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Eigenmodes of averaged small-amplitude perturbations to a turbulent channel flow
– which is one of the most fundamental canonical flows – are identified for the
first time via an extensive set of high-fidelity graphics processing unit accelerated
direct numerical simulations. While the system governing averaged small-amplitude
perturbations to turbulent channel flow remains unknown, the fact such eigenmodes
can be identified constitutes direct evidence that it is linear. Moreover, while the
eigenvalue associated with the slowest-decaying anti-symmetric eigenmode mode is
found to be real, the eigenvalue associated with the slowest-decaying symmetric
eigenmode mode is found to be complex. This indicates that the unknown linear
system governing the evolution of averaged small-amplitude perturbations cannot be
self-adjoint, even for the case of a uni-directional flow. In addition to elucidating
aspects of the flow physics, the findings provide guidance for development of new
unsteady Reynolds-averaged Navier–Stokes turbulence models, and constitute a new
and accessible benchmark problem for assessing the performance of existing models,
which are used widely throughout industry.
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1. Introduction
1.1. Overview

Canonical flows play a special role in fluid dynamics. Their relative simplicity allows
deep insight into mechanisms underlying real-world flow phenomena, and they also
provide invaluable teaching material. In the laminar regime, canonical flows can
often be described by explicit analytical formulae, which are exact solutions of the
Navier–Stokes equations. In the turbulent regime some features of canonical flows
can also be described by explicit analytical formulae, obtained semi-empirically by
combining theoretical considerations with direct observations. The logarithmic velocity
profile in a boundary layer is perhaps the most widely known example. The goal
of the present study is to identify the slowest-decaying eigenmodes of averaged
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small-amplitude perturbations to a turbulent channel flow – which is one of the most
fundamental canonical flows.

The paper is structured as follows: § 1.2 describes the analogous laminar channel
flow case, for which the slowest-decaying eigenmodes can be obtained analytically,
§ 1.3 describes the turbulent channel flow case and provides a problem specification,
§ 1.4 reviews previous related work, § 2 details our chosen methodology, § 3 identifies
the slowest-decaying eigenmodes and finally §4 draws conclusions.

1.2. Laminar channel flow case
Consider a plane channel that is infinite in the x- and z-directions, with parallel no-slip
walls at y=±1. Flow in such a channel is governed by the Navier–Stokes equation
and the continuity equation

∂u
∂t
+ u · ∇u=−∇p+

1
Re
∇

2u, (1.1)

∇ · u= 0, (1.2)

subject to the boundary condition

u(x,±1, z, t)= 0, (1.3)

where u= (u, v,w) is the velocity, p is the pressure and Re is the Reynolds number.
If Re is low enough such that flow is laminar, a simple unsteady solution of

(1.1)–(1.2) can be obtained by imposing an initial condition

u(x, y, z, 0)= (uIN(y), 0, 0), (1.4)

that is independent of the wall-parallel coordinates x and z. In this case it is easy to
verify that u= (u(y, t), 0, 0) at all times, the pressure gradient is independent of space
and (1.1)–(1.2) reduces to the heat equation

∂u
∂t
=−d+

1
Re
∂2u
∂y2

, (1.5)

where

d=
dp
dx
. (1.6)

To uniquely determine the solution, either the pressure gradient d or the mass flow
rate must be prescribed. Assuming the latter, separation of variables leads to

u(y, t)=U(y)+ u′(y, t), d(t)=D+ d′(t), (1.7a,b)

where D is the constant pressure gradient associated with the steady state solution
U(y), and

u′(y, t)=
∞∑

n=1

Cneλntun(y), d′(t)=
∞∑

n=1

Cneλntdn, (1.8a,b)
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where Cn are determined by the form of uIN , and un(y), dn and λn are solutions of
the eigenvalue problem

λnun =−dn +
1

Re
d2un

dy2
, un(−1)= un(1)= 0,

∫
+1

−1
un dy= 0. (1.9a−c)

All eigenvalues of this problem are negative, and hence u(y, t)→ U(y) as t→∞.
Moreover the eigenvalues can be ordered such that λn+1 > λn for all n. The slowest-
decaying eigenmode is given by

u1(y)= sin(πy), d1 = 0, λ1 =−π2/Re, (1.10a−c)

which is anti-symmetric. The second slowest-decaying eigenmode is given by

u2(y)= cos(αy)− cos(α), d2 = λ2 cos α, λ2 =−α
2/Re, (1.11a−c)

which is symmetric, where α = 4.4934 is the smallest solution of

sin(α)= α cos(α). (1.12)

Consequently, the long-time behaviour of the solution for a generic initial condition
is typically u(y, t) ≈ U(y) + C1eλ1tu1(y) (assuming u1(y) is excited by the initial
condition), whereas the long-time behaviour for symmetric initial conditions, which
would not excite u1(y), is typically u(y, t) ≈ U(y) + C2eλ2tu2(y) (assuming u2(y) is
excited by the initial condition).

1.3. Turbulent channel flow case
If Re is high enough such that flow is turbulent, then the widely accepted triple
decomposition (Hussain & Reynolds 1970) can be applied, and the velocity field can
be written as

u=U+ u′ + u′′, (1.13)

where U is a steady component, u′ is a coherent component and u′′ is a fluctuating
component. Averaging the Navier–Stokes equation (1.1) and the continuity equation
(1.2) leads to the unsteady Reynolds-averaged Navier–Stokes equation and continuity
equation

∂u
∂t
+ u · ∇u=−∇p+

1
Re
∇

2u−∇u′′u′′, (1.14)

∇ · u= 0, (1.15)

subject to the boundary condition

u(x,±1, z, t)= 0, (1.16)

where u = U + u′ is the averaged velocity, p is the averaged pressure and u′′u′′ is
called the Reynolds stress tensor. In the case of a plane channel flow the averaging
can be done in either of the wall-parallel directions, or over an ensemble of channels.
According to the widely accepted ergodic hypothesis these averaging methods and
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their combinations are equivalent, provided that the flow is statistically homogeneous
in wall-parallel directions.

Analogous to the laminar case, one can attempt to obtain a simple solution by
imposing an initial condition

u(x, y, z, 0)= (uIN(y), 0, 0), (1.17)

that is independent of the wall-parallel coordinates x and z. In this case it is easy to
verify that u= (u(y, t), 0, 0) at all times, the averaged pressure gradient is independent
of space and (1.14)–(1.15) reduces to

∂u
∂t
=−d+

1
Re
∂2u
∂y2
−
∂u′′v′′

∂y
, (1.18)

where

d=
dp
dx
. (1.19)

Since (1.18) contains an unknown Reynolds stress term, it is not closed. We anticipate
that the correct, yet unknown, closure exists. The objective of the current study is
to ascertain whether in the limit of small-amplitude perturbations (1.18), with the
correct closure, has solutions of a form analogous to (1.8), and in particular to identify
the slowest-decaying anti-symmetric and symmetric eigenmodes that are analogous to
(1.10) and (1.11). However, since the closure for (1.18) is unknown, the system cannot
be solved directly. Therefore, the problem will be tackled via an extensive set of
high-fidelity graphics processing unit (GPU) accelerated direct numerical simulations
(DNS) of channel flow, from which averaged solutions will be obtained and analysed
directly.

1.4. Related work
The notion of a small-amplitude perturbation implies two flows are considered, one
of which is designated a base flow, and the other as a sum of the base flow and the
small-amplitude perturbation. Within this context, the base flow is often considered to
be either an evolving time-dependent turbulent flow field, or an averaged flow field.

Analysis of small-amplitude perturbations to time-dependent turbulent base flows
usually involves calculation of Lyapunov exponents, characterising the growth rate of
the difference between the base flow and a small variation thereof. Recent studies
in this area include e.g. Nikitin (2018). When flow is turbulent, small-amplitude
perturbations defined in this way usually grow very quickly and then saturate at a
finite amplitude, becoming in effect the difference between two unrelated realisations
of the same turbulent state. Such small-amplitude perturbations are not considered in
the present study.

Analysis of small-amplitude perturbations to averaged base flows began with the
seminal work of Malkus (1956), who attempted to build a theory of turbulence
based on an assumption that average velocity profiles are marginally stable with
respect to infinitesimal perturbations as described by the linearised Navier–Stokes
equations, whilst at the same time maximising energy dissipation rate. It was later
shown that this assumption is not true (Reynolds & Tiederman 1967). However,
the approach inspired further lines of research, including those motivated by the
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idea that patterns, also called organised structures, observed in developed turbulent
flows, could be explained by studying instabilities of the averaged base flow. Indeed,
patterns in a finite-amplitude solution that evolved from a small-amplitude random
perturbation are sometimes similar to patterns of the fastest growing infinitesimal
disturbance. This is often the case for free-shear turbulent flows, which are strongly
affected by the inviscid instability of the inflectional average flow profile (Gaster,
Kit & Wygnanski 1985; Roshko 1993), but not for near-wall turbulent flows where
viscosity becomes important, since it is often impossible to find the fastest growing
infinitesimal disturbance, as all disturbances eventually decay if their evolution is
calculated using the molecular viscosity. It was observed, however, that transiently
growing solutions of the linearised Navier–Stokes equations exhibit patterns similar
to those seen in developed turbulent flows. To investigate this further, the full
Navier–Stokes equations can be rewritten as linearised equations forced by nonlinear
terms, and then these nonlinear terms can be modelled as statistically stationary
stochastic forcing (Farrell & Ioannou 1993), so that the amplitude of the fluctuations
remains time independent. The patterns of the fluctuating motion are then a result of
the filtering properties of the linearised Navier–Stokes operator i.e. its selectivity in
amplifying or suppressing particular patterns. These filtering, or selectivity, properties
can be studied directly using techniques known as input–output analysis, as well
as indirectly by considering the pseudospectra of the operator (Trefethen et al.
1993) or optimal perturbations with maximum transient growth (Butler & Farrell
1993). The development of this philosophy proved fruitful, with results including
elucidation of how streak spacing depends on wall distance (Chernyshenko & Baig
2005), how turbulent drag reduction due to spanwise wall oscillations depends on the
frequency of the oscillations (Moarref & Jovanović 2012), how the angle of near-wall
streaks depends on time in flows with drag reduction caused by wall oscillations
(Blesbois et al. 2013) and how drag reduction by in-plane wavy motion of the wall
depends qualitatively (although not quantitatively) on the frequency and streamwise
wavenumber of this motion (Duque-Daza et al. 2012). Further progress, during which
the above-described paradigm became known as a resolvent framework, was made
when nonlinear effects in the form of triadic interactions were considered (see the
review by McKeon (2017)). Another way of including nonlinear effects was proposed
via a statistical state dynamics approach, in which they are restricted to the interaction
of the streamwise average flow and perturbations (see the review by Farrell, Gayme
& Ioannou (2017)). The above references serve as an entry point into this thriving
area of research. However, we note that it is only indirectly related to the problem
considered in the present study.

An alternative line of research stemming from the seminal work of Malkus (1956)
has focused on the behaviour of averaged small-amplitude perturbations to averaged
base flows. This is directly related to the problem considered in the present study.
Following the observation that average turbulent flow profiles are stable with a
laminar viscosity, Hussain & Reynolds (1970) introduced the now widely accepted
triple decomposition, leading to the unclosed system (1.18). Importantly, it remains
unclosed even after linearisation under the assumption of a small coherent component.
Davis (1974) investigated deriving turbulent closures for averaged small-amplitude
perturbations directly from the Navier–Stokes equations, and Gritsun & Branstator
(2007) utilised the general fluctuation-dissipation theorem to gain additional insight.
However, a full theoretical solution for the evolution of averaged small-amplitude
perturbations is yet to be found. This leaves only three routes for further progress:
the use of semi-empirical closures, experiments and DNS. Reynolds & Hussain (1972)
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themselves used a simple eddy-viscosity closure, and achieved good agreement with
associated experimental data. However, more recent studies by Sen & Veeravalli
(1998, 2000), Sen et al. (2007), which employed more complicated closures with
anisotropic Reynolds stresses, produced very different results. In particular they
observed growth as opposed to decay of averaged small-amplitude perturbations,
although these results, too, were found to agree with their own experimental data.
Such a contradiction highlights the challenges associated with making progress using
semi-empirical closures and experiments. Finally, in terms of relevant DNS, Luchini,
Quadrio & Zuccher (2006) studied the behaviour of a time-dependent channel flow
subject to an impulse force, and more recently Russo & Luchini (2016) investigated
a time-independent channel flow, where small perturbations were maintained by a
constant body force. In the later study DNS results were found to disagree with
those obtained using a turbulent closure, highlighting the fundamental difficulty of
identifying the correct closure.

2. Methodology
2.1. Overview

Our approach was based on performing ensembles of turbulent channel flow DNS
in a finite channel. Specifically, ensembles of statistically independent snapshots of
a fully developed turbulent channel flow were modified with either anti-symmetric or
symmetric net-zero mass flux perturbations to their streamwise velocity, that depended
solely on the wall-normal direction. The evolution of the ensemble- and wall-parallel
averages of these perturbations were then analysed, and as the averaged perturbations
became small their slowest-decaying anti-symmetric and symmetric eigenmodes were
identified and extracted.

It was assumed that the averaged perturbations exhibit an initial nonlinear transient,
followed by a linear decay phase as their amplitude becomes small. In this linear
phase, it was further assumed that averaged perturbations can be represented as a sum
of eigenmodes, each decaying at different rates, such that eventually after some time
ts the slowest-decaying eigenmode dominates. It is clear that in order to identify this
slowest-decaying eigenmode one must study the long-time behaviour of the averaged
perturbations when t> ts. However, this poses a challenge. Specifically, the averaged
perturbations will inherently include averaging errors, which fluctuate irregularly as
a function of time, but remain finite. Hence after some time te they are of the same
order as the averaged perturbation. If the fluctuations are large enough such that te< ts
i.e. the averaging errors dominate the solution before only a single slowest-decaying
eigenmode dominates, then it will be impossible to identify such a slowest-decaying
eigenmode, even if it exists. The averaging errors can be reduced by averaging over
more data. Hence, to overcome this challenge the ensemble of turbulent channel flows
must be made large; such that te� ts. As will be shown, this requires a significant
number of DNS to be undertaken, and indeed the approach has only recently become
feasible with the emergence of high-fidelity GPU accelerated solvers.

The solver used to undertake the DNS here is described in § 2.2, the set-up for a
single channel is described in § 2.3, the ensemble and averaging approach is described
in § 2.4 and finally the procedure for identifying the slowest-decaying eigenmode is
described in § 2.5.

2.2. Solver
All DNS were undertaken using PyFR (Witherden, Farrington & Vincent 2014;
Witherden, Vermeire & Vincent 2015), which is based on the high-order flux
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x
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z

8π

4π

2

FIGURE 1. Schematic of channel domain.

reconstruction method of Huynh (2007), and can efficiently leverage the capabilities
of modern massively parallel GPU platforms (Vincent et al. 2016). The compressible
Navier–Stokes equations were solved at a Mach number of 0.1 to approximate
incompressible conditions. A Rusanov Riemann solver was employed to calculate
the inter-element fluxes, an explicit RK45[2R+] scheme (Kennedy, Carpenter
& Lewis 2000) was used to advance the solution in time and all runs were
performed using double precision arithmetic. Specifically, a patched version of
commit ebf386bf4f30e9caaf1cbe8546169f6f200875a1 to the PyFR Git repository
(e.g. https://github.com/vincentlab/PyFR) was employed. The patch, and the full
version of the code, are provided as electronic supplementary material, available at
https://doi.org/10.1017/jfm.2019.520.

2.3. Set-up

A schematic of the computational domain is shown in figure 1. It has a length of 8π

in the x-direction, a height of 2 in the y-direction and a width of 4π in the z-direction.
The origin is located at the centre of the domain. Periodic boundary conditions were
applied in the x- and z-directions, and an adiabatic no-slip condition was applied at
y = ±1. Flow was driven through the domain via a volumetric momentum source,
coupled with a feedback controller to ensure a constant bulk velocity of 1 in the
x-direction. The viscosity was set to achieve a target friction Reynolds number of
Reτ = 180, which corresponds to a bulk Reynolds number based on the bulk velocity
and channel half-height of Re= 2767. Time units were based on the bulk velocity and
channel half-height.

The domain was meshed with a structured grid of 62× 19× 60 hexahedral elements
along the x-, y- and z-directions respectively. The mesh was uniform in the x- and
z-directions, but non-uniform in the y direction, with resolution increased towards
the channel walls. The flow solution within each element was represented using a
fourth-order polynomial. Mesh independence, and comparisons with published direct
numerical simulation data, are shown in appendix A and appendix B, respectively.
The mesh is provided as electronic supplementary material.
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2.4. Ensembles and averages
Consider an ensemble Π of statistically independent snapshots of a fully developed
channel flow solution, obtained in the domain defined in § 2.3. The x-velocities
u(x, y, z)e from each instance e of Π can be averaged as follows to obtain

U(y)=
1

N × 8π× 4π

N∑
e=0

∫ 4π

−4π

∫ 2π

−2π

u(x, y, z)e dx dz, (2.1)

which in the limit N → ∞ recovers the exact averaged x-velocity of the fully
developed base flow. In the present study U(y) was calculated using N = 768
snapshots. These were obtained by running a series of independent statistically
stationary channel flow simulations, from which solutions were extracted and stored
every 4 time units.

Now consider that each snapshot in Π is perturbed with either an anti-symmetric
function

ū′aIN(y)= 0.3 sin(πy), (2.2)

to create an ensemble Πa of initial conditions with a purely anti-symmetric initial
perturbation, or a symmetric function

ū′sIN(y)= (0.3− 0.3297y2) cos(3πy/2), (2.3)

to create an ensemble Πs of initial conditions with a purely symmetric initial
perturbation, where we note that both ū′aIN(y) and ū′sIN(y) have net-zero mass flux,
depend solely on the wall-normal direction, are zero at the walls, but are otherwise
arbitrary.

Finally consider restarting new simulations at t = 0 from the initial conditions in
each ensemble Πa/s. The resulting x-velocities ua/s(x, y, z, t)e obtained from each
instance e of Πa/s can be recorded, and their perturbations from the fully developed
base flow U(y) can be averaged as follows to obtain

ū′a/s(y, t)=
1

N × 8π× 4π

N∑
e=0

∫ 4π

−4π

∫ 2π

−2π

ua/s(x, y, z, t)e −U(y) dx dz, (2.4)

which in the limit N→∞ recovers the exact averaged x-velocity perturbation after
a purely anti-symmetric/symmetric initial perturbation. In the present study ū′a/s(y, t)
were each calculated using simulation results from N = 768 initial conditions.

It will be demonstrated a posteriori that use of N= 768 snapshots to calculate U(y),
and use of simulation results from N = 768 initial conditions to calculate ū′a/s(y, t),
is sufficient to suppress averaging errors to the extent that single and hence slowest-
decaying anti-symmetric/symmetric eigenmodes can be identified.

2.5. Identification of the slowest-decaying eigenmodes
We sought to identify the eigenvalue λa and eigenfunction ua(y) associated with
the slowest-decaying anti-symmetric eigenmode by studying ū′a(y, t), since it was
generated from a purely anti-symmetric initial perturbation. Similarly, we sought to
identify the eigenvalue λs and eigenfunction us(y) associated with the slowest-decaying
symmetric eigenmode by studying ū′s(y, t), since it was generated from a purely
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symmetric initial perturbation. To begin, the anti-symmetric component of ū′a(y, t),
denoted ū′aa(y, t), was extracted. This filtered out any symmetric components possibly
generated during the nonlinear transient, and thus facilitated identification of the
slowest-decaying anti-symmetric eigenmode. Similarly the symmetric component
of ū′s(y, t), denoted ū′ss(y, t), was extracted. This filtered out any anti-symmetric
components possibly generated during the nonlinear transient, and thus facilitated
identification of the slowest-decaying symmetric eigenmode. Subsequently, a single
anti-symmetric/symmetric eigenmode was fitted to a series of time-windowed sections
of ū′aa/ss(y, t), with a view to identifying if sections of ū′aa/ss(y, t) existed after the
nonlinear transient phase, and after all but one of the eigenmodes had decayed, but
before averaging errors became significant, where it could be well approximated by a
single, and hence slowest-decaying anti-symmetric/symmetric eigenmode. Specifically,
fitting was attempted in a series of windows t ∈ [t∗, t∗ + 1t∗], for an equispaced
distribution of window start times t∗ in the range 0 to 120, with candidate eigenvalues
λ∗a/s(t

∗) and ‘shifted’ candidate eigenfunctions û∗a/s(y, t∗) associated with a single
slowest-decaying anti-symmetric/symmetric eigenmode identified as solutions to the
optimisation problem

λ∗a/s(t
∗), û∗a/s(y, t∗)= argmin

λ,û(y)
εa/s(t∗), (2.5)

εa/s(t∗)=

√∫ 1

−1

∫ t∗+1t∗

t∗
(Re{û(y)eλ(t−t∗)} − ū′aa/ss(y, t))2 dt dy, (2.6)

and associated relative errors R∗a/s(t
∗) obtained as

R∗a/s(t
∗)=

min
λ,û(y)

εa/s(t∗)√∫ 1

−1

∫ t∗+1t∗

t∗
ū′aa/ss(y, t)2 dt dy

, (2.7)

where the ‘shifted’ candidate eigenfunctions were represented by 95 degrees of
freedom, using the same piecewise polynomial discretisation as for the DNS
simulations, and minimisation was performed using the Levenberg–Marquardt
algorithm via the LMFIT package (Newville et al. 2014). Note that for technical
reasons the time origin of the eigenmode in (2.6) was shifted by t∗ prior to fitting,
hence why û∗a/s(y, t∗) are referred to as ‘shifted’ candidate eigenfunctions. Once
obtained, these can be ‘unshifted’ to obtain candidate eigenfunctions

u∗a/s(y, t∗)= e−λa/st∗ û∗a/s(y, t∗), (2.8)

that can be directly compared.
If a single slowest-decaying anti-symmetric/symmetric eigenmode is identifiable

then there should exist a range of t∗ where:

(i) The candidate eigenvalues λ∗a/s(t
∗) are approximately independent of t∗, with a

value that can be ascribed to the true eigenvalue λa/s.
(ii) The relative errors R∗a/s(t

∗) are small.
(iii) The candidate eigenfunctions u∗a/s(y, t∗) are approximately independent of t∗, with

a form that can be ascribed to the true eigenfunction ua/s(y).
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y

FIGURE 2. Plots of U(y), the averaged x-velocity of the unperturbed base flow (black
line), and Ub(y), obtained by nonlinear least squares fitting of a rational polynomial to
U(y) (dashed white line).

We note that, strictly, the above approach will identify slowest-decaying anti-
symmetric/symmetric eigenmodes excited by the initial perturbations (2.2) and (2.3),
respectively. It is highly likely that these are also indeed the slowest-decaying
anti-symmetric/symmetric eigenmodes per se. However, to confirm, it would be
necessary to repeat the procedure using data from additional ensembles with
various initial perturbations, and check that the eigenmodes all agree. Given the
cost associated with DNS, such a check was not feasible here.

Finally, we comment that by applying a control volume approach in the normal
way to the full Navier–Stokes (1.1) and continuity equations (1.2), averaging over
the x- and z-directions, and using the fact that the bulk velocity is constant, one can
obtain an expression for the averaged pressure gradient perturbation associated with
each eigenmode

dp̄a/s

dx
(t)=Re

{
eλa/st

2Re
dua/s(y)

dy

∣∣∣∣+1

−1

}
. (2.9)

3. Results
3.1. Base flow

Figure 2 plots the averaged x-velocity of the unperturbed base flow U(y), along with
an analytical fit

Ub(y)= (1− y)(1+ y)
(

0.36y4
− 1.37y2

+ 1.16
0.90y4 − 1.87y2 + 1

)
, (3.1)

which was obtained by nonlinear least squares fitting of a rational polynomial to U(y).

3.2. Slowest-decaying anti-symmetric eigenmode
Figure 3 plots ū′aa(0.76, t), the anti-symmetric component of the averaged x-velocity
perturbation, after a purely anti-symmetric initial perturbation, at y = 0.76. The
evolution is non-oscillatory, which suggests that the slowest-decaying anti-symmetric
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FIGURE 3. Plot of ū′aa(0.76, t), the anti-symmetric component of the averaged x-velocity
perturbation, after a purely anti-symmetric initial perturbation, at y= 0.76.
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FIGURE 4. Plots of candidate eigenvalues λ∗a(t
∗) and relative fitting errors R∗a(t

∗) as a
function of window start time t∗, obtained using the procedure outlined in § 2.5 with a
window size of 1t∗ = 30.

eigenmode is real valued. Therefore, we assume that the corresponding eigenvalue λa
and eigenfunction ua(y) are real valued before proceeding with the analysis.

Figure 4 plots candidate eigenvalues λ∗a(t
∗) and relative fitting errors R∗a(t

∗) as a
function of window start time t∗, obtained using the procedure outlined in § 2.5 with
a window size of 1t∗ = 30. Within 30 6 t∗ 6 75 the candidate eigenvalues λ∗a(t

∗) are
approximately constant and the relative fitting errors R∗a(t

∗) are small. Figure 5 plots

ũ∗a(y)=
1
4

3∑
n=0

u∗a(y, 30+ 15n)
maxy{u∗a(y, 30+ 15n)}

, (3.2)

the average of four normalised candidate eigenfunctions within 306 t∗6 75, obtained
using the procedure outlined in § 2.5, and a window size of 1t∗ = 30. Figure 5 also
plots their associated standard deviation, which is seen to be small.

We therefore conclude that within the interval 30 6 t∗ 6 75 the anti-symmetric
component of the averaged x-velocity perturbation after a purely anti-symmetric initial
perturbation can be described by a single, and hence slowest-decaying, anti-symmetric
eigenmode. The associated eigenvalue can be approximated as

λa =−0.042, (3.3)
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FIGURE 5. Plots of ũ∗a(y), the average of four normalised candidate eigenfunctions within
306 t∗675, obtained using the procedure outlined in § 2.5, and a window size of 1t∗=30
(black line), along with their standard deviation (grey shaded region), and ua(y), obtained
by least squares fitting of a rational polynomial to ũ∗a(y) (dashed white line). Note that
ũ∗a(y) (black line) and ua(y) (dashed white line) are almost exactly superposed.

obtained from the average of λ∗a(t
∗) within the interval 30 6 t∗ 6 75, which has a

standard deviation of 0.001. The associated eigenfunction ua(y) can be approximated
as

ua(y)= (1− y)(1+ y)
(
−5.52y7

+ 11.81y5
− 9.77y3

+ 3.52y
0.50y4 − 1.47y2 + 1

)
, (3.4)

which is also plotted in figure 5, and was obtained by nonlinear least squares fitting
of a rational polynomial to ũ∗a(y).

As a check, figure 6 compares ū′aa(y, t), the anti-symmetric component of the
averaged x-velocity perturbation after a purely anti-symmetric initial perturbation with
the eigenmode Caua(y)eλat within 30 6 t 6 75, where Ca is real and depends on the
initial condition, and is chosen here via a nonlinear least squares fit. The contour plots
are similar, providing further confidence that a single, and hence slowest-decaying,
anti-symmetric eigenmode has been identified.

We note that the shape of the eigenfunction is similar to that of a sine curve, which
is the corresponding anti-symmetric laminar solution defined by (1.10). However, the
eigenvalue λa is found to be 11.8 times bigger than the analogous laminar value
obtained from (1.10) with Re = 2767. This is in line with expectations since eddy
viscosity is typically greater than molecular viscosity.

Figure 7 plots ū′as(0, t), the symmetric component of the averaged x-velocity
perturbation, after a purely anti-symmetric initial perturbation, at y= 0. We note that
it is non-zero, with a maximum value that is of the same order as the square of
the amplitude of ū′aa(0.76, t) shown in figure 3, i.e. the initial purely anti-symmetric
perturbation generates a symmetric component. This is in contrast to the laminar case,
where an anti-symmetric perturbation will always remain purely anti-symmetric, since
the governing equation for a unidirectional laminar flow is linear. It can be shown
(see appendix C) that if the evolution of the averaged perturbation is governed by
a symmetric linear operator, and the initial perturbation is anti-symmetric, then the
averaged perturbation must remain purely anti-symmetric for all time. Our observation
of the counter indicates that the full governing equations for the averaged perturbation
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FIGURE 6. Contours of ū′aa(y, t), the anti-symmetric component of the averaged x-velocity
perturbation, after a purely anti-symmetric initial perturbation (a) and the eigenmode
Caua(y)eλat (b).

must be nonlinear, even for a uni-directional channel flow case. Consequently, any
turbulence models should remain nonlinear even for a uni-directional flow, a corollary
of which is the requirement that for models employing eddy viscosity, such viscosity
cannot be independent of the flow. The well-known Prandtl model, in which the eddy
viscosity

νt = l(y)
d(U + u′)

dy
, (3.5)

where l(y) is the mixing length, satisfies this requirement. However, the assumption
that νt = νt(y), often used in studies of small averaged perturbations, does not. This
finding is in line with results from previous studies into the response of turbulent flow
to constant forcing (Russo & Luchini 2016; Luchini 2018).

Finally, we note that in accordance with (2.9) the averaged pressure gradient
perturbation associated with the anti-symmetric eigenmode is zero, since the
eigenfunction ua(y) is anti-symmetric.

3.3. Slowest-decaying symmetric eigenmode
Figure 8 plots ū′ss(0, t), the symmetric component of the averaged x-velocity
perturbation, after a purely symmetric initial perturbation, at y = 0. The evolution
is oscillatory, which suggests that the slowest-decaying symmetric eigenmode is
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FIGURE 7. Plot of ū′as(0, t), the symmetric component of the averaged x-velocity
perturbation, after a purely anti-symmetric initial perturbation, at y= 0.
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FIGURE 8. Plot of ū′ss(0, t), the symmetric component of the averaged x-velocity
perturbation, after a purely symmetric initial perturbation, at y= 0.

complex valued. Therefore, we assume that the corresponding eigenvalue λs and
eigenfunction us(y) are complex valued before proceeding with the analysis.

Figure 9 plots the real and imaginary parts of candidate eigenvalues λ∗s (t
∗) and

relative fitting errors R∗s (t
∗) as a function of window start time t∗, obtained using the

procedure outlined in § 2.5 with a window size of 1t∗ = 30. Within 30 6 t∗ 6 75 the
real and imaginary parts of candidate eigenvalues λ∗s (t

∗) are approximately constant
and the relative fitting errors R∗a(t

∗) are small. Figure 10 plots the real and imaginary
parts of

ũ∗s (y)=
1
4

3∑
n=0

u∗s (y, 30+ 15n)
|u∗s (0, 30+ 15n)|

, (3.6)

the average of four normalised candidate eigenfunctions within 306 t∗6 75, obtained
using the procedure outlined in § 2.5, and a window size of 1t∗= 30. Figure 10 also
plots their associated standard deviations, which is seen to be small.

We therefore conclude that within the interval 306 t∗675 the symmetric component
of the averaged x-velocity perturbation after a purely symmetric initial perturbation
can be described by a single, and hence slowest-decaying, symmetric eigenmode. The
associated eigenvalue can be approximated as

λs =−0.049− i0.069, (3.7)

obtained from the average of λ∗s (t
∗) within the interval 30 6 t∗ 6 75, which has a

standard deviation of 0.003+ i0.004. The real and imaginary parts of the associated
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FIGURE 9. Plots the real and imaginary parts of candidate eigenvalues λ∗s (t
∗) and relative

fitting errors R∗s (t
∗) as a function of window start time t∗, obtained using the procedure

outlined in § 2.5 with a window size of 1t∗ = 30.
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FIGURE 10. Plots of the real and imaginary parts of ũ∗s (y), the average of four normalised
candidate eigenfunctions within 30 6 t∗ 6 75, obtained using the procedure outlined in
§ 2.5, and a window size of 1t∗ = 30 (black lines), along with their standard deviations
(grey shaded regions), and the real and imaginary parts of us(y), obtained by least squares
fitting of rational polynomials to the real and imaginary parts of ũ∗s (y), respectively
(dashed white lines). Note that the real and imaginary parts of ũ∗s (y) (black lines) and
the real and imaginary parts of us(y) (dashed white lines) are almost exactly superposed.

eigenfunction us(y) can be approximated as

Re{us(y)} = (1− y)(1+ y)
(
−0.19y6

+ 6.20y4
− 6.56y2

+ 0.96
2.75y6 − 4.23y4 + 0.60y2 + 1

)
, (3.8)
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FIGURE 11. Contours of ū′ss(y, t), the symmetric component of the averaged x-velocity
perturbation after a purely symmetric initial perturbation (a) and the real part of the
eigenmode Re{Csus(y)eλst

} (b).

Im{us(y)} = (1− y)(1+ y)
(

3.66y8
− 8.72y6

+ 7.44y4
− 1.41y2

− 0.25
1.64y6 − 2.11y4 − 0.48y2 + 1

)
, (3.9)

which are also plotted in figure 10, and were obtained by nonlinear least squares
fitting of rational polynomials to Re{ũ∗s (y)} and Im{ũ∗s (y)}, respectively. We note that
since the problem is real valued, the complex conjugate of λs and us(y) will also form
a valid eigenmode.

As a check, figure 11 compares ū′ss(y, t), the symmetric component of the averaged
x-velocity perturbation after a purely symmetric initial perturbation with the real part
of the eigenmode Re{Csus(y)eλst

} within 306 t675, where Cs is complex and depends
on the initial condition, and is chosen here via a nonlinear least squares fit. The
contour plots are similar, providing further confidence that a single, and hence slowest-
decaying, symmetric eigenmode has been identified.

We note that in contrast to the corresponding symmetric laminar solution
defined by (1.11), the eigenvalue and eigenfunction are complex. This implies
that the corresponding linear operator cannot be self-adjoint, even in the case of
a uni-directional flow. Moreover, unlike for the anti-symmetric perturbation, the shape
of the eigenfunctions differ substantially between the laminar and turbulent cases. In
particular, the symmetric eigenfunction has a large magnitude approximately 12 wall
units from the wall, in a region where turbulent fluctuations are known to attain their
maximum value. We can hypothesise that the complex eigenvalue is a result of an
interplay between two physical processes, one occurring in the bulk of the flow, and
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FIGURE 12. Plot of ū′sa(0.76, t), the anti-symmetric component of the averaged x-velocity
perturbation, after a purely symmetric initial perturbation, at y= 0.76.

another associated with turbulent fluctuations concentrated near the walls. Also, the
real part of the eigenvalue Re{λs} is found to be 6.72 times bigger than the analogous
laminar value obtained from (1.11) with Re= 2767. This is in line with expectations
since eddy viscosity is typically greater than molecular viscosity.

Figure 12 plots ū′sa(0.76, t), the anti-symmetric component of the averaged x-velocity
perturbation, after a purely symmetric initial perturbation, at y = 0.76. We note
that it is zero i.e. the initial purely symmetric perturbation does not generate
an anti-symmetric component. This is expected since the mean flow, the initial
perturbation, and the boundary conditions are all symmetric.

Finally, we note that in accordance with (2.9) the averaged pressure gradient
perturbation associated with the symmetric eigenmode is

dps

dx
(t) = Re{eλst(0.00247+ i0.0104)}

= e−0.049t(0.0104 sin(0.069t)+ 0.00247 cos(0.069t)). (3.10)

4. Conclusion
Eigenmodes of averaged small-amplitude perturbations to a turbulent channel flow

– which is one of the most fundamental canonical flows – have been identified
for the first time via an extensive set of high-fidelity GPU accelerated DNS.
Specifically, for a turbulent channel flow with Reτ = 180 and a constant bulk velocity,
the slowest-decaying anti-symmetric eigenmode was found to have an eigenvalue
λa = −0.042 and an eigenfunction ua(y) approximated by the analytical expression
(3.4), and the slowest-decaying symmetric eigenmode was found to have an eigenvalue
λs = −0.049 − i0.069 and an eigenfunction us(y) approximated by the analytical
expressions (3.8) and (3.9). While the system governing averaged small-amplitude
perturbations to turbulent channel flow remains unknown, the fact such eigenmodes
could be extracted constitutes direct evidence that it is linear. Moreover, given
λs and us(y) were found to be complex this unknown linear system cannot be
self-adjoint, even for the case of a uni-directional flow. In addition to elucidating
aspects of the flow physics, the findings provide guidance for development of new
unsteady Reynolds-averaged Navier–Stokes turbulence models, and constitute a new
and accessible benchmark problem for assessing the performance of existing models,
which are used widely throughout industry.

Future studies can employ the approach adopted here to identify further eigenmodes
of averaged small-amplitude perturbations to turbulent channel flow. These could
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Configuration nx × ny × nz p

42-13-40-p4 42× 13× 40 4
52-16-50-p4 52× 16× 50 4
62-19-60-p4 62× 19× 60 4
82-25-80-p4 82× 25× 80 4
62-19-60-p3 62× 19× 60 3
62-19-60-p5 62× 19× 60 5

TABLE 1. Configurations.

include e.g. those associated with higher Reynolds numbers, and those associated
with perturbations that vary in wall-parallel directions; with the objective of obtaining
a more extensive set of eigenmodes analogous to those given by the Orr–Sommerfeld
equation for laminar channel flow.
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Appendix A. Mesh independence
A.1. Overview

Simulations were performed on various meshes, and using various polynomials orders
to represent the solution in each element. Full details of each configuration are
provided in table 1, where nx, ny and nz are the number of mesh elements in the x,
y and z directions respectively, and p is the polynomial order used to represent the
solution in each element. All meshes were uniform in the x- and z-directions, but
non-uniform in the y-direction, with resolution skewed towards the channel walls.

A.2. Velocity
Figures 13 and 14 show plots of normalised time-averaged x-velocity

u+ = u
√
ρ

τw
, (A 1)

where ρ is fluid density and τw is mean wall shear stress, as a function of normalised
wall-normal distance

y+ =
1y
ν

√
τw

ρ
, (A 2)

where ν is fluid kinematic viscosity and 1y is wall-normal distance. Figure 13 shows
variation with nx, ny and nz for fixed p. The three finest meshes (52-16-50-p4, 62-19-
60-p4, 82-25-80-p4) produce visually identical results, indicating mesh independence
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FIGURE 13. Plots of u+ for configuration 42-13-40-p4 (solid line), 52-16-50-p4 (dashed
line), 62-19-60-p4 (dotted line) and 82-25-80-p4 (dash-dotted line).
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FIGURE 14. Plots of u+ for configuration 62-19-60-p3 (solid line), 62-19-60-p4 (dashed
line) and 62-19-60-p5 (dotted line).

has been achieved. Figure 14 shows variation with p for fixed nx, nz and nz. The two
highest polynomial orders (62-19-60-p4, 62-19-60-p5) also produce visually identical
results, also indicating that mesh independence has been achieved. One can conclude
that the 62-19-60-p4 configuration is sufficient to achieve mesh independence of the
velocity.

A.3. Velocity fluctuations

Figures 15 and 16 show plots of x-velocity fluctuations urms, y-velocity fluctuations
vrms and z-velocity fluctuations wrms, as a function of y. Figure 15 shows variation
with nx, ny and nz for fixed p. The three finest meshes (52-16-50-p4, 62-19-60-p4, 82-
25-80-p4) produce visually identical results, indicating mesh independence has been
achieved. Figure 16 shows variation with p for fixed nx, nz and nz. The two highest
polynomial orders (62-19-60-p4, 62-19-60-p5) also produce visually identical results,
also indicating that mesh independence has been achieved. One can conclude that the
62-19-60-p4 configuration is sufficient to achieve mesh independence of the velocity
fluctuations.
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FIGURE 15. Plots of urms, vrms and wrms for configuration 42-13-40-p4 (solid lines),
52-16-50-p4 (dashed lines), 62-19-60-p4 (dotted lines) and 82-25-80-p4 (dash-dotted lines).
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FIGURE 16. Plots of urms, vrms and wrms for configuration 62-19-60-p3 (solid lines),
62-19-60-p4 (dashed lines) and 62-19-60-p5 (dotted lines).

Appendix B. Comparison with published DNS data
Results obtained using the 62-19-60-p4 configuration were compared with DNS

results at the same Reτ obtained by Kim, Moin & Moser (1987). Figure 17 compares
plots of u+ as a function of y+, and urms, vrms and wrms as a function of y. There
is good agreement in the inner, transition and outer layers. This provides further
evidence that the 62-19-60-p4 configuration effectively resolves the flow physics.

Appendix C. Persistence of anti-symmetry for linear evolution operators
Consider defining an evolution operator Et for an ensemble- and x–z-averaged

perturbation such that

ū′(t, y)= Et[ū′0(y)], (C 1)

where ū′0(y) is the initial perturbation, and ū′(t, y) is the ensemble-x–z averaged
perturbation at time t. Given the symmetry of the problem one can reason that

ū′(t,−y)= Et[ū′0(−y)], (C 2)

and thus

ū′(t, y)+ ū′(t,−y)= Et[ū′0(y)] + Et[ū′0(−y)]. (C 3)
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FIGURE 17. Plots of u+, urms, vrms and wrms obtained using the 62-19-60-p4 configuration
(solid lines) and from previous DNS by Kim et al. (1987) (dashed lines).

If the evolution operator Et is linear then

ū′(t, y)+ ū′(t,−y)= Et[ū′0(y)+ ū′0(−y)], (C 4)

and further, if the initial perturbation is anti-symmetric, ū′0(y)=−ū′0(−y), then

ū′(t, y)+ ū′(t,−y)= Et[ū′0(y)− ū′0(y)] = Et[0], (C 5)

and thus since Et[0] = 0 one obtains

ū′(t, y)=−ū′(t,−y). (C 6)

Therefore, if Et is a symmetric linear operator, and the initial perturbation is anti-
symmetric, then the ensemble- and x–z-averaged perturbation must remain purely anti-
symmetric for all time.
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