
JFP 23 (2): 174–184, 2013. c© Cambridge University Press 2013

doi:10.1017/S0956796812000457 First published online 7 January 2013

174

FUNCTIONAL PEARLS

An in-situ algorithm for expanding a graph

RICHARD S. B IRD

Department of Computer Science, Oxford University, Wolfson Building, Parks Road, Oxford,

OX1 3QD, UK

(e-mail:)bird@cs.ox.ac.uk)

1 Introduction

This pearl is devoted to a problem posed by Don Knuth about how to justify a certain

array-based algorithm for changing the way an undirected graph is represented. In

order to set the scene, we delay describing the precise problem until Section 4.

Knuth (2011) recorded three different solutions, though no proofs of correctness

were provided, nor even much explanation of why they worked. Recently, he asked

various computer scientists interested in formal program development whether any

of the proposed solutions “could have been discovered in a disciplined manner.” In

what follows we respond by developing a purely functional solution. The solution

makes heavy use of the operations in the Haskell library Data .Array , and the whole

exercise turns out to be a fascinating study of the arithmetic of graphs and arrays.

One of the conditions of the problem is that the final algorithm has to be in situ,

but we will get to that in due course.

2 Graphs and digraphs

Our objects of study are undirected graphs with no self-loops (edges from a vertex

to itself), though multiple edges between two distinct vertices are allowed. In all that

follows, suppose there are m edges and n vertices, labelled [1 .. n]. For example, the

following graph has m = 8 and n = 6:

�������	1

��
��

��
��

�������	2

��
��

��
��

�������	6

�������	3 �������	4 �������	5

One way to represent a graph is by an array that associates each vertex with a list

of its adjacent vertices:

type Vertex = Int

type Graph = Array Vertex [Vertex]

Exactly this representation is used in the Haskell library Data .Graph . For example,

the graph above is represented by

g = array (1, 6) [(1, [2, 2, 4]), (2, [1, 1, 3, 4, 6]), (3, [2]), (4, [1, 2, 5, 5]), (5, [4, 4]), (6, [2])]

https://doi.org/10.1017/S0956796812000457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000457

Functional pearls 175

The vertices and edges of a graph are defined by

vertices g = indices g

edges g = [(j , k) | j ← vertices g , k ← g!j]

The function indices returns the indices of an array in ascending order and (!)

denotes array indexing. Each undirected edge connecting j and k occurs twice in

edges g , once as (j , k) and once as (k , j). In particular, length (edges g) = 2m , not m .

Adjacency lists are assumed to be in ascending order. For g to be a valid graph

it has to satisfy

g!i = [j | (j , k)← edges g , k = i] (1)

for all vertices i . For example, in the graph above, vertex 1 appears twice in the

adjacency list for vertex 2 and once in the adjacency list for vertex 4, so its adjacency

list is [2, 2, 4]. Of course, g!i = [k | (j , k)← edges g , j = i] by definition of edges .

A digraph is a graph with directed edges. There are 2m ways of converting a

graph into a digraph, two of which are to direct each edge from the smaller to the

larger vertex, or to direct each edge from the larger to the smaller. The functions

directUp and directDn of type Graph → Digraph , where Digraph is a synonym for

Graph though without the restriction (1), are defined by

directUp g = array (bounds g) [(j , dropWhile (<j) (g!j)) | j ← vertices g]

directDn g = array (bounds g) [(j , takeWhile (<j) (g!j)) | j ← vertices g]

For our running example,

directUp g = array (1, 6) [(1, [2, 2, 4]), (2, [3, 4, 6]), (3, []), (4, [5, 5]), (5, []), (6, [])]

directDn g = array (1, 6) [(1, []), (2, [1, 1]), (3, [2]), (4, [1, 2]), (5, [4, 4]), (6, [2])]

Let us fix on directUp as the way of turning a graph into a digraph. Can we find an

efficient method of going the other way? That is, can we define mkGraph to satisfy

mkGraph · directUp = id? Such a function is required as part of Knuth’s problem.

We calculate for an arbitrary graph g:

g!i

= {since xs = takeWhile p xs ++ dropWhile p xs for any total p}
takeWhile (<i) (g!i) ++ dropWhile (<i) (g!i)

= {definition of directDn and directUp}
(directDn g)!i ++ (directUp g)!i

= {specify lower :: Digraph → Digraph by directDn = lower · directUp}
(lower (directUp g))!i ++ (directUp g)!i

= {define mkGraph by (mkGraph d)!i = (lower d)!i ++ d!i}
(mkGraph (directUp g))!i

Thus, we can define

mkGraph d = array (bounds d) [(i , (lower d)!i ++ d!i) | i ← vertices d] (2)

https://doi.org/10.1017/S0956796812000457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000457

176 R. S. Bird

provided we can find lower :: Digraph → Digraph to satisfy

(lower (directUp g))!i = takeWhile (<i) (g!i)

A suitable definition of lower is given by

(lower d)!i = [j | (j , k)← edges d , k = i]

The right-hand side is identical to the right-hand side of (1), but remember that (1)

does not hold when d is a digraph. To prove that lower meets its specification, we

can argue:

(lower (directUp g))!i

= {definition of lower}
[j | (j , k)← edges (directUp g), k = i]

= {definition of directUp and edges}
[j | j ← vertices g , k ← dropWhile (<j) (g!j), k = i]

= {since dropWhile (<j) (g!j) = filter (j<) (g!j); see below}
[j | j ← vertices g , k ← g!j , j < k ∧ k = i]

= {since (j < k ∧ k = i) ≡ (j < i ∧ k = j)}
[j | j ← vertices g , k ← g!j , j < i ∧ k = i]

= {definition of takeWhile}
takeWhile (<i) [j | (j , k)← edges g , k = i]

= {(1)}
takeWhile (<i) (g!i)

The equation dropWhile (<j) (g!j) = filter (j<) (g!j) holds because the adjacency list

g!j is in ascending order and does not contain j . The absence of self-loops is critical

to the success of the above calculation. Hence

lower d = array (bounds d) [(i , entry i) | i ← vertices d]

where entry i = [j | (j , k)← edges d , k = i]

Well and good, but definition (2) of mkGraph does not take linear time: lower d

takes Θ(mn) steps rather than Θ(m+n) steps.

Fortunately, there is another function in Data .Array that comes to our aid. It is

called accum and has type

accum :: Ix i ⇒ (e → v → e)→ Array i e → [(i , v)]→ Array i e

The type constraint Ix i restricts i to be an index type, such as Int , for naming

the indices of the array. The first argument is an “accumulating” function for

transforming array entries and values into new entries; the second argument is an

array and the third argument is an association list of index-value pairs. The result

is an array built by processing the association list from left to right, combining

entries and values into new entries using the accumulating function. The process

takes linear time in the length of the association list, assuming the accumulating

function takes constant time.

https://doi.org/10.1017/S0956796812000457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000457

Functional pearls 177

That is what accum does in words. In symbols,

(accum f a jvs)!i = foldl f (a!i) [v | (j , v)← jvs , j = i] (3)

for all i in range (bounds a). Well, not quite: there is an additional restriction on jvs ,

namely that every index j in this list should also lie in the range of a . If this condition

does not hold, then the left-hand side returns an error while the right-hand side does

not. I can appreciate why the Haskell library designers imposed the restriction, but

it does spoil a good identity.

Now we can calculate for a digraph d :

(mkGraph d)!i

= {definition (2)}
(lower d)!i ++ d!i

= {definition of lower}
[j | (j , k)← edges d , k = i] ++ d!i

= {since foldr (:) ys xs = xs ++ ys}
foldr (:) (d!i) [j | (j , k)← edges d , k = i]

= {since foldr f e xs = foldl (flip f) e (reverse xs) for all finite xs}
foldl (flip (:)) (d!i) (reverse [j | (j , k)← edges d , k = i])

= {suppose swap (j , k) = (k , j)}
foldl (flip (:)) (d!i) (reverse [j | (k , j)← map swap (edges d), k = i])

= {distributing reverse}
foldl (flip (:)) (d!i) ([j | (k , j)← reverse (map swap (edges d)), k = i])

= {(3)}
(accum (flip (:)) d (reverse (map swap (edges d))))!i

Hence

mkGraph d = accum (flip (:)) d (reverse (map swap (edges d))) (4)

This pretty one-line definition of mkGraph does take linear time.

3 A second definition

Definition (4) is a testament to the expressive power of Haskell and the Data .Array

library, but it is too highly structured for our purposes. Instead, we seek a more

basic definition that takes the form of a simple loop involving array updates at a

single point. The array update operation (//) in Data .Array has the general type

(//) :: Ix i ⇒ Array i e → [(i , e)]→ Array i e

In particular, a // [(i , e)] is an array identical to a except that it takes the value e at

position i .

https://doi.org/10.1017/S0956796812000457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000457

178 R. S. Bird

The function accum can be expressed in terms of (//). Assuming all indices in ivs

are indices of a , we have

accum f a ivs = foldl (update f) a ivs

update f a (i , v) = a // [(i , f (a!i) v)]

We now calculate an alternative definition of mkGraph in terms of foldr and (//).

To do so, we make use of the following identities:

foldr f e · concat = foldr (flip (foldr f)) e

foldr f e · map g = foldr (f · g) e

foldr f e xs = foldl (flip f) e (reverse xs)

In the last identity xs is a finite list. Proofs can be found in Bird (1998). We calculate:

mkGraph d

= {(4)}
accum (flip (:)) d (reverse (map swap (edges d)))

= {above definition of accum}
foldl (update (flip (:))) d (reverse (map swap (edges d)))

= {since foldr f e xs = foldl (flip f) e (reverse xs) for all finite xs}
foldr (flip (update (flip (:)))) d (map swap (edges d))

= {since foldr f e · map g = foldr (f · g) e}
foldr (flip (update (flip (:))) · swap) d (edges d)

Define store = flip (update (flip (:))) · swap. Simplifying, we obtain

mkGraph d = foldr store d (edges d)

store (j , k) g = g // [(k , j : g!k)]

We continue with the calculation:

foldr store d (edges d)

= {definition of edges}
foldr store d [(j , k) | j ← vertices d , k ← d!j]

= {list comprehensions}
foldr store d (concat [[(j , k) | k ← d!j] | j ← vertices d])

= {since foldr f e · concat = foldr (flip (foldr f)) e}
foldr (flip (foldr store)) d [[(j , k) | k ← d!j] | j ← vertices d]

= {define arcs d j = [(j , k) | k ← d!j]}
foldr (flip (foldr store)) d (map (arcs d) (vertices d))

= {since foldr f e · map g = foldr (f · g) e}
foldr (flip (foldr store) · arcs d) d (vertices d)

https://doi.org/10.1017/S0956796812000457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000457

Functional pearls 179

Define step d = flip (foldr store) · arcs d . Simplifying, we obtain

mkGraph d = foldr (step d) d (vertices d)

step d j g = foldr (store j) g (d!j)

store j k g = g // [(k , j : g!k)]

Finally, we exploit the fact that d = directUp g for some graph g , so d!j is a list of

vertices strictly greater than j . That means d!j = g!j , where

g = foldr (step d) d (dropWhile (� j) (vertices d))

It follows that we can drop the first argument of step and simplify mkGraph to read

mkGraph d = foldr step d (vertices d) (5)

where step j g = foldr (store j) g (g!j). As promised, definition (5) expresses mkGraph

as a (nested) loop using single array updates.

4 Knuth’s problem

Finally, we come to Knuth’s problem. Our choice of representation for graphs is a

jolly good one in a functional setting, but arguably less so in a language in which

lists have to be implemented using linked structures and pointers. Another idea,

dubbed the sequential representation by Knuth, is to represent elements of Graph

and Digraph by two simpler arrays:

type SeqRep = (Array Int Vertex ,Array Int Int)

Knuth called the sequential representation of directUp g the short code of g . By the

same token the full representation is called the long code. In either a long or short

code (va , pa) of a graph with m edges and n vertices, the bounds of va are (1, 2m)

and the bounds of pa are (0, n). Moreover, pa!0 is fixed to be 0. The values m and

n can be determined from these bounds and, to save space, will be considered as

constants in the functions that follow. The array va stores the concatenated list of

adjacency lists and pa stores the boundaries that enable the concatenated adjacency

lists to be reconstructed. More precisely, we can decode a sequential representation

by

decode (va , pa) = array (1, n) [(j , adj (va , pa) j) | j ← [1 .. n]]

adj (va , pa) j = map (va!) [pa!(j−1)+1 .. pa!j]

The inverse function encode is defined by setting encode g = (va , pa), where

va = array (1, 2∗m) (zip [1 .. 2∗m] (concat (elems g)))

pa = array (0, n) (zip [0 .. n] (scanl (+) 0 (map length (elems g))))

For our example graph g the sequential representation is a pair (va , pa) with elements

elems va = [2, 2, 4, 1, 1, 3, 4, 6, 2, 1, 2, 5, 5, 4, 4, 2]

elems pa = [0, 3, 8, 9, 13, 15, 16]

while the sequential representation of directUp g has elements

elems va = [2, 2, 4, 3, 4, 6, 5, 5,−,−,−,−,−,−,−,−]

elems pa = [0, 3, 6, 6, 8, 8, 8]

https://doi.org/10.1017/S0956796812000457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000457

180 R. S. Bird

The second half of va is ignored. Knuth’s problem is to show how to reconstruct

the long code from the short code, that is, to compute

expand = encode · mkGraph · decode

Furthermore, expand has to take linear time and be in situ, meaning that the total

space available for computing expand is restricted to 2m + n + c units for some

suitably small constant c. It requires 2m + n integers just to store the long code, so

only a constant amount of extra space is allowed. That means arrays have to be

modifiable in place and all recursive functions have to be translatable into stack-

free loops. We solve the first problem by pretending that (//) is an in-place (and

constant-time) operation, and the second by using only foldl and foldr to describe

computations.

5 A solution

The core problem we have to tackle is how to store the concatenated elements of

mkGraph d , where d = decode (va , pa), in the array va . Suppose as an intermediate

stage the elements of d have been installed in their correct final positions in va ,

while the remaining positions in va are filled with zeros. Furthermore, suppose pa

has been adjusted so that

d!j = takeWhile (= 0) (map (va!) [pa!(j−1)+1 .. pa!j])

For our running example that means computing (va , pa) to satisfy

elems va = [2, 2, 4, 0, 0, 3, 4, 6, 0, 0, 0, 5, 5, 0, 0, 0]

elems pa = [0, 5, 9, 11, 15, 16, 16]

Call this process installUp. We then have to implement installDn , which puts the

elements of lower d in their correct final places in va and readjusts pa to its final

value.

To appreciate precisely how the elements of pa are changed, we need a little index

arithmetic. Define l (j), u(j) and s(j) by

l (j) = length ((lower d)!j)

u(j) = length (d!j)

s(j) = sum [l (i) + u(i) | i ← [1 .. j]]

The values s(0), s(1), . . . , s(n) are the final boundary positions to be stored in pa .

Initially, pa!j = u(1) + u(2) + · · · + u(j) by definition of the short code. After

installUp we have pa!j = s(j) + l (j+1) for 1 � j < n and pa!n = s(n) because

the interval [pa!(j−1)+1 .. pa!j] of va consists of the elements of d!j followed by

l (j+1) zeros. That means that the elements of (lower d)!k will go into positions

[pa!(k−1)−l (k)+1 .. pa!(k−1)]. We can do this from right to left and at the same

https://doi.org/10.1017/S0956796812000457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000457

Functional pearls 181

time adjust pa so that it is in its final state by defining

installDn (va , pa) = foldr step (va , pa) [1 .. n]

step j (va , pa) = foldr (store j) (va , pa) ks

where ks = takeWhile (= 0) (map (va!) [pa!(j−1)+1 .. pa!j])

store j k (va , pa) = (va // [(pa!(k−1), j)], pa // [(k−1, pa!(k−1)−1)])

This definition follows (5). Observe that store j k both stores j in the slot pa!(k−1)

and decrements pa!(k−1) ready for subsequent insertions. Thus, pa!(k−1) is decre-

mented l (k) times, giving the correct final value of pa!(k−1) for each k .

It remains to define installUp. We decompose this function into two components:

(i) installE , which installs the edges of d in va; and (ii) installD , which completes

the installation of d . Thus, installUp = installD · installE .

The edges of d = decode (va , pa) are given by

[(j , va!i) | j ← [1 .. n], i ← [pa!(j−1)+1 .. pa!j]]

The two vertices of each edge are stored in adjacent slots in va . The code for installE

is straightforward and we would not derive it:

installE (va , pa) = foldr step (va , pa) [1 .. n]

step j (va , pa) = foldr store (va , pa) [pa!(j−1)+1 .. pa!j]

where store i (va , pa) = (va // [(2∗i−1, j), (2∗i , va!i)], pa)

The array pa is carried along but is unchanged. The main point of interest about

installE is that edges are installed in the array va from right to left. In a short code,

the second half of va is unused and therefore available for updates without destroying

essential information stored in the lower half. The right-to-left computation using

foldr guarantees that va!i refers to the original entry in va , not to any updated

element. The guarantee holds because i � 2i−1 for 1 � i .

That leaves installD . As a result of installE , we have

(lower d)!j = [va!(2∗i−1) | i ← [1 .. m], va!(2∗i) = j]

d!j = [va!(2∗i) | i ← [1 .. m], va!(2∗i−1) = j]

In fact, the elements of va in odd positions will be in ascending order, so

d!j = [va!(2∗i) | i ← takeWhile (λi → va!(2∗i−1) = j) [p+1 .. m] (6)

where p is the largest index of va such that va!(2∗p−1) < j .

The elements of d!j have to go into va at positions [s(j−1)+l (j)+1 ..s(j)], followed

by l (j+1) zeros in positions [s(j)+1 .. s(1)+l (j+1)] for each j . To do so, we need

to know l (j). The following calculation makes use of a variant of accum called

accumArray and which is defined by

accumArray f e bnds ivs = accum f (array bnds [(i , e) | i ← range bnds]) ivs

This function is also provided in the library Data .Array . We calculate:

l (j)

= {definition}
length [va!(2∗i−1) | i ← [1 .. m], va!(2∗i) = j]

https://doi.org/10.1017/S0956796812000457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000457

182 R. S. Bird

= {since length = foldl (+) 0 · map (const 1)}
foldl (+) 0 [1 | i ← [1 .. m], va!(2∗i) = j]

= {(3) and definition of accumArray}
(accumArray (+) 0 (0, n) [(va!(2∗i), 1) i ← [1 .. m]])!j

Hence, l (j) = la!j , where

la = accumArray (+) 0 (0, n) [(va!(2∗i), 1) i ← [1 .. m]]

The array la can occupy the same space as pa because pa is no longer needed once

the edges are installed. The definition of la can be translated into one that uses

single array updates, but we omit details.

To show how to define installD we first show how to compute a digraph from its

edges. We reason:

d!i

= {definition in terms of edges}
[k | (j , k)← edges d , j = i]

= {since foldl snoc [] xs = xs for finite xs , where snoc xs x = xs ++ [x]}
foldl snoc [] [k | (j , k)← edges d , j = i]

= {(3), setting empty d = array (bounds d) [(i , []) | i ← vertices d]}
(accum snoc (empty d) (edges d))!i

Using the definition of accum in terms of (//) given in Section 3, we arrive at

d = foldl update (empty d) (edges d)

empty d = array (bounds d) [(i , []) | i ← vertices d]

update d (j , k) = d // [(j , d!j ++ [k])]

We continue the calculation:

foldl update (empty d) (edges d)

= {definition of edges}
foldl update (empty d) [(j , k) | j ← vertices d , k ← d!j]

= {list comprehensions}
foldl update (empty d) (concat [[(j , k) | k ← d!j] | j ← vertices d])

= {since foldl f e · concat = foldl (foldl f) e}
foldl (foldl update) (empty d) [[(j , k) | k ← d!j] | j ← vertices d]

= {with arcs d j = [(j , k) | k ← d!j]}
foldl (foldl update) (empty d) (map (arcs d) (vertices d))

= {since foldl f e · map g = foldr (λy x → f y (g x)) e}
foldl (λg j → foldl update g (arcs d j)) (empty d) (vertices d)

https://doi.org/10.1017/S0956796812000457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000457

Functional pearls 183

Hence, defining step d g j = foldl update g (arcs d j) and simplifying, we arrive at

d = foldl (step d) (empty d) (vertices d)

step d g j = foldl update g [(j , k) | k ← d!j]

empty d = array (bounds d) [(i , []) | i ← vertices d]

update d (j , k) = d // [(j , d!j ++ [k])]

The definition of installD follows this scheme, except that it also maintains the value

p as described in (6):

installD (va , pa) = fst (foldl step ((va , la), 0) [1 .. n])

where la = accumArray (+) 0 (0, n) [(va!(2∗i), 1) i ← [1 .. m]]

step ((va , pa), p) j = foldl (store j) ((va , pa // [(j , pa!(j−1))]), p+u) (vs ++ zs)

where vs = [va!(2∗i) |i ← takeWhile (λi → va!(2∗i−1) = j) [p+1 .. m]]

zs = replicate (if j < n then pa!(j+1) else 0) 0

u = length vs

store j ((va , pa), p) v = ((va // [(pa!j+1, v)], pa // [(j , pa!j+1)]), p)

At the beginning of step ((va , pa), p) j , we have pa!i = s(i−1) + l (i) for i < j and

pa!i = l (i) for i � j . At the conclusion we have

pa!j = s(j−1) + l (j) + u(j) + l (j+1) = s(j) + l (j+1)

The critical observation is that, since s(j−1) is the total length of the full adjacency

lists for vertices less than j , and l (j) is the number of vertices less than j adjacent to

j , and 2p is the number of edges involving a vertex less than j , we have the invariant

s(j−1) + l (j) � 2p at the beginning of step ((va , pa), p). Hence (6) remains true after

installing g!1, g!2, . . . g!(j−1).

Putting all the pieces together, we now have

expand = installDn · installUp

This is our solution to Knuth’s problem.

6 Concluding remarks

Knuth posed the short-to-long problem as an exercise in the Journal of Algorithms

in 1990. The solution he originally thought of was “somewhat tricky.” A second

solution was submitted by Mihaela Juganaru, but never published as the problems

section of the Journal of Algorithms became dormant in 1992. Knuth later found

a simpler solution, though it was twice as slow as the first. Our final algorithm

resembles Knuth’s second solution, though it is different in a number of respects.

As to whether the algorithm “could have been discovered in a disciplined manner,”

that is really for the reader to judge. We have been at pains to make the development

as calculational as possible. The functions accum and accumArray featured in many

of the more interesting calculations. The latter operation made an appearance in

the very first pearl of my book (Bird, 2010), as well as in two subsequent pearls. It

is rapidly becoming my favourite function. The real interest in Knuth’s problem is

not the solution, which is not particularly attractive, but the calculational properties

of the functions in Data .Array that led to it.

https://doi.org/10.1017/S0956796812000457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000457

184 R. S. Bird

Finally, I would like to thank Jeremy Gibbons and two referees for their patience

in dealing with the different drafts of this paper. Their positive suggestions and

other feedback greatly helped in preparing the final version.

References

Bird, R. S. (1998) Introduction to Functional Programming using Haskell. London: Prentice

Hall.

Bird, R. S. (2010) Pearls of Functional Algorithm Design. Cambridge, UK: Cambridge

University Press.

Knuth, D. E. (2011) Solutions to a puzzling problem. Extract from A Companion to the

Papers of Donald Knuth. Stanford, CA: California Centre for the Study of Languages and

Information. Available at: http://www-cs-faculty.stanford.edu/ knuth/shortcode.pdf

https://doi.org/10.1017/S0956796812000457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000457

