THE SOLUTIONS OF SOME FUNCTIONAL EQUATIONS

T.D. Howroyd

(received June 10, 1963)

In this paper we are concerned with functional equations of the type

(1)
$$f(x+y) = F[f(x), f(y), f(x-y)]$$

in which x, y do not appear explicitly. J. Aczel [1] has given a method for finding real solutions of some of these equations. We prove a theorem which can sometimes be used to solve problems concerning the uniqueness of solutions of such equations.

In the following x, y are real variables, C is the complex plane, and C is the extended complex plane. Our solution space is \overline{C} and \overline{F} is defined on $\overline{C} \times \overline{C} \times \overline{C}$ in the usual way. Then, for example, $f(x) = \cos x$ is a solution of

(2)
$$f(x+y) + f(x-y) = 2f(x)f(y)$$
,

and $f(x) = \tan x$ is a solution of

(3)
$$f(x+y) = \frac{f(x) + f(y)}{1 - f(x)f(y)}$$

provided we define $\tan x = \infty$ when $\cos x = 0$. Both of these equations appear in [1].

THEOREM. Let $D \subset C$. Let the functional equation

(4)
$$g(x+y,Z) = F[g(x,Z),g(y,Z),g(x-y,Z)]$$

Canad. Math. Bull. vol. 7, no. 2, April 1964

have for each $Z \in D$ a solution g(x, Z), which defines for each $x \neq 0$ an inverse function of Z, and is independent of Z at x = 0. Then if f(x) is a solution of (1) such that

(5)
$$\begin{cases} f(0) = g(0, Z), & Z \in D \\ f(x) = g(x, Z) & \text{for some } Z \in D, \end{cases}$$

there exists $u(x) \in D$ such that

(6)
$$f(x) = g(x, u(x)) = g(x, u(x/n)), \quad n = 2, 3, ..., x \neq 0.$$

<u>Proof.</u> Let h(x, Z) be an inverse of g(x, Z) for each $x \neq 0$, and f(x) be a solution of (1) satisfying (5). Then

$$u(x) = h(x, f(x))$$

satisfies the first part of (6). From (1) and (4)

$$f(2x) = F[f(x), f(x), f(0)] = F[g(x, u(x)), g(x, u(x))] = g(2x, u(x)),$$

and by induction

$$f(nx) = g(nx, u(x))$$
, $n = 2, 3, ...;$

which gives the second part of (6).

Remark 1. For practical purposes the application of this theorem is only successful when the range of g(x, Z), $Z \in D$, is the same for each $x \neq 0$.

Remark 2. If we can deduce from (6) the equations

(7) u(x) = u(x/n), n = 2, 3, ...,

then for any $c \neq 0$ and rational m/n

$$u(cm/n) = u(c/n) = u(c)$$

 $f(cm/n) = g(cm/n, u(c))$.

Thus if f(x) and g(x, K) (K \in D) are continuous in some neighbourhood of 0, it follows that there exists K \in D with

$$f(x) = g(x, K)$$

in this neighbourhood, and hence for all x.

Example 1. We can apply the above to (3) with

$$g(x, Z) = \tan xZ$$
;

the range of this function of Z is $\overline{C} - [\pm i]$ for each $x \neq 0$. Let f(x) be a solution of (3) such that $f(x) \in \overline{C} - [\pm i]$; then f(0) = 0 and there exists $u(x) \in C$ such that

$$f(x) = \tan xu(x) = \tan xu(x/n)$$
, $n = 2, 3, ...$

Let there exist $\delta > 0$ such that f(x) is continuous and

(8)
$$f(x) = f(0) + O(x)$$

for $|\mathbf{x}| < \delta$. Obviously we may assume $xu(\mathbf{x})$ is in the fundamental region of the Z-plane, $-\pi/2 \leq \text{Re } Z < \pi/2$, so that $xu(\mathbf{x})$ is also continuous for $|\mathbf{x}| < \delta$ and $xu(\mathbf{x}) \rightarrow 0$ as $\mathbf{x} \rightarrow 0$. Hence for $|\mathbf{x}|$ sufficiently small

$$|xu(x)|/2 < |tan xu(x)| < c |x|$$

 $|xu(x/n)| < 2c |x|$, n = 2, 3,...,

so that xu(x) and xu(x/n) are both in the above fundamental region of the complex plane, and so are equal. It follows from Remark 2 that there exists $K \in C$ such that

$$f(x) = tan Kx$$
.

It is immediately evident that the only solutions of (3) not entirely in $\overline{C} - [\frac{1}{2}i]$ are f(x) = i and f(x) = -i.

Thus if f(x) is a solution of (3) which, in some neighbourhood of 0, is continuous and satisfies the Lipschitz condition (8), then

$$f(x) = \tan Kx$$
, i, or -i (K \in C).

Example 2. Similarly we find that f(x) = 0, $\cos Kx$, $(K \in C)$ are the only solutions of (2) which, in some neighbourhood of 0, are continuous and satisfy the Lipschitz condition

$$f(x) = f(0) + O(x^2)$$
.

REFERENCE

1. J. Aczel, Vorlesungen Uber Funktionalgleichungen und Ihre Anwendungen, Chap. 2 (Basel 1961).

University of New Brunswick

282