THE SOLUTIONS OF SOME FUNCTIONAL EQUATIONS
T. D. Howroyd
(received June 10, 1963)

In this paper we are concerned with functional equations of the type

$$
\begin{equation*}
f(x+y)=F[f(x), f(y), f(x-y)] \tag{1}
\end{equation*}
$$

in which x , y do not appear explicitly. J. Aczel[1] has given a method for finding real solutions of some of the se equations. We prove a theorem which can sometimes be used to solve problems concerning the uniqueness of solutions of such equations.

In the following_ x, y are real variables, C is the complex plane, and $\overline{\mathrm{C}}$ is the extended complex plane. Our solution space is \bar{C} and F is defined on $\bar{C} \times \bar{C} \times \bar{C}$ in the usual way. Then, for example, $f(x)=\cos x$ is a solution of

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x) f(y), \tag{2}
\end{equation*}
$$

and $f(x)=\tan x$ is a solution of

$$
\begin{equation*}
f(x+y)=\frac{f(x)+f(y)}{1-f(x) f(y)} \tag{3}
\end{equation*}
$$

provided we define $\tan \mathrm{x}=\infty$ when $\cos \mathrm{x}=0$. Both of these equations appear in [1].

THEOREM. Let $D \subset C$. Let the functional equation

$$
\begin{equation*}
g(x+y, Z)=F[g(x, Z), g(y, Z), g(x-y, Z)] \tag{4}
\end{equation*}
$$

Canad. Math. Bull. vol. 7, no. 2, April 1964
have for each $Z \in D$ a solution $g(x, Z)$, which defines for each $x \neq 0$ an inverse function of Z, and is independent of Z at $x=0$. Then if $f(x)$ is a solution of (1) such that

$$
\begin{cases}f(0)=g(0, Z), & Z \in D \tag{5}\\ f(x)=g(x, Z) & \text { for some } Z \in D,\end{cases}
$$

there exists $u(x) \in D$ such that

$$
\begin{equation*}
f(x)=g(x, u(x))=g(x, u(x / n)), \quad n=2,3, \ldots, x \neq 0 \tag{6}
\end{equation*}
$$

Proof. Let $h(x, Z)$ be an inverse of $g(x, Z)$ for each $x \neq 0$, and $f(x)$ be a solution of (1) satisfying (5). Then

$$
u(x)=h(x, f(x))
$$

satisfies the first part of (6). From (1) and (4)
$f(2 x)=F[f(x), f(x), f(0)]=F[g(x, u(x)), g(x, u(x))]=g(2 x, u(x))$, and by induction

$$
f(n x)=g(n x, u(x)), \quad n=2,3, \ldots ;
$$

which gives the second part of (6).

Remark 1. For practical purposes the application of this theorem is only successful when the range of $g(x, Z), Z \in D$, is the same for each $\mathrm{x} \neq 0$.

Remark 2. If we can deduce from (6) the equations

$$
\begin{equation*}
u(x)=u(x / n), \quad n=2,3, \ldots, \tag{7}
\end{equation*}
$$

then for any $c \neq 0$ and rational m / n

$$
\begin{aligned}
& \mathrm{u}(\mathrm{~cm} / \mathrm{n})=\mathrm{u}(\mathrm{c} / \mathrm{n})=\mathrm{u}(\mathrm{c}) \\
& \mathrm{f}(\mathrm{~cm} / \mathrm{n})=\mathrm{g}(\mathrm{~cm} / \mathrm{n}, \mathrm{u}(\mathrm{c}))
\end{aligned}
$$

Thus if $f(x)$ and $g(x, K)(K \in D)$ are continuous in some neighbourhood of 0 , it follows that there exists $K \in D$ with

$$
f(x)=g(x, K)
$$

in this neighbourhood, and hence for all x .

Example 1. We can apply the above to (3) with

$$
g(x, Z)=\tan x Z ;
$$

the range of this function of Z is $\bar{C}-[\pm i]$ for each $x \neq 0$. Let $f(x)$ be a solution of (3) such that $f(x) \in \bar{C}-[\pm i]$; then $f(0)=0$ and there exists $u(x) \in C$ such that

$$
f(x)=\tan x u(x)=\tan x u(x / n), \quad n=2,3, \ldots
$$

Let there exist $\delta>0$ such that $f(x)$ is continuous and

$$
\begin{equation*}
f(x)=f(0)+O(x) \tag{8}
\end{equation*}
$$

for $|x|<\delta$. Obviously we may assume $\mathrm{xu}(\mathrm{x})$ is in the fundamental region of the Z-plane, $-\pi / 2 \leqq \operatorname{Re} Z<\pi / 2$, so that $\mathrm{xu}(\mathrm{x})$ is also continuous for $|\mathrm{x}|<\delta$ and $\mathrm{xu}(\mathrm{x}) \rightarrow 0$ as $\mathrm{x} \rightarrow 0$. Hence for $|x|$ sufficiently small

$$
\begin{aligned}
&|x u(x)| / 2<|\tan x u(x)|<c|x| \\
&|x u(x / n)|<2 c|x|, \quad n=2,3, \ldots,
\end{aligned}
$$

so that $x u(x)$ and $x u(x / n)$ are both in the above fundamental region of the complex plane, and so are equal. It follows from Remark 2 that there exists $K \in C$ such that

$$
f(x)=\tan K x .
$$

It is immediately evident that the only solutions of (3) not entirely in $\bar{C}-[\pm i]$ are $f(x)=i$ and $f(x)=-i$.

Thus if $f(x)$ is a solution of (3) which, in some neighbourhood of 0 , is continuous and satisfies the Lipschitz condition (8), then

$$
f(x)=\tan K x, i \text {, or }-i \quad(K \in C)
$$

Example 2. Similarly we find that $f(x)=0, \cos K x,(K \in C)$ are the only solutions of (2) which, in some neighbourhood of 0 , are continuous and satisfy the Lipschitz condition

$$
f(x)=f(0)+O\left(x^{2}\right)
$$

REFERENCE

1. J. Aczel, Vorlesungen Uber Funktionalgleichungen und Ihre Anwendungen, Chap. 2 (Basel 1961).

University of New Brunswick

