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Abstract

For infinitely many d, Hassett showed that special cubic fourfolds of discriminant d are
related to polarised K3 surfaces of degree d via their Hodge structures. For half of the d,
each associated K3 surface (S, L) canonically yields another one, (Sτ , Lτ ). We prove that
Sτ is isomorphic to the moduli space of stable coherent sheaves on S with Mukai vector
(3, L , d/6). We also explain for which d the Hilbert schemes Hilbn(S) and Hilbn(Sτ ) are
birational.

2010 Mathematics Subject Classification: 14J28 (primary), 14J10, 14E05 (secondary)

Special cubic fourfolds were first studied by Hassett [9]. They are distinguished by the
property that they carry additional algebraic cycles. They arise in countably many families,
parametrised by irreducible divisors Cd in the moduli space of cubic fourfolds. For infinitely
many d, the cubic fourfolds in Cd are related to polarised K3 surfaces of degree d via their
Hodge structures. For half of the d, K3 surfaces associated to generic cubics in Cd come in
pairs. The goal of this paper is to explain how two such K3 surfaces are related.

More precisely, denote by Md the moduli space of polarised K3 surfaces of degree d.
Hassett constructed, for admissible d, a surjective rational map Md ��� Cd sending a K3
surface to a cubic fourfold it is associated to. This map is of degree two when d ≡ 0 mod 6
and generically injective otherwise. In the former case, its (regular) covering involution
τ : Md →Md does not depend on the choices made to construct Md ��� Cd . We prove the
following geometric description of τ .

THEOREM 1 (see Theorem 3·2). Let (Sτ , Lτ )= τ(S, L). Then Sτ is isomorphic to the
moduli space MS(v) of stable (with respect to a generic polarisation) coherent sheaves on
S with Mukai vector v= (3, L , d/6).

In particular, S and Sτ are Fourier–Mukai partners. For generic (S, L) ∈Md , this also
follows from the fact that the bounded derived categories of S and Sτ are both exact
equivalent to the Kuznetsov category of the image cubic fourfold [2]. If ρ(S)= 1, then S is
not isomorphic to Sτ (as unpolarised K3 surfaces). The number of Fourier–Mukai partners
of S, which depends on d, can be arbitrarily high [17]. The above gives a natural way of
selecting one of them for each (S, L) ∈Md .
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We also explain when the Hilbert schemes of n points Hilbn(S) and Hilbn(Sτ ) are
birational. Our main result is the following.

THEOREM 2 (see Proposition 4·5, Corollary 4·9). Let d ≡ 0 mod 6 satisfy (∗∗).
Consider the following statements:

(i) Hilb2(S) is isomorphic to Hilb2(Sτ );
(ii) Hilb2(S) is birational to Hilb2(Sτ );

(iii) there exists an integral solution to 3p2 − (d/6)q2 = −1;
(iv) Hilb2(S) has a line bundle of self-intersection 6.

We have implications (i) ⇒ (ii) ⇐ (iii) ⇒ (iv). If ρ(S)= 1, then these are all equivalent.

We will see that the condition in (iii) is satisfied for infinitely many d but not for all of
them. As an application, we obtain an example of derived equivalent Hilbert schemes of two
points on K3 surfaces which are not birational.

1. Lattices

In this section we set up the notation for the lattice theory that will be needed. See [12,
Section 2] for references.

For a lattice � with intersection form ( , ) : �×�→Z, we denote by � ‹ its dual lattice
and by Disc�=� ‹/� its discriminant group. Every orthogonal transformation g ∈ O(�)
of � induces an automorphism on Disc�, which we denote by g. When L is even, the
product ( , ) induces a quadratic form

qL : Disc L −→Q/2Z.

We denote by O(Disc L) the group of automorphisms preserving qL . We further define

Õ(L) := ker(O(L)−→ O(Disc L)).

We will use a result that is slightly stronger than [11, Proposition 14·2·6], but is proven in
the same way. We give the proof here for completeness.

Let�1 be a primitive sublattice of a unimodular lattice� and let�2 ⊂� be its orthogonal
complement. We have an inclusion � ‹ ⊂ (�1 ⊕�2) ‹ which induces

� ‹/(�1 ⊕�2) ↪−−−→ Disc(�1 ⊕�2)∼= Disc(�1)⊕ Disc(�2).

The projection maps � ‹/(�1 ⊕�2)→ Disc(�i) are isomorphisms, by unimodularity of �
and primitivity of�1 and�2. This gives an isomorphism ϕ : Disc(�1)→ Disc(�2) sending
x ∈ Disc(�1) to the unique class y ∈ Disc(�2) such that x + y ∈� ‹

1 ⊕� ‹

2 is in �.

LEMMA 1·1. If g1 ∈ O(�1) and g2 ∈ O(�2), then g1 ⊕ g2 : �1 ⊕�2 →�1 ⊕�2 extends
to an automorphism of� if and only if g1 = g2 under the identification Disc�1

∼= Disc�2.

Proof. The map g1 ⊕ g2 extends to L if and only if for all x1 ∈� ‹

1, x2 ∈� ‹

2 with x1 + x2 ∈�,
the element g ‹

1(x1)+ g ‹

2(x2) also lies in �. We have x1 + x2 ∈� if and only if ϕ(x1)= x2.
So g ‹

1(x1)+ g ‹

2(x2) is in � if and only if ϕ(g1(x1)) equals g2(x2)= g2(ϕ(x1)). This holds
for all x1, x2 if and only if ϕ ◦ g1 = g2 ◦ ϕ.

The middle cohomology H2(S,Z) of a K3 surface S (with the usual intersection pairing)
is isomorphic to the K3 lattice
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�K3 := E8(−1)⊕2 ⊕ U⊕3 = E8(−1)⊕2 ⊕ U1 ⊕ U2 ⊕ U3.

We denote the standard basis of Ui by ei , fi . On the full cohomology H∗(S,Z) of S we
consider the Mukai pairing, given by

(
(x0, x2, x4), (x ′

0, x ′
2, x ′

4)
) = x2x ′

2 − x0x ′
4 − x ′

0x4 for
xi , x ′

i ∈ Hi (S,Z). With this pairing, H∗(S,Z) becomes isomorphic to the Mukai lattice

�Muk :=�K3 ⊕ U (−1)= E8(−1)⊕2 ⊕ U1 ⊕ U2 ⊕ U3 ⊕ U4(−1).

As U ∼= U (−1), the Mukai lattice is isomorphic to�K3 ⊕ U . To avoid confusion, we denote
the latter by �̃K3, and fix an isomorphism �̃K3

∼−→�Muk by sending f4 to − f4.
Fix �d = e3 + (d/2) f3 ∈ U3 ⊂�K3 and let�d := �⊥

d ⊂�K3 be its orthogonal complement
in �K3. Then

�d = E8(−1)⊕2 ⊕ U⊕2 ⊕Z(−d)

is isomorphic to the primitive cohomology L⊥ ⊂ H2(S,Z) of any polarised K3 surface
(S, L) of degree d.

We denote by H4(X,Z)(1) the middle cohomology of a cubic fourfold X , with the weight
of the Hodge structure shifted by two and the intersection product changed by a sign. As a
lattice, it is isomorphic to

�cub := E8(−1)⊕2 ⊕ U⊕2 ⊕Z(−1)⊕3.

Let h = (1, 1, 1) ∈Z(−1)⊕3 ⊂�cub. The primitive cohomology H4(X,Z)prim(1) of X is
isomorphic to �0

cub := h⊥ ⊂�cub. An easy computation shows that

�0
cub

∼= E8(−1)⊕2 ⊕ U⊕2 ⊕ A2(−1),

where A2 is the lattice
(
Z⊕2,

(
2 −1

−1 2

))
. There exists a primitive embedding of A2 into U3 ⊕

U4 ⊂ �̃K3, unique up the action of O(�̃K3). One can show that �0
cub

∼= A⊥
2 ⊂ �̃K3.

2. Hassett’s construction

We summarise Hassett’s construction, explaining those proofs that we need for our results.
For details, see [9].

2·1. Special cubic fourfolds

Inside H4(X,Z)(1), we consider the negative definite lattice

A(X) := H4(X,Z)(1)∩ H2,2(X).

We fix the notation h2
X ∈ H4(X,Z) for the square of the hyperplane class on X . For X very

general, the lattice A(X) has rank one and is generated by h2
X . We call X special if rk A(X)≥

2. By the Hodge conjecture for cubic fourfolds [22], X is special if and only if X contains a
surface that is not homologous to a complete intersection.

If X is special, then A(X) contains a primitive sublattice K of rank two. Hassett proved
that fixing the discriminant disc K of such K gives divisors in the moduli space C of smooth
cubic fourfolds. Namely, define

Cd := {X ∈ C | ∃K ⊂ A(X) primitive, h2
X ∈ K , rk K = 2, disc K = d}.

Then the set of special cubic fourfolds in C is the union of all Cd .
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THEOREM 2·1 ([9, Theorem 1·0·1]). The set Cd is either empty or an irreducible divisor
in C. It is non-empty if and only if d satisfies

d > 6 and d ≡ 0, 2 mod 6. (∗)

2·2. Periods of special cubic fourfolds

Recall the definition of the period domain for a lattice � of signature (n+, n−) with
n+ ≥ 2:

D(�)= {x ∈ P(�⊗C) | (x)2 = 0, (x, x̄) > 0}.
This is a complex manifold of dimension rk�− 2, which is connected when n+ > 2 and
has two connected components when n+ = 2. It has a natural action by the group Õ(�).
This is an arithmetic group; if n+ = 2, then by [20, Section 6 of appendix] and [4], the
quotient

QD(�) :=D(�)/Õ(�)
is a (connected) quasi-projective variety with at most finite quotient singularities.

In particular, this holds for �=�d , yielding a 19-dimensional variety QD(�d). The
period map induces an open embedding Md ↪→QD(�d) (see e.g. [11, Corollary 6·4·3]).

The lattice�0
cub also satisfies n+ = 2; the variety QD(�0

cub) has dimension 20. The period
map gives an open embedding C ↪→QD(�0

cub) [9, Section 2·2].
Inside D(�0

cub), we can identify those periods coming from special cubic fourfolds.
Note that a cubic fourfold X is special if and only if there exists a negative definite
sublattice K ⊂ H4(X,Z)(1) of rank two with h2

X ∈ K , such that K ⊗C is contained in
H3,1(X)⊥ ⊂ H4(X,C)(1). On the level of the period domain, this means the following: After
choosing a marking H4(X,Z)prim(1)

∼−→�0
cub, the period of X lands in

{x ∈D(�0
cub) | (K ∩�0

cub)C ⊂ x⊥}
for some primitive, negative definite sublattice K ⊂�cub of rank two containing h. Let
K ⊥ be its orthogonal complement; note that K ⊥ ⊂�0

cub. The set above is the divisor
D(K ⊥)⊂D(�0

cub).
We fix a primitive sublattice Kd ⊂�cub as above, of discriminant d. Let Cd ⊂QD(�0

cub)

be the image of D(K ⊥
d )⊂D(�0

cub) under the quotient map D(�0
cub)→QD(�0

cub). The
following shows that Cd does not depend on the choice of Kd .

PROPOSITION 2·2 ([9, Proposition 3·2·4]). Let K , K ′ ⊂�cub be primitive sublattices of
rank two containing h. Then K = f (K ′) for some f ∈ Õ(�0

cub) if and only if disc K =
disc K ′.

Note that the immersion C ↪→QD(�0
cub) maps Cd into Cd . In fact, we have Cd = C ∩ Cd .

2·3. Associated K3 surfaces

Consider the following condition on d ∈N:

d is even and not divisible by 4, 9, or any odd prime p ≡ 2 mod 3. (∗∗)

This implies that d ≡ 0, 2 mod 6. Hassett proved the following statement:

https://doi.org/10.1017/S0305004120000055 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004120000055


Two polarised K3 surfaces associated to the same cubic fourfold 55

PROPOSITION 2·3 ([9, Proposition 5·1·4]). The number d satisfies (∗∗) if and only if there
is an isomorphism �d

∼= K ⊥
d .

So when d satisfies (∗∗), there is an isomorphism of period domains D(�d)∼=D(K ⊥
d ).

Proposition 2·6 below tells us that under the identification�d
∼= K ⊥

d , the group Õ(�d) forms
a subgroup of Õ(�0

cub). Hence, we also get a map from QD(�d)= O(�d)\D(�d) to Cd .
This gives us the following commutative diagram:

D(�d)

����

∼ �� D(K ⊥
d )

����

� � �� D(�0
cub)

����

QD(�d) �� �� Cd
� � �� QD(�0

cub)

Md

��

��

ϕ
������� Cd

� � ��
��

��

C.
��

��

It can be shown that the rational map ϕ : Md ��� Cd is regular on an open subset which
maps surjectively to Cd , see [9, Section 5·1]. Note that ϕ depends on the choice of an
isomorphism �d

∼= K ⊥
d , thus it is only unique up to O(�d)/Õ(�d).

If ϕ sends (S, L) ∈Md to X , then there exists an isometry of Hodge structures

H4(X,Z)(1)⊃ K ⊥ ∼= L⊥ ⊂ H2(S,Z)

for some primitive sublattice K ⊂ A(X) of rank two and discriminant d containing h2
X .

Conversely, if such a Hodge isometry exists, it induces a lattice isomorphism

�d
∼= L⊥ ∼= K ⊥ ∼= K ⊥

d

such that the induced map ϕ : Md ��� Cd sends (S, L) to X . This motivates the following
definition.

Definition 2·4. Let X ∈ Cd . A polarised K3 surface (S, L) ∈Md is associated to X if
there exists a Hodge isometry

H4(X,Z)(1)⊃ K ⊥ ∼= L⊥ ⊂ H2(S,Z)

for some primitive sublattice K ⊂ A(X) of rank two and discriminant d containing h2
X .

For the rest of this section, we fix one choice of the rational map ϕ.

Remark 2·5. The complement of the image of the inclusion C ↪→QD(�0
cub) is C2 ∪ C6 [13,

14]. Therefore, ϕ(S, L) is defined if and only if the image of (S, L) under QD(�d)→ Cd

lies in Cd\
(
C2 ∪ C6

)
. In particular, this holds when ρ(S)= 1.

To describe the map QD(�d)→ Cd , we define two subgroups of Õ(�0
cub). Let vd be

a generator of Kd ∩�0
cub, which is unique up to a sign. Define Õ(�0

cub, vd)⊂ Õ(�0
cub)

by

Õ(�0
cub, vd) := { f ∈ O(�cub) | f |Kd = idKd }

= { f ∈ Õ(�0
cub) | f (vd)= vd}.
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The next statement is part of [9, Theorem 5·2·2]. It follows directly from Lemma 1·1.

PROPOSITION 2·6. Suppose that d satisfies (∗∗). Under the isomorphism �d
∼= K ⊥

d , the
group Õ(�d) is identified with Õ(�0

cub, vd).

In particular, there is an isomorphism QD(�d)∼= Õ(�0
cub, vd)\D(K ⊥

d ).
The second group we consider is

Õ(�0
cub, 〈vd〉)= { f ∈ O(�cub) | f (h)= h and f (Kd)= Kd}

= { f ∈ Õ(�0
cub) | f (vd)= ±vd}.

By the Baily–Borel theorem [4], the quotient Õ(�0
cub, 〈vd〉)\D(K ⊥

d ) is a normal quasi-
projective variety. In fact, Õ(�0

cub, 〈vd〉)\D(K ⊥
d )� Cd is the normalisation of Cd . Namely,

a very general special cubic fourfold X satisfies rk A(X)= 2 [21, Section 5·1], so there
is only one sublattice Kd ⊂ A(X). It follows that the map Õ(�0

cub, 〈vd〉)\D(K ⊥
d )� Cd is

generically injective. To see that it is proper, note that the action of Õ(�0
cub) on D(�0

cub)

is properly discontinuous [11, Remark 6·1·10]. Hence the map D(�0
cub)→QD(�0

cub) is
closed, as is its restriction D(K ⊥

d )� Cd to the closed subset D(K ⊥
d )⊂D(�0

cub). Since this
factors as

D(K ⊥
d )� Õ(�0

cub, 〈vd〉)\D(K ⊥
d )� Cd,

the map Õ(�0
cub, 〈vd〉)\D(K ⊥

d )� Cd is closed as well. Moreover, it has finite fibres, so it is
proper.

Summarising, we have the following commutative diagram:

QD(�d) ∼= Õ(�0
cub, vd)\D

(
K ⊥

d

) γ−→ Õ(�0
cub, 〈vd〉)\D

(
K ⊥

d

) ∼= Cnorm

d
�� �� Cd

Md

��

��

γ
��������������������������� Cnorm

d
�� �� Cd

��

��

The spaces Õ(�0
cub, vd)\D(K ⊥

d ) and Õ(�0
cub, 〈vd〉)\D(K ⊥

d ) can be seen as period domains
of marked and labelled cubic fourfolds, respectively [9, Section 3·1, 5·2].

The following describes the generic fibre of the quotient map

γ : Õ(�0
cub, vd)\D

(
K ⊥

d

) −−−−−� Õ(�0
cub, 〈vd〉)\D

(
K ⊥

d

)
.

PROPOSITION 2·7 ([9, proposition 5·2·1]). There is an isomorphism

Õ(�0
cub, 〈vd〉)/Õ(�0

cub, vd)∼=
{

{0} if d ≡ 2 mod 6

Z/2Z if d ≡ 0 mod 6.

As a consequence, γ is an isomorphism when d ≡ 2 mod 6 and has degree two when
d ≡ 0 mod 6. In the latter case, the covering involution of γ is induced by an automorphism
g ∈ Õ(�0

cub, 〈vd〉) whose class modulo Õ(�0
cub, vd) generates Z/2Z. We will explain the

construction of an explicit such g.

LEMMA 2·8. Let x ∈�0
cub be primitive with (x, x) �= 0 and 3� | (x, x). There exists an

f ∈ Õ(�0
cub) such that f (x)= e2 + f2 · (x, x)/2.
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Proof. As Disc�0
cub =Z/3Z, the divisibility div(x) of x in �0

cub is either 1 or 3. Since 3� |
(x, x), it must be 1. Therefore the class of x/div(x) in Disc�0

cub is trivial. By Eichler’s
criterion [8, Proposition 3·3], there is an f ∈ Õ(�0

cub) sending x to e2 + f2 · (x, x)/2.

Suppose d ≡ 0 mod 6. By Lemma 2·8, we can assume

vd = e2 − d

6
f2 ∈�cub = E8(−1)⊕2 ⊕ U1 ⊕ U2 ⊕Z(−1)⊕3.

Let g ∈ O(�cub) be given by

g|E8(−1)⊕2⊕Z(−1)⊕3 = id; g|U1⊕U2 = − id .

Then we have g(vd)= −vd , so g|�0
cub

generates Õ(�0
cub, 〈vd〉)/Õ(�0

cub, vd).

3. The involution on Md

From now on, we will assume that d satisfies (∗∗). In the previous section, we explained
that the map

γ : QD(�d)−−−−−� Õ(�0
cub, 〈vd〉)\D

(
K ⊥

d

)
is an isomorphism if d ≡ 2 mod 6 and has degree two if d ≡ 0 mod 6. In the second case,
define τ : QD(�d)→QD(�d) to be the covering involution of γ . It is induced by the map
g|K ⊥

d
, seen as an element of Õ(�d). Note that τ maps Md to itself: As explained in e.g. [11,

remark 6·3·7], the complement of Md in QD(�d) is⋃
δ∈�d , δ2=−2

δ⊥

and this set is clearly preserved under g.

PROPOSITION 3·1. The morphism τ does not depend on the choice of isomorphism
�d

∼= K/d.

Proof. Precomposing the isomorphism �d
∼= K ⊥

d with f ∈ O(�d) changes g on �d to
f −1 ◦ g ◦ f . Note that this has the same action on the abelian group Disc(�d) as g, thus
it induces the same action on QD(�d).

For a K3 surface S, we denote by H̃(S,Z) the full cohomology of S with the Mukai
pairing and the Hodge structure of weight two defined by H̃2,0(S) := H2,0(S).

Let H be a generic polarisation on S. For a primitive vector v = (r, �, s) ∈ H̃(S,Z), denote
by MS(v) the moduli space of H -stable coherent sheaves on S with Mukai vector v. Recall
[11, Chapter 10] that if there exists a w in H̃1,1(S,Z)= H0(S,Z)⊕ H1,1(S,Z)⊕ H4(S,Z)
with (v, w)= 1, then this is a fine moduli space. If r > 0 (or (�)2 ≥ 2 and (�, H) > 0) and
(v)2 = 0, then MS(v) is a K3 surface.

THEOREM 3·2. Let (Sτ , Lτ )= τ(S, L). Then Sτ is isomorphic to the moduli space
MS(v) of stable coherent sheaves on S with Mukai vector v= (3, L , d/6). Under the natural
identification H2(Sτ ,Z)∼= v⊥/Zv, we have Lτ = (d, (d/3 − 1)L , d/3(d/6 − 1)).
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Let us describe the strategy of the proof. Since the map g does not induce the identity
on Disc�d , it does not extend to an orthogonal transformation of �K3. However, we will
show that g extends to g̃ ∈ O(�̃K3). Using g̃, we find Sτ as follows. Let x be a representative
of the period of (S, L) in �d,C ⊂ �̃K3,C. The K3 surface Sτ is the one whose period can
be represented by g(x) ∈�d,C. The map g̃ induces a Hodge isometry H̃(S,Z)∼= H̃(Sτ ,Z),
so by the derived Torelli theorem ([18], see also [11, Proposition 16·3·5]), S and Sτ are
Fourier–Mukai partners.

More precisely, denote by g̃Muk the morphism g̃, seen as an orthogonal transformation
of �Muk. Let v= (r, �, s) := g̃−1

Muk(0, 0, 1). There exists a universal sheaf E on S × MS(v).
Let
H

E : H̃(MS(v),Z)→ H̃(S,Z) be the induced cohomological Fourier–Mukai transform,
which satisfies 
H

E (0, 0, 1)= v. Then g̃Muk ◦
H
E sends H2(MS(v),Z) to H2(Sτ ,Z), which

shows that Sτ is isomorphic to MS(v).
To describe Lτ , note that 
H

E induces an isomorphism H2(MS(v),Z)∼= v⊥/Zv, where
v⊥ ⊂ H̃(S,Z) (this is a result by Mukai, see [11, Remark 10·3·7]). Thus, g̃−1

Muk restricts to an
isomorphism H2(Sτ ,Z)∼= v⊥/Zv. Under this identification, the polarisation Lτ is mapped
to g̃−1

Muk(�d).

Remark 3·3. The extension g̃ of g is not unique. But if g̃′ is another extension, then
g̃−1

Muk ◦ g̃′
Muk is an orthogonal transformation of �Muk sending v′ = (g̃′

Muk)
−1(0, 0, 1) to v.

This induces a Hodge isometry H2(MS(v
′),Z)∼= H2(MS(v),Z), so MS(v

′) and MS(v) are
isomorphic.

Remark 3·4. The space QD(�d) can be interpreted as the moduli space of quasi-polarised
K3 surfaces, i.e. pairs (S, L) with L the class of a big and nef line bundle [10, Section 5].
For such pairs the theorem is still valid.

Remark 3·5. For d ≡ 0 mod 6, the ramification locus of γ over Md consists of those
(S, L) which are polarised isomorphic to (Sτ , Lτ ). It follows from [10, Section 8] that γ
is unramified over {(S, L) ∈Md | ρ(S)= 1}.
3·1. Proof of Theorem 3·2

We first compute the action of g on Disc K ⊥
d

∼= Disc Kd . Suppose T ∈ Kd is a primitive
element such that h and T generate Kd . Then (h, T ) is divisible by 3. We can write vd =
(h, T )h/3, which has square −d/3. It follows that Kd =Zh ⊕Zvd , so

Disc Kd
∼=Z/3Z⊕Z/

(
d

3

)
Z,

with the action of g given by id ⊕ − id.

LEMMA 3·6. The induced action of g on Disc�d
∼=Z/dZ is given by x �→ (d/3 − 1)x.

Proof. If we reduce modulo d/3, multiplication by d/3 − 1 equals − id. If we reduce
modulo 3, it is the identity, as d/3 − 1 ≡ 1 mod 3.

To extend g on �d to �̃K3 it thus suffices, by Lemma 1·1, to find an orthogonal transfor-
mation of �⊥

d =Z�d ⊕ U4 acting on the discriminant group by x �→ (d/3 − 1)x . Consider
u ∈ O(Z�d ⊕ U4) defined by (see Remark 3·7)
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e4 �−→ −d

6
e4 − 1

3

(
d

6
− 1

)
�d + 1

3

(
d

6
− 1

)2

f4

f4 �−→ 3e4 + �d − d

6
f4

�d �−→ de4 +
(

d

3
− 1

)
�d − d

3

(
d

6
− 1

)
f4

One computes that this is an involution. The discriminant group Disc(Z�d ⊕ U4)∼=Z/dZ is
generated by the class �d/d , which u multiplies by d/3 − 1.

It follows that g ⊕ u ∈ O(�d ⊕Z�d ⊕ U4) extends to g̃ ∈ O(�̃K3). Since g̃ is an involu-
tion, we have g̃−1( f4)= g̃( f4)= 3e4 + �d − (d/6) f4. As an element of the Mukai lattice,
this is

v= (3, �d, d/6) ∈�Muk =Ze4 ⊕�K3 ⊕Z(− f4).

The polarisation Lτ = g̃−1(�d), seen as an element of v⊥/Zv ⊂ H̃(S,Z), is

Lτ =
(

d,

(
d

3
− 1

)
L ,

d

3

(
d

6
− 1

))
.

This completes the proof of Theorem 3·2.

Remark 3·7. The map u can be found as follows. One extends g|K ⊥
d

to �̃K3 by taking id ⊕ −
id on the orthogonal complement A2(−1)⊕Z(d/3) of K ⊥

d in �̃K3. In order to find the
Mukai vector v, one writes down an explicit isomorphism A2(−1)⊕Z(d/3)∼=Z�′

d ⊕ U4

and computes the corresponding orthogonal transformation u of Z�′
d ⊕ U4. We chose not to

spell out these tedious computations.

Remark 3·8. As shown in the proof of Proposition 3·1, we can replace g by any element of
O(�d) with the same action on Disc�d . For instance, we can take the automorphism given
by the identity on E8(−1)⊕2 ⊕ U1 and u on U2 ⊕Z(e3 − (d/2) f3)∼= (Z�d ⊕ U4)(−1). This
allows us to define τ on Md for all d ≡ 0 mod 6 with d/6 ≡ 1 mod 3.

4. Birationality of Hilbert schemes

In this section we study the Hilbert schemes of n points Hilbn(S) and Hilbn(Sτ ) of our
K3 surfaces S and Sτ . Corollary 4·9 and the results in Section 4·2 hold for all d such that
d/6 ≡ 1 mod 3, using Remark 3·8.

4·1. Hilbert schemes of two points

For a cubic fourfold X we denote by F(X) the Fano variety of lines on X , a four-
dimensional hyperkähler variety of K3[2] type. Hassett proved the following:

THEOREM 4·1 ([9, Theorem 6·1·4]). Assume that d satisfies

d = 2(n2 + n + 1)

for some integer n ≥ 2. Let X be a generic cubic fourfold in Cd . Then F(X) is isomorphic to
Hilb2(S), where (S, L) ∈Md is associated to X.
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If also d ≡ 0 mod 6, then F(X) is isomorphic to both Hilb2(S) and Hilb2(Sτ ) (Hassett
calls F(X) ambiguous). Since birationality specialises in families of hyperkähler manifolds,
it follows that Hilb2(S) is birational to Hilb2(Sτ ) for all K3 surfaces S of degree d. We can
generalise this using the following result by Addington. See also Remark 4·6.

THEOREM 4·2 ([1, Theorem 2]). A cubic fourfold X lies in Cd for some d satisfying

a2d = 2(n2 + n + 1) (∗ ∗ ∗)

if and only if F(X) is birational to Hilb2(S) for some K3 surface S.

Note that (∗∗∗) implies (∗∗).
LEMMA 4·3. Suppose that d satisfies (∗∗∗). Then there exists a choice of the rational

map ϕ : Md ��� Cd such that if (S, L) ∈Md is associated to X ∈ Cd via ϕ, then Hilb2(S)
and F(X) are birational.

Proof. Consider the sublattices

K ⊥
d ⊕ T ⊂ �̃K3 ⊃�d ⊕Z�d ⊕ U4,

where T ⊃ A2 = 〈λ1, λ2〉 is the orthogonal complement of K/d in �̃K3. Then d satisfies (∗∗)
if and only if T ∼=Z�d ⊕ U4. Addington showed that (∗∗∗) holds if and only if ψ : T →
Z�d ⊕ U4 can be chosen such that ψ(λ1)= e4 + f4. Extend ψ to an element of O(�̃K3) (use
Lemma 1·1 and [11, Theorem 14·2·4]) and let ϕ be the induced map Md ��� Cd .

Assume that (S, L) ∈Md is associated to X ∈ Cd via ϕ. Choose an isomorphism
H2(S,Z)∼= U⊥

4 ⊂ �̃K3 sending L to �d , and consider the induced Hodge structure on �̃K3.
There are isometries of sub-Hodge structures

H2(F(X),Z)∼= λ⊥
1

∼=ψ(λ1)
⊥ = (e4 + f4)

⊥ ∼= H2(MS(1, 0,−1),Z),

where the sign in MS(1, 0,−1) appears because we view the Mukai vector as an ele-
ment of �Muk. By Markman’s birational Torelli theorem for manifolds of K3[n] type [15,
Corollary 9·9], F(X) is birational to MS(1, 0,−1)∼= Hilb2(S).

COROLLARY 4·4. When d ≡ 0 mod 6 satisfies (∗∗∗), then Hilb2(S)∼bir Hilb2(Sτ ) for any
K3 surface (S, L) ∈Md .

The following proposition shows that we have more than just birationality: if d is such
that Hilb2(S)∼bir Hilb2(Sτ ), then for S generic, Hilb2(S) and Hilb2(Sτ ) are isomorphic.

PROPOSITION 4·5. Let (S, L) be a polarised K3 surface of degree d with Pic(S)=ZL and
3|d. Then Hilb2(S) has only one birational model.

Proof. By [6, Theorem 5·1] the walls of the ample cone of Hilb2(S) in the interior
of the movable cone are given by the hypersurfaces x⊥ ⊂ NS(Hilb2(S))⊗R for all
x ∈ NS(Hilb2(S)) of square −10 and divisibility two. We will show that there are no such x .

There is an isomorphism

NS(Hilb2(S))∼= NS(S)⊕Zδ =ZL ⊕Zδ,
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where δ is a (−2)-class orthogonal to L [5]. So any class in NS(Hilb2(S)) is given by aL +
bδ for some a, b ∈Z, and its square is a2d − 2b2. Setting this equal to −10 gives the Pell
equation b2 − a2d/2 = 5 which, after reducing modulo 3, gives b2 ≡ 2 mod 3. This is not
possible.

It follows that under any birational map Hilb2(S) ��� Y the pullback of an ample class is
ample, thus the map is an isomorphism [7].

Remark 4·6. This also implies that when d satisfies (∗∗∗) and 3|d, then for a generic cubic
fourfold X of discriminant d, F(X) is actually isomorphic to Hilb2(S) for a K3 surface S
associated to X . When 3� | d, Proposition 4·5 does not hold. For example, consider d = 38,
which satisfies (∗∗∗) but not the condition in Theorem 4·1. The element 2L + 9δ has square
−10 and divisibility gcd(2, 18)= 2. Hence, Hilb2(S) has more than one birational model.

It is natural to ask for the exact conditions on d for Hilb2(S) to be birational to Hilb2(Sτ ),
for all S of degree d. It turns out that (∗∗∗) is too strong. We use the following two results
by [16].

PROPOSITION 4·7 ([16, Proposition 2·1]). Let (S, L) be a polarised K3 surface satisfying
Pic(S)=ZL. Let v = (x, cL , y) be a primitive isotropic Mukai vector such that MS(v) is a
fine moduli space. Then v = (p2r, pq L , q2s) for some integers p, r, q, s with gcd(pr, qs)=
1 and (L)2 = 2rs, and there is an isomorphism MS(v)∼= MS(r, L , s). Moreover, MS(r, L , s)
is isomorphic to MS(r ′, L , s ′) if and only if {r, s} = {r ′, s ′}.
PROPOSITION 4·8 ([16, Theorem 2·2]). Let S1 and S2 be derived equivalent K3 surfaces
of Picard number one. Then Hilbn(S1) and Hilbn(S2) are birational if and only if S2 is
isomorphic to MS1(p2r, pq L , q2s) for some p, q with p2r(n − 1)− q2s = ±1. Moreover,
{r, s} is uniquely determined by S2.

Note that p2r(n − 1)− q2s = ±1 is equivalent to
(
(1, 0, 1 − n), (p2r, pq L , q2s)

) = ±1.
So when (p2r, pq L , q2s) is primitive then MS1(p2r, pq L , q2s) is a fine moduli space,
isomorphic (also when ρ(S1) > 1) to MS1(r, L , s) by Proposition 4·7.

Our description of τ gave us Sτ = MS(3, L , d/6), so r = 3 and s = d/6. Thus,
Proposition 4·8 tells us that when ρ(S)= 1, then we have Hilbn(S)∼bir Hilbn(Sτ ) if and
only if there exist non-zero integers p, q such that 3p2(n − 1)− (d/6)q2 = ±1. Note that
3p2(n − 1)− (d/6)q2 = 1 does not happen in our case: since d/6 ≡ 1 mod 3, reducing
modulo 3 gives q2 ≡ 2 mod 3 which is not possible.

COROLLARY 4·9. Suppose that ρ(S)= 1. Then Hilb2(S) and Hilb2(Sτ ) are birational if
and only if there exists an integral solution to the equation

3p2 − (d/6)q2 = −1. (4·1)

Equivalently, Hilb2(S) admits a line bundle of degree 6.

Proof. A class aL + bδ in NS(Hilb2(S))=ZL ⊕Zδ has square a2d − 2b2 = 6, in particular
b = 3b0 for some b0, if and only if 3b2

0 − (d/6)a2 = −1.

Note that when ρ(S) > 1, the existence of a solution to (4·1) still implies that Hilb2(S)
and Hilb2(Sτ ) are birational and that Hilb2(S) admits a line bundle of degree 6.
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Table I. Conditions (∗∗), (∗∗∗) and (4·1) for small values of d

d/6 d (∗∗) (∗∗∗) (4·1) d/6 d (∗∗) (∗∗∗) (4·1)

1 6 x x x 52 312
4 24 x 55 330
7 42 x x x 58 348

10 60 61 366 x x x
13 78 x x 64 384
16 96 67 402 x x x
19 114 x x x 70 420
22 132 73 438 x
25 150 76 456 x
28 168 x 79 474 x x x
31 186 x x x 82 492
34 204 85 510
37 222 x x x 88 528
40 240 91 546 x x x
43 258 x x x 94 564
46 276 97 582 x
49 294 x x 100 600

Condition (∗∗∗) implies that (4·1) is solvable. Namely, assume we have a2d/2 = n2 +
n + 1. Multiplying with 4 gives (2a)2d/2 = (2n + 1)2 + 3. As d is divisible by 3, so is
2n + 1, and we find that 3((2n + 1)/3)2 − (2a)2d/6 = −1.

In fact, (∗∗∗) is equivalent to the existence of a solution to (4·1) with p odd and q even.
One can show that such a solution always exists when d/6 is a prime m ≡ 3 mod 4. The
following example shows that there exist d for which (4·1) is solvable but (∗∗∗) does not
hold.

Example 4·10. Let d = 78, which satisfies (∗∗) but not (∗∗∗) (see [1]). Equation (4·1)
holds with p = 2 and q = 1. It follows that Hilb2(S)∼bir Hilb2(Sτ ) for any S of degree
78. Moreover, when ρ(S)= 1, Proposition 4·5 tells us that Hilb2(S) and Hilb2(Sτ ) are
isomorphic (even though S and Sτ are not).

Next, we give an example where (4·1) is not solvable. As S and Sτ are derived equivalent,
so are Hilbn(S) and Hilbn(Sτ ) for all n ≥ 1 [19, Proposition. 8]. Therefore, we obtain two
derived equivalent Hilbert schemes of two points on K3 surfaces which are not birational.
The first example of this phenomenon was given in [16, Example 2·5]. Note the similarity
between Sτ and the K3 surface Y in [16, Proposition 1·2].

Example 4·11. Consider d = 6 · 73. This again satisfies (∗∗) but not (∗∗∗). Note that (4·1)
holds if and only if (3p)2 − (d/2)q2 = −3, which is equivalent to x2 − (d/2)y2 = −3 when
3 divides d. This is a usual Pell type equation and one can easily check (using e.g. [3,
theorem 4·2·7]) that it has no solution for d = 6 · 73. So for S generic of degree 6 · 73,
Hilb2(S) is not birational to Hilb2(Sτ ).

In Table I we give an overview of which d ≤ 600 with d/6 ≡ 1 mod 3 satisfy the
numerical conditions (∗∗), (∗∗∗) and (4·1) (see also [1]).
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4·2. Higher-dimensional Hilbert schemes

We have seen that Hilbn(S) and Hilbn(Sτ ) are birational if and only if there is a solution to

3p2(n − 1)− (d/6)q2 = −1. (4·2)

We give some examples for low n.
n = 3. The lowest d satisfying (∗∗) and 6 | d is d = 42. Equation (4·2) with n = 3 reads

6p2 − 7q2 = −1, which is solved by p = q = 1. In general, one can show that if d/6 is a
prime m ≡ 5, 7 mod 8, then Hilb3(S)∼bir Hilb3(Sτ ).

n = 4. In this case, equation (4·2) reads (3p)2 − (d/6)q2 = −1. This is always solvable
when d/6 is a prime m ≡ 1 mod 4. Namely, note that when m > 2 is prime, then x2 − my2 =
−1 has a solution if and only if m ≡ 1 mod 4. Reducing this modulo 3 gives x2 − y2 ≡
−1 mod 3. This implies that x ≡ 0 mod 3. Writing x = 3x ′ gives 9(x ′)2 − (d/6)y2 = −1,
i.e. (4·2) with n = 4.

n = 5. Equation (4·2) is given by 3(2p)2 − (d/6)q2 = −1, which is a solution for (4·1).
This shows that Hilb5(S)∼bir Hilb5(Sτ ) implies Hilb2(S)∼bir Hilb2(Sτ ).
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