > u | �)] ≤ sup
θ∈Sd

P(G(R, θ) > u).

Now we proceed to prove the lower bound in (9). We claim that, for large enough u,

sup
θ∈Sd

P(G(R, θ) > u) = sup
θ∈D(δ0,s∗)

P(G(R, θ) > u). (15)

To see this, note that, since G(·, θ) is eventually monotone and increasing for θ ∈ D(δ0, s
∗),

and due to (7), we can define the inverse G−1(·, θ) for each θ ∈ D(δ0, s
∗) over an interval

[u0,∞) by selecting sufficiently large u0. Therefore, for all u > u0,

sup
θ∈Sd

P(G(R, θ) > u) ≤ P
(

sup
θ∈Sd

G(R, θ) > u
)

= P
(

sup
θ∈D(δ0,s∗)

G(R, θ) > u
)

= P

(
R ∈

⋃
θ∈D(δ0,s∗)

{r : G(r, θ) > u}
)

= P
(
R > inf

θ∈D(δ0,s∗)
G−1(u, θ)

)
= sup
θ∈D(δ0,s∗)

P(G(R, θ) > u),

where the first equality follows from (6). The reverse inequality is immediate and, therefore,
the claim follows.

Identity (15) allows us to concentrate on developing a lower bound in the region D(δ0, s
∗),

as we do now. By virtue of (5) and (6), it follows that, for all δ ≤ min(δ0, 1/(2v)), there exists
a u0 such that, for all u > u0 and all θ ∈ D(δ0, s

∗), it holds that

P(G(R,�) > u) ≥ P(G(R,�) > u, ‖�− s∗‖ ≤ δ)

≥ P(G(R, θ)1−vδ > u, ‖�− s∗‖ ≤ δ)

≥ c P(G(R, θ)1−vδ > u)δd−1

= c P

(
H(R, θ) >

b

1 − vδ

)
δd−1

≥ c P(H(R, θ) > b + 2δvb)δd−1.

The third inequality is obtained by independence and the fact that � is uniformly distributed
over Sd . Let �θ(·) be the hazard function of H(R, θ), i.e. P(H(R, θ) > b) = exp(−�θ(b)),
and select γθ (b) satisfying

�θ(b)−�θ(b + γθ (b)) = −1.

Since the density of R exists and is eventually positive, and H(·, θ) is eventually continu-
ously differentiable and strictly increasing (due to (7)), then the hazard function is not only

https://doi.org/10.1239/jap/1318940462 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940462


Efficient simulation of tail probabilities of sums of dependent random variables 155

eventually strictly increasing but it is also eventually differentiable. Let δ := δθ (b) =
min{γθ (b)/[2vb], 1/[2v], δ0}. Then

P(H(R, θ) > b + 2δb)δd−1 ≥ exp(−�(b + γθ (b)))(δθ (b))
d−1

= exp(−1 −�θ(b))(δθ (b))
d−1.

Now we claim that, for each ε > 0, there exists b0 > 0 such that

γθ (b)

b
= �−1

θ (�θ (b)+ 1)− b

b
≥ exp(−ε�θ(b)) (16)

for all b ≥ b0 and every θ ∈ D(δ0, s
∗). If we let �θ(b) = y then it suffices to establish (due

to the inequality exp(−εy)+ 1 ≤ exp(exp(−εy))) that there exists y0 such that

�−1
θ (y + 1)

�−1
θ (y)

≥ exp(exp(−εy)) (17)

for all y ≥ y0 and all θ ∈ D(δ0, s
∗). Now, let us write fθ (x) and F̄θ (x) for the density and the

tail distribution, respectively, of H(R, θ) evaluated at x. Let

βθ (y) := ∂

∂y
log�−1

θ (y) = F̄θ (�
−1
θ (y))

�−1
θ (y)fθ (�

−1
θ (y))

.

We can select y0 independent of θ so that

exp

(∫ y

y0

βθ (s) ds

)
= �−1

θ (y)

�−1
θ (y0)

.

Therefore, in order to conclude (17), it suffices to show that

exp(εy)
∫ y+1

y

βθ (s) ds ≥ exp(−ε)
∫ y+1

y

exp(εs)βθ (s) ds ≥ 1

for all y ≥ y0. In fact, we will show that the function exp(εy)βθ (y) can be made arbitrarily
large as y ↗ ∞. Note that, for y > y0,

exp(εy)βθ (y) = exp(εy)F̄θ (�
−1
θ (y))

�−1
θ (y)fθ (�

−1
θ (y))

= exp(ε�θ(b))
F̄θ (b)

bfθ (b)
= F̄ 1−ε

θ (b)

bfθ (b)
.

Let �θ(·) be defined such that �θ(H(b, θ)) = b for all b > b0. Then, according to (7), it
follows that, for all θ ∈ D(δ0, s

∗), the inequalities

fR(�θ (b))

δ1
≥ fθ (b) = fR(�θ (b))

Ḣ (�θ (b), θ)
≥ δ1fR(�θ (b)) (18)

hold, where Ḣ (r, θ) := ∂H(r, θ)/∂r . Now, using (18) and (7) once again, we obtain

F̄θ (b) = exp(−�θ(b)) ≥ δ1

∫ ∞

b

fR(�θ (s)) ds ≥ δ2
1

∫ ∞

�θ (b)

fR(u) du = δ2
1F̄R(�θ (b)).
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The second inequality was obtained by noting that (7) implies that ∂�θ (b)/∂b ∈ [δ1, δ
−1
1 ] if b

is sufficiently large. Therefore,

F̄ 1−ε
θ (b)

bfθ (b)
≥ �θ(b)

b

δ3+2ε
1 F̄R(�θ (b))

1−ε

�θ (b)fR(�θ (b))
≥ cδ3+2ε

1 F̄R(�θ (b))
1−ε

�θ (b)fR(�θ (b))

for some constant c ∈ (0,∞), due to (7). It follows from (2) that the right-hand side in the
previous inequality can be made arbitrarily large if y0 is sufficiently large and, therefore, in
particular, inequality (16) follows. We thus conclude that, for all ε > 0, there exists a u0 > 0
such that, for all θ ∈ D(δ0, s

∗) and all u ≥ u0, it holds that

P(G(R,�) > u) ≥ κ P(G(R, θ) > u)1−ε,

where κ is a suitable constant depending on u0 but not on θ . Taking the supremum on the right-
hand side over θ ∈ D(δ0, s

∗), we obtain (9). Finally, the fact that L(�, u) is asymptotically
optimal is almost immediate. Namely, if u is sufficiently large and ε > 0 is small enough, then

EL(�, u)2

P(G(R,�) > u)2−ε ≤ supθ∈Sd P(G(R, θ) > u)2

supθ∈Sd P(G(R, θ) > u)(2−ε)(1−ε)

= sup
θ∈Sd

P(G(R, θ) > u)2ε−ε2

≤ 1,

thereby concluding the result.

3. Applications and examples

We now discuss how our results can be applied to a number of models that are popular in
applications to finance and risk management. In Subsection 3.1 we illustrate the results of
Theorem 1 with examples, while in Subsection 3.2 we provide an example for the use of the
results in Theorem 2.
3.1. Illustrating conditional Monte Carlo: Theorem 1

Example 1. (Sums of log-elliptical distributions.) Let G(r, θ) be as defined in (4). We will
verify that conditions (5)–(7) are satisfied. First, since θ ∈ Sd , the Cauchy–Schwarz inequality
implies that |〈Ai , θ〉| ≤ ‖Ai‖, where the equality is attained by choosing θi = Ai/‖Ai‖.
Therefore, we select s∗ = θi∗ with i∗ such that ‖Ai∗‖ = maxi=1,...,d ‖Ai‖. If ‖θ − s∗‖ ≤ δ

then, again by the Cauchy–Schwarz inequality,

exp(µi + r〈Ai , θ〉) = exp(µi + r〈Ai , s
∗〉 + r〈Ai , θ − s∗〉)

≥ exp(µi + r〈Ai , s
∗〉 − rδ‖Ai‖)

≥ exp(µi + r〈Ai , s
∗〉 − rδ‖Ai∗‖).

Therefore, if ‖θ − s∗‖ ≤ δ,

G(r, θ) =
d∑
i=1

exp(µi + r〈Ai , θ〉) ≥ exp(−rδ‖Ai∗‖)G(r, s∗).

However, clearly there is a large enough r0 > 0, chosen independent of δ and θ ∈ Sd , such that
G(r, θ) ≤ G(r, s∗) if r ≥ r0. We then conclude that if δ > 0 then

inf
θ∈D(δ,s∗)

G(r, θ) ≥ exp(−rδ‖Ai∗‖) sup
θ∈Sd

G(r, θ).
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Now we need to show that we can choose v > 0 such that exp(−rδ‖Ai∗‖)G(r, s∗)vδ ≥ 1 for
large enough r , but this follows easily by choosing v > ‖Ai∗‖. So, the parameter δ0 > 0 can
be selected arbitrarily for (5). Similarly, bounds (6) and (7) are easily seen to be satisfied.

Example 2. (Sums of call options with log-elliptical underlying.) A call option gives the owner
the right to buy an underlying asset at a so-called strike price K > 0 and at some maturity
time T in the future. The profit at maturity is therefore (ST − K)+, where St is the price of
the underlying asset at time 0 ≤ t ≤ T . It is well known that the price at time 0 ≤ t ≤ T

satisfies (assuming zero interest rates for simplicity) E[(ST −K)+ | St ], for a suitably defined
expectation; see, for example, Chapter 5 of [20].

Several popular models in finance, such as the Black–Scholes model, allow us to express
ST = St exp(Z), where Z is a random variable independent of St , but clearly depending on
T − t . Thus, in these types of situation, if we have d underlying assets following a joint log-
elliptical distribution, the value of a portfolio at some time t > 0 containing d call options, with
strike prices K1, . . . , Kd , can be expressed as

∑d
i=1 E[(exp(Xi)Zi − Ki)

+ | Xi], where the
Zis are positive random variables with finite mean and follow a distribution that depends on the
maturity time of each of the contracts. Assume in what follows that the Zis have a continuous
distribution with infinite support.

Using the representationXi = µi +R〈Ai , �〉, we then conclude that in order to analyze the
tail of the distribution of a portfolio of call options with log-elliptical underlying price assets,
we can apply Theorem 1 to the function

G(r, θ) =
d∑
i=1

E[(exp(µi + r〈Ai , θ〉)Zi −Ki)
+], θ ∈ Sd .

Note that

G(r, θ) ∼
d∑
i=1

exp(µi + r〈Ai , θ〉)E[Zi]

as r → ∞ if and only if θ is such that

d∑
i=1

exp(µi + r〈Ai , θ〉) → ∞ (19)

as r → ∞. Therefore, (5) and (6) are completely analogous to Example 1. In order to verify (7),
we can use dominated convergence (here we use the fact that Zi has a continuous distribution)
to conclude that

d logG(r, θ)

dr
=

d∑
j=1

〈Aj , θ〉 E[exp(µj + r〈Aj , θ〉)Zj 1(exp(µi + r〈Aj , θ〉)Zj ≥ Kj)]∑d
i=1 E[(exp(µi + r〈Ai , θ〉)Zi −Ki)+]

∼
d∑
j=1

〈Aj , θ〉 exp(µj + r〈Aj , θ〉)E[Zj ]∑d
i=1 exp(µi + r〈Ai , θ〉)E[Zi]

as r → ∞ if and only if θ is such that (19) holds as r → ∞. So, (7) also holds as in Example 1.
A problem that arises in the implementation of the corresponding conditional Monte Carlo

estimator in this setting is that we must be able to evaluate in closed form E[(exp(Xi)Zi −
Ki)

+ | Xi]. This can be done, for instance, in the Black–Scholes model. In this setting, the
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root finding procedure necessary to evaluate L(�, u) in (10) is entirely analogous to that
explained at the end of Subsection 2.1.

Example 3. (Symmetric generalized hyperbolic distributions.) A random variable W is said
to have a generalized inverse Gaussian (GIG) distribution with parameters (λ, χ,ψ) in the set
defined by

� :=

⎧⎪⎨
⎪⎩
λ ∈ R, χ > 0, ψ > 0,

λ < 0, χ > 0, ψ = 0,

λ > 0, χ = 0, ψ > 0,

if its density function is given by

fW(w) = (ψχ)d/2

2Kλ(
√
ψχ)

wλ−1 exp

(
−1

2
(χw−1 + ψw)

)
, w > 0,

where Kλ is the modified Bessel function of the third kind with index λ. We denote it by
W ∼ N −(λ, χ,ψ). Important cases of the GIG family are the limiting cases of the gamma
(λ > 0, χ = 0, ψ > 0) and the inverse gamma (λ < 0, χ > 0, ψ = 0). The normal inverse
Gaussian (NIG) occurs when λ = − 1

2 , and the hyperbolic occurs when λ = 1. Note that, for
parameter values not contained in �, the function fW is not a density function. For further
details, see, for example, [26, Chapter 1].

The family of elliptical distributions generated by a radial random variable with stochastic
representation

R
D=

√
τχ2

d ,

with τ having a GIG distribution, is known as symmetric generalized hyperbolic (SGH). The
density of the radial component of an SGH distribution is given by

fR(r) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ−λ/2ψd/4

2d/2−1�(d/2)Kλ(
√
χψ)

rd−1Kd/2−λ(
√
ψ(χ + r2))

(χ + r2)d/4−λ/2 , λ ∈ R, χ > 0, ψ > 0,

2χ−λ

Beta(−λ, d/2)
rd−1(χ + r2)λ−d/2, λ < 0, χ > 0, ψ = 0,

ψλ/2+d/4

2λ+d/2−2�(λ)�(d/2)
rλ+d/2−1Kd/2−λ(

√
ψr), λ > 0, χ = 0, ψ > 0,

where �(·) and Beta(·) are the gamma and beta functions. Next, we prove that the density of
the radial component of an SGH distribution satisfies (8) in each of the three cases above. To
this end, we use the asymptotic expansion of

Kλ(w) =
(
π

2w

)−1/2

e−w(1 + o(w−1)). (20)

The facts that Kλ(w) = K−λ(w) and K ′
λ(w) = λKλ(w)/w − Kλ+1(w) are also used (for

further details, see [1, p. 374]).
Case 1: λ ∈ R, ψ > 0, χ > 0. Two of the most prominent examples are the multivariate

symmetric hyperbolic distribution (λ ∈ N) and the multivariate NIG distribution (λ = 1
2 ).

Using l’Hôpital’s rule and (20), we verify that

lim
r→∞

rfR(r)

F̄ 1−ε
R (r)

= − lim
r→∞

1 − d + r2
√
ψ/(χ + r2)

(1 − ε)F̄−ε
R (r)

= −
√
ψ

1 − ε

(
lim
r→∞

F̄R(r)

r−1/ε

)ε
.
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The limit inside the brackets is equivalent to

lim
r→∞ εkr

d+1/ε(χ + r2)λ/2−d/4
√

π

2
√
ψ(χ + r2)

e−
√
ψ(χ+r2) = 0.

Case 2: λ < 0, χ > 0, ψ = 0. This boundary case occurs when the mixing random
variableW has an inverse gamma distribution. A classical example is that of the multivariate t
distribution (λ = −ν/2, χ = 1, ψ = 0). The limit is given by

lim
r→∞

rfR(r)

F̄ 1−ε
R (r)

= lim
r→∞

1 − (dχ + 2r2λ)/(χ + r2)

(1 − ε)F̄−ε
R (r)

= 1 − 2λ

1 − ε
lim
r→∞ F̄

ε
R(r) = 0.

Case 3: λ > 0, χ = 0, ψ > 0. The second boundary case corresponds to multivariate
distributions known as Laplace, Bessel, or variance-gamma and occurs when W has a gamma
distribution. This model has been applied in finance as an alternative to the Black–Scholes
model and has become popular because, among other features, it allows for heavier tails in
the log-returns to be incorporated: a stylized feature that has been observed in financial data
[32, pp. 68–69]. In the multivariate variance-gamma process for price dynamics, discussed in
Section 5 of [19], the vector (X1, . . . , Xd) of the log-prices of d assets follows a multivariate
variance-gamma distribution. It turns out that

lim
r→∞

rfR(r)

F̄ 1−ε
R (r)

= − 1

1 − ε
lim
r→∞

√
χr − d + 1

F̄−ε(r)
= −

√
χ

1 − ε

(
lim
r→∞

F̄R(r)

r−1/ε

)ε
.

The limit inside the brackets is equal to

lim
r→∞

kεrλ+d/2−1Kd/2−λ(
√
ψr)

r−1−1/ε = lim
r→∞ kεr

λ+d/2+1/ε
√

π

2
√
ψr

e−√
ψr = 0.

3.2. Illustrating importance sampling: Theorem 2

Example 4. (Kou model.) The SGH distributions form a subfamily of a larger class of distri-
butions known as generalized hyperbolic (GH) distributions, which were introduced in [12].
A random vector is said to have a GH distribution if it has the stochastic representation

X
D= µ + τm +

√
τχ2

d C�,

where µ,m ∈ R
d , C ∈ R

d×d , τ is a random variable with a GIG distribution,χ2
d is a chi-squared

random variable with d degrees of freedom, and � is a random vector uniformly distributed
on Sd . In particular, if µ = 0 and τ ∼ exp(1), then X is said to follow a d-dimensional
asymmetric Laplace distribution with parameters m and G := CC�, denoted by ALd(m,G).

The following is a multivariate asset pricing model proposed in [25] as an extension of
the popular Kou model [31] (see also [19, pp. 111–127]). In order to specify the model, we
introduce µ ∈ R

d and a positive definite matrix � with decomposition � = AA�. Under such
a model, the vector of log-returns evaluated at time t takes the form

X(t) = X(0)+
(

µ − D

2

)
t + AB(t)+

N0(t)∑
j=1

Yj +
d∑
i=1

Ni(t)∑
j=1

eiWi,j , (21)
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where Di = �i,i , ei is the ith canonical vector, {B(t), t ≥ 0} is a d-dimensional standard
Brownian motion, the {Nk(t) : t ≥ 0}, k = 0, . . . , d, are d + 1 independent homogeneous
Poisson processes with parameters {λk : k = 0, . . . , d}, {Yj : j ≥ 1} is a sequence of indepen-
dent d-dimensional random vectors with common distribution ALd(m,G), and {Wi,j : j ≥ 1}
are sequences of independent and identically distributed random variables with common dis-
tribution AL1(νi, βi), i = 1, . . . , d.

We are interested in using the estimator (12) in order to approximate

α(u) = P(eX1(t) + · · · + eXd(t) > u),

whereXi(t) is the ith component of the vector X(t) for some fixed time t . The idea is to apply
exponential tilting to the vector (21) in order to estimate P(Xi(t) > b). Then, we propose an
importance sampling distribution of the form

dP̂

dP
(X(t)) =

d∑
i=1

wi exp(γiXi(t)− ψ(γiei )),

where the weightswi > 0 are such that
∑d
i=1wi = 1, ψ(θ) := log E exp(〈θ,X(t)〉) is the log-

moment generating function of X(t), and the γis are constants in the domains of convergence
of the Laplace transforms of the Xis and are chosen as follows. Note that

ψ(γiei ) = Xi(0) γi + t

[(
µi − �i,i

2

)
γi + �i,i

2
γ 2
i − λ0 − λi + λ0

1 − γ 2
i Gi,i/2 − γimi

+ λi

1 − γ 2
i βi/2 − γiνi

]
.

Thus, it is easy to establish that, for any selection of weightswi > 0, an asymptotically efficient
estimator for

∑
i P(Xi(t) > b) as b ↗ ∞ can be obtained by solving

∂

∂γi
ψ(γiei ) = b

for γi > 0, i = 1, . . . , d, in the domain of convergence of the Laplace transforms of the Xis
(cf. [7, Chapter 4.1]). In fact, it can be recognized that the proposed importance sampling
corresponds to a model such as (21) with modified parameters

µ∗
i := µ+ γi�i,·, λ∗

0,i := λ0

1 − γ 2
i Gi,i/2 − γimi

, λ∗
i,i := λi

1 − γ 2
i βi/2 − γiνi

,

G∗
i := λ∗

0,i

λ0
G, m∗

i := λ∗
0,i

λ0
(m+ γiGi,·), β∗

i,i := λ∗
i,i

λ0
βi, ν∗

i,i := λ∗
i,i

λ0
(νi + γiβi).

Note that the parameters {β∗
i,j : j = i} and {ν∗

i,j : j = i} are left unchanged. By standard large
deviation techniques, and taking advantage of the change of measure suggested above forXi(t),
it follows that P(Xi(t) > b) = exp(−γ ∗

i b+ o(b)) and, therefore,Xi(t) is logarithmically long
tailed. In Section 4 we show a numerical example (for more details, see [25]).
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4. Implementation and numerical examples

In this section we discuss the implementation of (10) for the case

G1(r, θ) :=
d∑
i=1

exp(µi + r〈Ai , θ〉).

Note that, for every replication of the estimator, we generate � = θ and then we solve
G1(r, θ) = u using a numerical algorithm. The main issues here are that most iterative methods
are not guaranteed to converge, and their performance is largely affected by the shape of the
function and the initial guess.

In the problem at hand, the functions {G1(·, θ) : θ ∈ Sd} are smooth; under this setting, a
root finding algorithm (such as Newton–Raphson) will converge rather quickly provided that
the initial guess is chosen close to the solution but, more importantly, that their successive
iterations do not lie in a region where the derivative of the function is too close to 0. In general,
a fixed initial guess will deliver poor results since we cannot ensure that it will be a good initial
guess for all functions in {G1(·, θ) : θ ∈ Sd}. Indeed, in our numerical implementations, when
we used a fixed initial value, we observed that the algorithm failed to converge for several values
of θ ∈ Sd ; this occurred more often when all values of 〈Ai , θ〉 were close to 0.

Taking into consideration this observation we propose a set of initial values which help to
dramatically improve the speed of convergence. The idea behind this proposal is that the tail
probability of the maximum of d positive random variables can be used to approximate the tail
probability of the convolution. We define

G2(r, θ) = max
i=1,...,d

exp(µi + r〈Ai , θ〉).

It is straightforward to prove that the CMC estimator in (10) for P(G2(R,�) > u) is given by

FR(m−)+ 1 − FR(m+),

where

m− := sup
i

{
log u− µi

〈Ai , θ〉 : 〈Ai , θ〉 < 0

}
, m+ := inf

i

{
log u− µi

〈Ai , θ〉 : 〈Ai , θ〉 < 0

}
,

with the usual conventions that sup ∅ = −∞ and inf ∅ = ∞. Moreover, it is easy to verify
that m− ≤ r− and r+ ≤ m+. The idea is that the values m− and m+ are not only close to r−
and r+, respectively, but that they also lie in a region where the derivatives are not too close
to 0. The procedure is described next.

1. If 〈Ai , θ〉 ≤ 0 for all i = 1, . . . , d then G1(r, θ) is strictly decreasing with exactly one
root. We use m− as an initial value to find r−, and we set r+ = ∞.

2. If 〈Ai , θ〉 ≥ 0 for all i = 1, . . . , d then G1(r, θ) is strictly increasing with exactly one
root. We use m+ as an initial value to find r+, and we set r− = 0.

3. If there exists i = j such that 〈Ai , θ〉 < 0 and 〈Aj , θ〉 > 0, and the global minima is
smaller than u, then there exist two roots. In such cases we run the root algorithm twice;
each time with the initial values m− and m+.

Note that if u is large enough (a common feature in a rare-event setting), it is enough
to check that G(0, θ) < u in order to verify that the global minima is smaller than u.
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Table 1: Statistics for the estimator of P(eX1 +· · ·+eX10 > u), where X follows a multivariate variance-
gamma process.

u Sample mean Standard error Coefficient of variation Time (seconds)

1 × 105 2.41 × 10−6 1.53 × 10−5 6.37 92
2 × 105 1.73 × 10−6 1.20 × 10−5 6.93 92
3 × 105 1.22 × 10−6 8.52 × 10−6 6.96 92
4 × 105 8.10 × 10−7 5.92 × 10−6 6.81 92
5 × 105 8.51 × 10−7 5.72 × 10−6 6.73 92

We illustrate this algorithm with the following example.

Example 5. (Variance-gamma distribution.) We implemented the first algorithm for estimating
the probability of α(u) := P(eX1 + · · · + eXd > u), where X follows a multivariate variance-
gamma distribution. That is, X ∼ E(µ,�, FR), whereFR is such thatR2 ∼ N −(λ, 0, ψ)with
λ > 0 and ψ > 0. The parameters used are µi = −i, �i,i = 11 − i, �i,j = 0.4

√
�i,i�j,j for

i = j , and R2 ∼ N −(1, 0, 4). A total of 105 replications were used to obtain the estimations.
The numerical results are summarized in Table 1. Estimated values of the expected value,

standard deviation, and variation coefficient of the estimator (10) for the corresponding values
of u are given. The results are complemented with cpu times necessary for the 105 replications
of the estimator.

Note that the coefficient of variation increases slowly and even decreases as u becomes large.
This feature, common in efficient algorithms, shows that accurate estimates of α(u) for larger
values of u can be obtained with an affordable increment of the number of replications. The
cpu time is relatively high since, for each replication, a root finding algorithm is run. However,
the times remain fairly constant as u → ∞.

Example 6. (Kou model.) For the Kou model, we need to solve ∂ψ(γiei )/∂γi = b, where

∂

∂γi
ψ(γiei ) = Xi(0)+ t

[
µi − �i,i

2
+ γi�i,i + λ0(Gi,iγi +mi)

(1 − γ 2
i Gi,i/2 − γimi)2

+ λi(βiγi + νi)

(1 − γ 2
i βi/2 − γiνi)2

]
.

Observe that the expression on the right-hand side possesses vertical asymptotes and possibly
more than one positive root. Remember that the equality above holds in the region of conver-
gence of ψ(·) and, therefore, we should pick the smallest positive root. However, we must be
careful to verify that the root finding algorithm returns this root.

For the implementation of estimator (12) for the Kou model, the parameters used are as in
(21) and given as follows: X(0) = (log(70), log(52)), µ = (0.05, 0.05), � = (0.09, 0.06;
0.06, 0.25), λ0 = 3, m = (−0.5, 0.1), G = (0.16, 0; 0, 0.36), λ1 = 0.5, λ2 = 1.5, ν1 = −0.2,
ν2 = 0.4, β1 = 0.25, and β2 = 0.09. A total of 107 replications were used to obtain the
estimations.

Table 2 summarizes the results of our numerical experiments. The coefficient of variation
increases very slowly as u → ∞, showing that the algorithm produces accurate estimations for
very small probabilities, in this case of the order of 106.

https://doi.org/10.1239/jap/1318940462 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940462


Efficient simulation of tail probabilities of sums of dependent random variables 163

Table 2: Statistics for the estimator of P(eX1 + eX2 > u) for the Kou model.

u Sample mean Standard error Coefficient of variation Time (seconds)

1 × 106 1.54 × 10−5 4.48 × 10−5 2.91 142
2 × 106 5.90 × 10−6 1.77 × 10−5 3.00 140
3 × 106 3.35 × 10−6 1.02 × 10−5 3.06 147
4 × 106 2.23 × 10−6 6.89 × 10−6 3.10 148
5 × 106 1.62 × 10−6 5.07 × 10−6 3.12 155
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