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EXISTENCE OF SOLUTIONS IN A SINGULAR BIHARMONIC
NONLINEAR PROBLEM
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In this work we prove the existence and uniqueness of positive solutions of the nonlinear singular boundary
value problem

where 0<tr<l .
Extensions of the above results to the case of A2u—f(x, u) = 0 with appropriate singularity built into / are
also given.
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1. Introduction

In this work we prove the existence and uniqueness of positive solutions of the
nonsingular boundary value problem

=0,
u"

(1)

where 0<<r< 1. Our main result is summarized in the following theorem.

Theorem 1.1. Let QcR" be a bounded domain with smooth boundary. Assume
q(x)eC(Ci) with 0 < a < l , and q(x)>0 in fi. Then there exists a unique classical solution
u of (1) with HeC4+a(fi)nC3(fi). Moreover u^Scpifor some d>0, where <Pi>0 is the
first eigenfunction of the negative Laplacian operator subject to zero Dirichlet boundary
conditions.
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Note. An extension of the above result to the case of A2u—f(x,u) = 0 with
appropriate singularity built into / can be proved by a similar technique. This is
discussed in the Remark at the end of section 3.

There is an extensive literature for the problem

(2)

«U=o,
When n = 1 the ordinary differential equation problem was first treated by Taliaferro
[10]. Generalization of the nonlinearity q{x)/u" to f(x, u), where f(x, u) is a non-negative
function that is non-increasing in u for every xefi, limu_0/(x, w) = oo and
limu_oo/(x,M)=0, has been obtained by Gatica, Hernandez and Waltman [7], for
radially symmetric solutions in a ball. Thus they treat

/ + / ( JO=0. (3)

In [6] the same authors treat in detail the general one-dimensional problem, the
radially symmetric problem, and the behaviour of the solutions near the degeneracy
point on the boundary. In this latter reference, only <r>0 is required. The result for (2)
in an M-dimensional domain was obtained by Lazer and McKenna [8].

The singular fourth order equation

y"=f(t,y,n 0<t<l, (4)

where y satisfies some given boundary conditions and / is singular at / , has been
treated by O'Regan [9]. Eloe and Henderson [3] have also discussed fourth and higher
order singular problems with different boundary conditions. Neither of these references
treats the boundary conditions discussed here. Moreover they use techniques which are
restricted to ordinary differential equations only.

In [6], the authors approximate the singular problem (2) by a sequence of regular
elliptic problems. As monotone iteration technique is then employed to show the
existence of a solution for each regular problem. These solutions are also monotonically
ordered, which allows them to extract a convergent sequence which is the solution to
(3). Similar arguments are used in [8]. These proofs depend heavily on the use of the
Maximum Principle.

The system of two second order equations, formed by rewriting equations (1), is not
quasi-monotone. Hence the monotone iteration technique fails. The idea of approximat-
ing the original singular problem by a sequence of regular problems still proves to be
fruitful. A compactness argument will be employed to replace the monotone iteration
technique. The major hurdle is the establishment of a uniform bound for the solutions
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of each of the regular problems. Once accomplished, this allows extraction of a
convergent subsequence whose limit will satisfy the original singular problem.

Section 2 contains a useful a priori estimate, which is stated in Lemma 2.1. It is
crucial in establishing a uniform bound for solutions of the sequence of regular
problems. In Section 3 we prove Theorem 1.1 using Schauder's fixed point theorem.

In this paper C(fi) will denote the space of continuous functions on Q. with the
supremum norm, denoted by || • ||. All other norms involved will be appropriately
indicated.

2. A useful lemma

We first introduce some definitions. Let Aj>0 be the first eigenvalue and ( j t^OonQ
be the corresponding eigenfunction for the negative Laplacian operator with zero
Dirichlet boundary conditions, i.e., they satisfy

(5)

Assume cpt is normalized so that 11̂ 11 = 1. From Hopf's lemma, there exists a 5>0 such
that IV^I^.5 for all xeSQ.

Next define <j>0 to be the function that satisfies

— A$0=l infi,
(6)

By the maximum principle <t>o(x) > 0 in Q.
Further, we let G(x, y) be the Green's function corresponding to the negative

Laplacian operator subject to zero Dirichlet boundary conditions. It is then known that
G is non-negative, and if

— Aw = /J(X),

(7)

the solution of (7) with h e #(Q) is given by

= $G(x,y)h(y)dy. (8)
n

In particular
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and

a

which, as a consequence of the normalization of q>u leads to

<Pi£*i4>o- (9)

The following lemma is a crucial a priori estimate which will be useful in proving our
main theorem.

Lemma 2.1. Given 0 < < T < 1 , there exists a constant C>0, which depends on a, such
that for all xe f i ,

Proof. Let

Hence by the definition of the Green's function G,

1

(10)

Further let z — Ccp\, C being a constant to be chosen. For xeil, a simple calculation
shows that

C is now chosen to be large enough so that

|2

in Q. This is always possible because |V<p1|^i5>0 at the boundary of Q. Thus

l +E)
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so

— Az ̂  — Awe in Q,

z = wc = 0 on <3Q.

The maximum principle then implies we(x) ^ z(x) ^ C in fl.
For fixed x, as e decreases to 0, G(x, y)/(q>i +e)a increase to G(x, y)/<p1 which is defined

everywhere, except at y = x and may be on the boundary of fi. By Fatou's Lemma

Thus

and the lemma follows.

3. Proof of Theorem 1

Suppose u is a classical solution of (1), hence Hulj^/Cj for some Kl>0. Define
q0 = minjjq(x)>0 and let w = u — S<pl, where d<qo/X\K"1. Then A2w^0 in Q, and
w = Aw = 0 on dSl. A repeated application of the Maximum Principle gives w ̂  0, and so
uS5<p! on fi.

Uniqueness can be easily established as follows. Assume there are two classical
solutions of (1) u and w, which are in C4+"(Q)nC3(Q). Hence, there exists S>0 such
that u^dcpi and M ^ ^ J in Q. Define z = u — it. By the mean value theorem,

A z z = - a

where u^dcp^ in Q. We then multiply the above equation by z and integrate over a
smooth domain Q' compactly contained in Q, After applying the Divergence Theorem
twice, we get

where n is a unit outward normal on d£l. Taking the limit as Q' -»Q, the second and the
last term on the left-hand side of the above equation vanish. Since jn(Az)2<oo, then
lna(q(x)z2/ua+1) is well defined. Hence
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which implies z=0 in fl. We have therefore proved the uniqueness of the solution in the
class of C4+ot(Q)nC3(Q).

We now turn to the question of the existence of a solution. Consider the e-
approximation problems,

A2u=
(u + e)"'

(11)

where e > 0. This can be cast as a system of equations:

Let

and define

= ^ = i\. 2

(13)

To proceed, we need the following lemma.

Lemma 3.1. There exist Kx, K2 and 5 such that Te maps si into si'.

To avoid loss of continuity, we assume the lemma holds for the time being. It is then
easy to see that si is closed and convex. Since v and q/(u + £) are continuous in £2, they
are bounded in the Lp(fi) norm for any l<p<oo, the solutions Te(u v) are then in
W2<p by the regularity estimate of second order elliptic equations, [2].

By Sobolev's imbedding theorem, Te(u v) is in C1+"(fi) for any O<0<1. Thus the
map Te is compact.
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We can now apply Schauder's fixed point theorem, which leads to the existence of a
fixed point (MC ve) of Te. That is to say

(14)

With uc and ve in C1+P(fl) and qeC(Q), we can bootstrap the regularity given
ut6C4+'(fi) and veeC2+a(£i). It is then easy to see that (u£ u,) satisfies equations (12).

Since (ue vc) e stf, then

Thus there is a uniform bound of uc and ve in C4+a(Q1) and C^"^^) respectively for
any fij that is compactly contained in SI. Take O o x ^ a . By standard compactness
results, [1], we can extract a convergent subsequence of ue and ve in C2+"(Ql) as e->0.
Let u and p be the corresponding limit. It is clear that u and v satisfy equation (12) with
e=0inf i i .

Let Cik, k = l,2,... be a sequence of smooth domains compactly contained in Q with
Q , c f l 2 c - c f i and Qt-»Q. The usual diagonal subsequence argument will generate u
and v satisfying equation (12) on ft with e = 0, since at the boundary of Q, u = v = 0. We
therefore conclude that u satisfies equations (1). According to our construction,
«eC4+"'(fl). We can bootstrap the regularity of this solution so that ueC4+a(Q). Hence
we have a classical solution in C2(fi) n C4+a(Q).

To show that ueC3(Cl), we note that there exists some constants M, and M2 [5]
such that

The last inequality can be proved by covering dQ with finitely many open sets, mapping
each of them locally to 'straighten' its boundary, and using the fact that \V<p1\^6>0 on
the boundary. Hence v = Au can be differentiated once more even at the boundary of ft
by the dominated convergence theorem. By a standard result ([4, Lemma 1, p. 7]) this
third derivative of u is continuous.

This completes the proof of Theorem 1.1.
Finally we give the proof of Lemma 3.1.

Proof of Lemma 3.1. Let qo = mii\(iq(x), qm = max^q(x), m0 = maxn(f>0(x), and C be
as defined in Lemma 2.1. We choose Kt such that
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q0 *?(*, +1)-'

which is always possible since <re(0,1). Now choose <5 such that

q0

Then

and

5< q°

Finally choose

With such choices of Kt, K2, and 5 in J2/, we prove T£ maps J2/ into s/ by the
following calculations. Without loss of generality, we take e^ 1.

Lower bounds for Te:

Using equation (9), we get
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Upper bounds for T£:

K2ll$QG{x,y)dy

Thus Te maps si into stf. We have therefore completed the proof of Lemma 3.1.

Remark. The same technique can be employed to prove the existence of solution for
the equations

A2u-f(x,u) = 0,
(18)

where

rt si

for xefi and u>0.

Here q0, qx, and Ct are positive constants, and 0<ff<y<l. The only modifications in
the above proof are in the definitions of equations (13) and the proof in Lemma 3.1.

Equations (13) are changed to
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for (ue ve) in s/. Now choose C, which depends on y, as in Lemma 2.1. Kt and 5 are
positive constants satisfying:

1
GoK1

and /C2 = K1/A1m0. Then Lemma 3.1 holds. Hence the solution to the singular equation
(18) exists. If we further assume f(x, u) to be monotone decreasing in u for all x, then we
can recover the uniqueness proof.
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