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Ziegler’s Indecomposability Criterion

Ivo Herzog

Abstract. Ziegler’s Indecomposability Criterion is used to prove that a totally transcendental, i.e.,
Y -pure injective, indecomposable left module over a left noetherian ring is a directed union of finitely
generated indecomposable modules. The same criterion is also used to give a sufficient condition for
a pure injective indecomposable module rU to have an indecomposable local dual U}’;.

Let R be a left noetherian ring and let RU be a totally transcendental, i.e., ¥-pure
injective indecomposable left R-module. One task of this article is to prove (Theo-
rem 5) that pU is a directed union U = ), M; of finitely generated indecomposable
submodules g M;. A familiar example of this phenomenon is the case of an injective
indecomposable left R-module gE. Over a left noetherian ring, such a module is to-
tally transcendental, and if we express it as a directed union zE = ), M; of finitely
generated submodules, then each gM; is uniform, hence indecomposable.

But a more interesting example is that of a generic module over an artin algebra.
An artin algebra is a ring A whose center C = C(A) is artinian and that is finitely
generated as a module over C. A A-module G is generic if it is (1) indecomposable,
(2) not finitely generated, and (3) of finite length as a module over its endomorphism
ring. This last condition implies that G has a pp-composition series, and is therefore
of finite Morley rank. The importance of generic modules arises from the work of
Crawley-Boevey [1], who proved that an artin algebra has a generic module if and
only if it satisfies the following conjecture.

The Brauer-Thrall Conjecture Ifan artin algebra A has infinitely many nonisomor-
phic indecomposable finitely generated left modules, then there is a natural number
n and an infinite family of indecomposable left A-modules of length 7.

Theorem 5, which implies that a generic module G is an amalgam of finitely gen-
erated indecomposable modules, may therefore be of some use if one is motivated to
employ amalgamation techniques (cf. [4]) to construct such a G.

The other task of this article is to introduce several equivalent conditions (Theo-
rem 4) for a pure injective indecomposable left R-module rU that ensure the local
dual Uﬁ be an indecomposable right R-module. Recall that a pure injective inde-
composable left R-module U has a local endomorphism ring S = Endg U, and so
obtains an R-S-bimodule structure. The top of S is a division ring A, and if we let
Es = E(Ag) be the injective envelope of the right S-module Ag, then the local dual
of rU is defined to be

Ug = Homs(RUs,Es).
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It is a pure-injective right R-module, the right action being defined by (nr)(u) :=
1(ru). A fundamental question in the study of pure-injective indecomposable mod-
ules over a ring R is whether the local dual Uﬁ is itself indecomposable. If so, it yields
a point in the right Ziegler spectrum of R, which is in some sense dual to rU.

The proofs of these results rely on Ziegler’s Indecomposability Criterion. To de-
scribe the criterion, we recall from [6, §1.1] that the language £ (R) for left R-modules
is the expansion of the language £ = (+, —, 0) of abelian groups by a ring R of unary
function symbols. The standard collection T(R) of axioms for a left R-module are
readily expressed in the language £(R). A formula of £(R) is said to be positive-
primitive (pp) if it is built up from atomic fomulae using only conjunction and ex-
istential quantification. If gM is a left R-module and p(x) = p(xy,...,x,) is a pp-
formula of £(R), then the subset of (xM)" defined by ¢ in M is a subgroup

M) = { (ur,...,uy) € RM)" | M |= (@) } .

Such a subgroup of (rM)" is called pp-definable in R M.
Suppose that (%) and (%) are pp-formulae of £(R) in the same tuple of free
variables. Evidently, the conjunction

(P AY)(E) := (x) A p(x)

is itself a pp-formula, but so is the formula

(p+ V)@ =37 [¢(F) N PE - 7)].

These two binary operations induce a modular lattice structure R-Latt(x) on the
classes of pp-formulae ¢(x) modulo equivalence relative to T(R). There is an anti-
isomorphism ¢(x) — ¢*(x) between the lattice R-Latt(X) and the similarly defined
lattice R°P-Latt(x) in the language L£(R°P) of right R-modules. An explicit descrip-
tion of this anti-isomorphism can be found in [6, §1.3.1] or [5]; we will rely on the
following two properties of this duality.

Fact 1([6,81.3.2],[2]) Let M be a left R-module, Ny a right R-module, n a positive
integer and suppose that a pair of n-tuples, u € (Ng)" andv € (rM)", are given. Then

ﬂ@?::Zui(@vi:O
i

in N ®r M if and only if there is a pp-formula o(x) in L(R) such that xM = p(¥) and
Ng = ¢ (@).

Fact 2 ([6,81.3.],[8]) Let Mg be an R-S-bimodule, E = Eg an injective cogenerator
and M}E the right R-module Homg(rMs, Es). For every positive-primitive formula o(X)
in the language L(R), Mlje E »* (M) if and only if i[(M)] = 0. The convention here is
that ifj € (M*)" and v € M", then

ﬁ(?) = (771(1/1), e ann(Vn)) € E".

https://doi.org/10.4153/CMB-2011-190-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-190-1

566 I. Herzog

A pp-type p = p(X) is a collection of positive-primitive formulae in the vari-
ables X, deductively closed relative to the axioms T(R). Given a tuple 1 € (xM)", its
pp-type is given by

pp-tpy (@) = { p(X) | M |= (@)} .
If u € M" satisfies every formula in a pp-type p(X), then it realizes p(X) in M :
P(X) C pp-tpy(#).

Given a pp-type p(X), the pure-injective hull H(p) [6, §4.3.5] is a pure-injective
left R-module with a specified tuple # € (rH(p))" such that pp-tpH(p)(H) = p(x).
Furthermore,

(i) if M is a pure-injective module and ¥ € M" realizes p(X), then there is a mor-
phism f: H(p) — M of left R-modules with f(u) = v; and

(ii) every R-endomorphism g: H(p) — H(p) satistying ¢g(#) = % is an automor-
phism.

Fisher ([6, §4.3.5]) proved the existence of the pure-injective hull of a pp-type. Prop-

erties (i) and (ii) ensure that it is unique up to isomorphism over the specified re-

alization % of p(X). A pp-type p(%) is called indecomposable if its pure-injective hull

H(p) is an indecomposable left R-module.

Ziegler’s Indecomposability Criterion ([6, §4.3.6], [7]) A pp-type p(X) is indecom-
posable if for every pair ¢, (%) and ¢, (%) of pp-formulae that do not belong to p(%),
there is a pp-formula p(X) € p(X) such that

[ A1) + (0 + )] (%) € p(X).

Let kM5 be an R-S-bimodule, where S is a local ring with top A. Let Es = E(A)
be the injective envelope of A considered as a right S-module. If 77 is an n-tuple of
elements from the right R-module M - Homg (rMs, Es), then, trivially,

Kerip 2 {o(M) | 7le(M)] =0}
If the equality holds, we consider that as a kind of continuity condition on 7).

Proposition 3 Suppose thatKer 7 = > _{@(M) | jlp(M)] = 0} under the condition
given above. Then the pp-type of 1) in Mg is indecomposable.

Proof Suppose that ¢} (X), 15 (X) do not belong to pp-tp,: (7). Because Es is the
minimal injective cogenerator in the category Mod-S of right S-modules, we may use
Fact 2, which implies that both 7(1); (M)) and 77(¢),(M)) are nonzero S-submodules
of Es = E(A). Thus, thereare u € (M) and v € ,(M) such that7j(u) = 7(v) = 1,
where 1 € Ag denotes the unit element of the top of S.
Because 77( — V) = 0, the hypothesis implies that there is a pp-formula (%) such
that
u—ve pM)C Ker 7.

Another application of Fact 2 implies that ¢*(X) € pp-tp,:(7), and it remains to
verify that

(" AYE) + (" APE) = [(p+ 1) A (o +12)] " & PP-tpas (-
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But € i(M) C (p+ Y1) M)andu = @ —V)+7V € (¢ + ) (M). Thusu €
[(@+ 1) A (@ +1,)](M), and because 77() is nonzero, the claim is established. W

Suppose that g M is a left R-module and S is the endomorphism ring S = Endg M.
If kM is totally transcendental, then every cyclic S-submodule %S of M" is pp-defin-
able in kM. Therefore, every S-submodule is a sum of subgroups that are pp-defin-
able in M, and the equality in the proposition is attained. Finitely presented left
R-modules also enjoy this property; in fact, every locally pure projective module
does. So if kM has a local endomorphism ring S = Endg M, then, because the local
dual Mf2 is a pure-injective right R-module realizing only indecomposable types, it
must be indecomposable. More generally, we have the following.

Theorem 4 Let RMg be an R-S-bimodule and Es an injective cogenerator with en-
domorphism ring T = Endg E. The following are equivalent for the T-R-bimodule
M* = Homs(rMs, 7Es) :

(i) foreveryn < w, and every n-tuplem = (n1,...,n,) € (Mfz)"7
Ker 7= {p(M) | flp(M)] = 0};

(ii) the evaluation map Ev: tM* @ Ms — E, induced by n @ u — n(u), is a
monomorphism of T-S-bimodules;
(iii) the morphism of rings from T to Endg Mﬁ is onto.

Suppose that the endomorphism ring of xM is local, and let S = Endg M and
Es = E(Ag), where A is the top of S. Because Es is an injective indecomposable
module, T = Ends Eg is a local ring. Condition (iii) then implies that the endomor-
phism ring Endg Mlje is a quotient of a local ring and is thus also local. Therefore,
Theorem 4 subsumes the situation described just before its statement.

Proof (i) = (ii) Suppose that? € (M*)" and € M" are such that
EV(ﬁ@ﬂ) = EV(Z?L’ X ui> = Zm(u,’) = 0.
By hypothesis, there is a positive-primitive formula ¢(x) such that

u € p(M) C Ker 7.

By Fact 2, Mlj2 = ©*(7), and so Fact 1 implies that 7 ® % = 0 in M* @ M.
(ii) = (i) Applying the exact functor Homg(—, Es) to the monomorphism
Ev: tM! ®r Mg — Es, we get an epimorphism

T = Ends Es — Homg(M* ® Mg, Es) = Homg(M*, Homg(Ms, Es))
= Homg(M*, M%) = S.

(ili) = (i) Let® € (M*)" and consider the inclusion

X= Z{‘P(M) | le(M)] =0} C Ker 7.

https://doi.org/10.4153/CMB-2011-190-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-190-1

568 I. Herzog

To see that equality holds, suppose that 7 € 3. As Eg is an injective cogenerator
for the category of right S-modules, there is an S-morphism 7: (M")s — Es such
that ¥ C Ker 7, but 7(u) # 0 € E. The n component morphisms v;: Ms — Eg,
1 <i < n,yield atupley € (M*)" satisfying

PP-tPys: (1) C pp-tpy: (7)),

because if p* € pp-tp,:(7), then Mt E 7(¢*), which is equivalent to 7j(p(M)) = 0.
The assumption (¢ (M)) = 0 then implies that o* € pp-tp,.. (7).

The right R-module M}j2 is pure injective, so that [7, Thm. 3.6] implies there is an
R-morphism f: M}j2 — Mﬁ such that f(77) = 7, thatis, f(n;) = ~;, for each i. By
hypothesis, f may be represented by the action of some t € Endg(Es). Because

tn@@)] = @) = [f(](@) =5()

is nonzero, (1) # 0, and so u & Ker 7. ]

If there exists an infinite family of finitely generated indecomposable modules over
an artin algebra A of bounded endolength n, then ([6, §4.5.5], [3]) any point that
belongs to the closure of this infinite family in the Ziegler Spectrum of A is a generic
A-module. The next result uses Ziegler’s Indecomposability Criterion to show that a
generic module over A, if one exists, is necessarily an amalgam of finitely generated
indecomposable A-modules, which cannot possibly be of bounded length.

Theorem 5 Let R be a left noetherian ring and M a totally transcendental indecom-
posable left R-module. Then M is a directed union M = ), M; of finitely generated
indecomposable submodules M;.

Proof Letu,...,u, € M. To prove the theorem, we must produce a finitely gener-
ated indecomposable submodule M’ C M containing all the u;. That will imply that
the collection of finitely generated indecomposable submodules of M is directed and
cofinal in the collection, partially ordered by inclusion, of finitely generated submod-
ules of M.

Let p(X) = pp-tp,,(#i) be the pp-type of % in M. Because (rM)" satisfies the de-
scending chain condition on subgroups pp-definable in M, p(%) is implied, relative
to the complete theory of M, by a single pp-formula ¢ (%),

M [= pp-tpy (1) < o(X).

Because M is a pure injective indecomposable module, the type p(x) satisfies Ziegler’s
Indecomposability Criterion, which implies that the collection of pp-formulae

U(x) = {¢X) : (M) < (M)}

forms an ideal in the lattice of pp-fomulae in X, i.e., it is downward closed and if

V1(%), ¥2(%) € (%), then (¢ +1,)(x) € V().
The positive-primitive formula (%) is equivalent, relative to T(R), to an exis-
tentially quantified conjunction of atomic formulae, so if K C M is a submodule
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generated by the u; together with some witnesses to M |= (%), then K = ¢ (). Fur-
thermore, K = —) (%), for every (%) € W(X). As R is left noetherian, K is a finite
direct sum K = @; K of finitely generated indecomposable modules K;. Decompose

0=y, jUj in terms of its components, relative to this direct sum decomposition.
Positive-primitive formulae respect direct sums, so that for every j, K; |= ¢(i;), and
hence M |= (7). As ¥(%) is an ideal of pp-formulae, there is a j, say j = 1, such
that M = = (%), for every ¢(%) € U(X). Consequently, pp-tp,,(#) = pp-tp,,(7i1).
By [6, §4.3.5], there is an endomorphism f of M, necessarily an automorphism, such
that f: 7, — @ Then M’ = f(K;) is a finitely generated indecomposable submodule
of M that contains all the u;. [ |
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