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Abstract

In this brief communication, a new method is outlined for modelling magnification patterns on an observer’s plane using
a first-order approximation to the null geodesic path equations for a point mass lens. For each ray emitted from a source,
an explicit calculation is made for the change in position on the observer’s plane due to each lens mass. By counting the
number of points in each small area of the observer’s plane, the magnification at that point can be determined. This allows
for a very simple and transparent algorithm. A short MATLAB code sample for creating simple magnification maps due
to multiple point lenses is included in an appendix.
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1 INTRODUCTION

Gravitational lensing is the deflection of light from a distant
source by intervening massive objects, resulting in magnifi-
cation or de-magnification of images. In some regions, areas
of high magnification (caustics) are formed. By measuring
this magnification, observers passing through these caustics
may be able to determine properties of the lens or source.
Modelling these phenomena is computationally expensive,
particularly for ‘ray shooting’ methods that deflect individ-
ual rays, and then identify where these rays intersect with
the source plane (or the observer’s plane), and finally calcu-
late the magnification factor by counting the number of rays
that intersect each small area (or pixel) in the plane. Sev-
eral sophisticated methods have been developed that greatly
improve the efficiency of this procedure [for example, see
Lewis et al. (1993), Mediavilla et al. (2011), and Metcalf &
Petkova (2014)]. Also, techniques that make use of parallel
processing have been developed to reduce the time required
for generating these magnification maps [for example, see
Thompson et al. (2010) and Bate et al. (2010)].

In this note, we present an alternative ray shooting method
for drawing magnification maps. For each ray emitted by
the source, we will derive an expression for its location at
the target as the end point of a straight line segment plus a
small correction due to each lens in the system. This will be
done using a linearized solution to the Schwarzschild path
equations, and we will approximate the solution to first order
in the small parameter rs, the Schwarzschild radius of the

lens. This assumes that rs is small relative to any other lengths
appearing in the equation, principally the distances of closest
approach of the ray to the lenses. This linearized solution
has been shown to be a good approximation to the full (non-
linear) geodesic equations in Walters & Forbes (2011).

The present approach does not claim to be faster to run
than existing methods. However, it has the advantage that any
lens can be easily modelled by simple combination of point
masses. The code included in the appendix loops through a
list of masses, adding up the perturbation due to each mass.
Adding any additional lensing object is merely the inclusion
of an item in the list, specifying the object’s x, y, and z co-
ordinates and its mass. The transparency and versatility of this
approach will be demonstrated by the modelling of various
lens configurations.

2 KINEMATICAL APPROACH

In order to apply a fully consistent first-order approximation
to a ray passing by several lenses, we begin with the first-
order path equations derived from the acceleration vector for
a massless test particle in the gravitational field of a massive
lens located at the origin [see Walters & Forbes (2014)]. These
are

r̈ = −3rsK

2r5
r,

where rs is the Schwarzschild radius of the lens, K is the
square of the impact parameter, and r is the normal position
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2 Walters and Forbes

vector, and r = |r| is the distance from the origin. The dot-
notation refers to differentiation by the proper time parameter,
τ . Using a first-order expansion in rs, we approximate the
light path as

x = X0 + rsX1 + O(r2
s )

y = Y0 + rsY1 + O(r2
s )

z = Z0 + rsZ1 + O(r2
s ), (1)

where the zeroth-order components (straight lines) are
given by

X0 = C1τ + C2

Y0 = C3τ + C4

Z0 = C5τ + C6,

and the first-order corrections are

X1 = X0

2R0
− R0

K0
(C2 − BC1) + C11τ + C21

Y1 = Y0

2R0
− R0

K0
(C4 − BC3) + C31τ + C41

Z1 = Z0

2R0
− R0

K0
(C6 − BC5) + C51τ + C61. (2)

In these equations, R0(τ ) is the distance at ‘time’ τ from
the lens mass to the point where the test particle would be
if it were not deflected (that is, in a straight line path from
the source). The constants C1 to C6 are determined by ini-
tial conditions, and the constant B = C1C2 + C3C4 + C5C6.
These equations are for a lens mass located at the origin. In
the current study, it is convenient to place the source, rather
than the lens, at the origin, as this will allow us easily to in-
clude more than one lens mass. We will specify that the ray
leaves the origin at τ = 0. In this case, C2 = C4 = C6 = 0,
and the zeroth-order terms simplify to

X0 = C1τ

Y0 = C3τ

Z0 = C5τ,

and the first-order corrections are now

X1 = X0 − xm

2R0
+ R0

Km
(xm + BmC1) + C11τ + C21

Y1 = Y0 − ym

2R0
+ R0

Km
(ym + BmC3) + C31τ + C41

Z1 = Z0 − zm

2R0
+ R0

Km
(zm + BmC5) + C51τ + C61. (3)

The new constants xm, ym, and zm are the co-ordinates of the
massive lens (with subscript m for mass), and the other terms

relating to this mass are given by

R0 =
√

τ 2 + R2
m + 2Bmτ

Rm =
√

x2
m + y2

m + z2
m

Bm = −(C1xm + C3ym + C5zm )

Km = R2
m − B2

m.

As we have specified that the light ray leaves the origin at
τ = 0, Equations (3) are zero at that time. Solving defines
three of the constants as follows:

C21 = xm

2Rm
− Rm(xm + C1Bm )

Km

C41 = ym

2Rm
− Rm(ym + C3Bm )

Km

C61 = zm

2Rm
− Rm(zm + C5Bm )

Km
.

By also specifying that the ray leaves the origin at some
trajectory (φ, θ ), where φ is the azimuthal angle and θ is
the inclination angle above the x–y plane, along with the
speed constraint equation, C1C11 + C3C31 + C5C51 = 0 [see
Walters & Forbes (2014)], we can solve for the other constants
as follows:

C1 = cos φ cos θ

C3 = sin φ cos θ

C5 = sin θ.

C11 = −(C1Bm + xm )
Bm

Rm

( 1

Km
+ 1

2R2
m

)

C31 = −(C3Bm + ym )
Bm

Rm

( 1

Km
+ 1

2R2
m

)

C51 = −(C5Bm + zm )
Bm

Rm

( 1

Km
+ 1

2R2
m

)
.

Substituting these constants into the first-order corrections
(2) and then into the path equations (1), we have the general
path equations for rays leaving the origin at τ = 0 in a system
containing a single lensing object:

x = C1τ + rs

2

[
C1

(
τ

R0
− Bm

Km
P

)
+ xmQ

]
+ O(r2

s )

y = C3τ + rs

2

[
C3

(
τ

R0
− Bm

Km
P

)
+ ymQ

]
+ O(r2

s )

z = C5τ + rs

2

[
C5

(
τ

R0
− Bm

Km
P

)
+ zmQ

]
+ O(r2

s ),

where P = Bmτ
Rm

(3 − B2
m

R2
m

) + 2Rm − 2R0 and Q = 1
Rm

−
1

R0
− P

Km
have been introduced for readability.

The correction to the straight line path is given above,
accurate to first order in the small variable rs, which serves
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Algorithm for Gravitational Magnification Maps 3

as a surrogate for the mass of the lensing object, since
rs = 2GM/c2 where M is the mass of the lens, G is Newton’s
constant and c is the speed of light. In this paper, we are using
geometrized units, which is G = c = 1, unless noted other-
wise. The correction due to additional lensing masses may
now be easily included. As the approach undertaken here has
been one of linearisation of the path equations, the superpo-
sition principle holds, and the change to the path is the sum
of corrections for each mass. To clarify, this comes about
by making the assumption that summation of acceleration
components will be accurate at least to first order in rs. Ex-
plicitly, we are saying that the acceleration due to n massive
objects is

r̈ =
n∑

i=1

−3(rs )iKi

2r5
i

ri, (4)

where the sum is over all the massive bodies in the system,
each with its own value for mass (rs), square of the angular
momentum of the light ray about the mass (K), and position
of the particle relative to the mass (r).

We now have the first-order path equations for x, y, and z.
This enables us to solve for τ to first order in rs, for various
observer locations. We can then solve the equations for that
value of τ to determine the x, y, and z values at the observer’s
location. This procedure will be illustrated in this paper by
solving for an observer sphere and for an observer plane.

2.1 Ray intersections with an observer’s sphere

In order to evaluate the intersection of light rays with some
outer sphere, centred on the source, we specify that the ray
meets a sphere of radius R at some ‘time’ τ . That is, let
τ = T0 + rsT1 + O(r2

s ), and solve the following equation for
T0 and T1:

R2 = x2 + y2 + z2 + O(r2
s ).

The solution of this equation leads to the following zeroth-
order and first-order components of τ :

T0 = R

T1 = Bm

Rm
− R + Bm

Rf
,

where R f = √
R2 + R2

m + 2BmR is the distance from the lens
to the observer. Substituting in this value of τ , the values
of x, y, and z at the sphere can be calculated, given an initial
trajectory (φ, θ ). After some simplification, these final values
may be written:

x f = C1R + rs

2
(xm + C1Bm )F + O(r2

s )

y f = C3R + rs

2
(ym + C3Bm )F + O(r2

s )

z f = C5R + rs

2
(zm + C5Bm )F + O(r2

s ),

Figure 1. Caustic pattern on the surface of a sphere due to a binary lens.
The secondary object has one-tenth the mass of the primary.

in which

F = 1

Rm
− 1

Rf
− 2

Rm − Rf

Km
− RBm

KmRm

(
3 − B2

m

R2
m

)
.

We are now in a position to plot the points where rays from
a star at the centre of an observer’s sphere intersect with that
sphere. Figure 1 shows the points due to a central source, with
a massive lens (rs = 1) located at (20,0,0), and a secondary
lens (rs = 0.1) located at (20,11.8,0). For clarity, the rear part
of the sphere has not been plotted.

2.2 Magnification on an observer’s plane

Solving for the magnification on a plane surface follows a
similar procedure. In this case, we will solve for a plane that
is perpendicular to the x-axis. This does not involve any loss
of generality, as the axes can be arbitrarily positioned, each
lensing object having its own x, y, and z co-ordinates. Setting
the final x-position of the ray to a constant, Xf , we solve for τ

and then y and z in a similar way to that in Section 2.1 above
to obtain:

Yf = C3Xf

C1
+ rsF

2

(
ym − C3xm

C1

)

Zf = C5Xf

C1
+ rsF

2

(
zm − C5xm

C1

)
, (5)

where

F = 1

Rm
− 1

Rc
+ 2

Rc − Rm

Km
− 2

T0Bm

KmRm
− T0Bm

R3
m

T0 = Xf

C1

Rc =
√

T 2
0 + R2

m + 2BmT0. (6)

Using these formulae, points can be plotted on the ob-
server’s plane. Beginning with an array of regularly spaced
rays leaving the source, the final position is calculated. A
magnification map can be produced by counting the number
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4 Walters and Forbes

Figure 2. Caustic pattern on a plane due to the lensing action of a planetary
system. The star’s mass is 10 000 times that of the planet.

Figure 3. Caustic pattern on a plane due to the lensing action of 16 masses.
The code for this plot is included in the appendix.

of points within each small area of the observer’s plane. In
Figure 2, a source is placed at the origin, a primary mass with
rs = 0.01 is at (20,0,0) and a secondary mass is at (20,0.9,0)
with rs = 10−6. The intersection of each ray with a plane at
x = 2000 has been calculated and a smooth binning routine
(Perkins, 2006) has been used to assign a colour based on the
number of points in each bin.

To simulate a many body system, 16 masses have been
placed near (20, 4, 0), using a random number generator to
ensure their y co-ordinates lay in the interval 4 < y < 6, and
their z co-ordinates lay in −0.75 < z < 0.75, as may be seen
from the MATLAB code in the appendix. The magnification
map resulting from the code provided in the appendix is
shown in Figure 3. It clearly consists of many caustic pat-
terns, due to the 16 masses.

A simulation of an elliptical galaxy has been developed to
produce the caustic plot in Figure 4. Two hundred thousand
masses have been placed randomly in an elliptical structure
with an inverse squared density. The elliptical shape breaks
the spherical symmetry and produces the diamond-shaped
caustic pattern. For this figure, the lens approximates the cen-
tral bar of the lensing galaxy in the Einstein Cross (Huchra
et al. 1985; Wambsganss & Paczynski 1994) ]. The lens-
source and lens-observer distances have also been set to cor-
respond to the Einstein Cross. With the point source at the
origin, the lensing galaxy is placed at 7 600, and the observer’s
plane is at 8 000. All distances are in millions of light years.
The lensing galaxy has a mass of 1.5 × 1010 solar masses,
and a height of 0.34 arcmin as seen from the observer’s plane
by an observer on the optical axis. A path through the caustic

Figure 4. Caustic pattern on a plane due to the lensing action of 200 000
masses placed randomly in an elliptical structure with an inverse squared den-
sity, designed to roughly approximate the central bar of the lensing galaxy in
the Einstein Cross. The total mass of this galaxy is 1.5 × 1010 solar masses.
Distances are in millions of light years. In the lower half of the figure, an
additional substructure of 104 solar masses has been added. The magnifica-
tion map and corresponding light curve show a small deviation due to this
substructure.

has been chosen, and the corresponding light curve is shown
below the magnification map. In the lower image, a structure
of 104 solar masses has been added. The small deviation can
be seen in the magnification map and in the corresponding
light curve below it.
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Computational time for this procedure is proportional to
the number of rays multiplied by the number of lensing
masses. For the elliptical galaxy with 200 000 stars, an ar-
ray of 4 × 106 light rays was used. The running time for
each of these maps on a desktop pc (Core I7) with four cores
was 6 h.

3 CONCLUSION

This short paper has presented a new method for generat-
ing magnification patterns due to the gravitational effects of
massive objects on light rays from a source. An algorithm
has been described for solving the linearised first-order path
equations for rays from the origin passing through a lens and
intersecting with a viewing surface. This general algorithm
has been illustrated by solutions for two simple viewing sur-
faces, a sphere surrounding the source, and a plane.

Once the solution has been derived for the linearised path
equations, the final locations for an initial array of light rays
can be found by first calculating the value of the time pa-
rameter at the observer’s location, and from that, the small
deviations due to each mass in the system can be obtained.
As the path equations have been linearised, the superposition
principle holds and the total deflection can be found as the
sum of the deflections due to each of the massive objects. This
makes it simple to add many lensing objects to the system.
It is hoped that the method and code presented here may be
helpful for quickly identifying the magnification patterns for
any desired lens configuration.

An interesting area of future research would be to solve
the equations for incoming angle at the observer’s position
rather than for position over the observer’s plane. This would
allow a modelling of macro-lensing effects, and reproduction
of the observer’s view of the Einstein Cross at a single point,
rather than of the spatially extended magnification map.

A further modification would be to generate light curves
that reflect the motion of the lensing objects over the time
period, in the case where there is significant change in the
configuration of the lens during the traversal of the magnifi-
cation map. In the approach covered in this note, this presents
a significant challenge, as it involves continually creating new
sections of the magnification map as the lens configuration
changes.
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A APPENDIX

The code presented here is a very basic implementation of the planar
solution described in the text.

%source near the optical axis, but more care is
%required if plotting further out.
xf=2000; %observer plane at x=2000
yf0=390;
yf2=590;
zf0=-100;
zf2=105;
gy=500; %number of points in y-direction
gz=500; %number of points in z-direction
yf=linspace(yf0,yf2,gy);
zf=linspace(zf0,zf2,gz);

%determine target location for magnification map
yt0=420;
yt2=540;
zt0=-65;
zt2=65;

%set up meshgrid of rays and their initial
%velocity components
y=ndgrid(yf,zf)';
z=ndgrid(zf,yf);
R=sqrt((xfˆ2+y.ˆ2+z.ˆ2));
c3=y./R;
c5=z./R;
c1=sqrt(1-c3.ˆ2-c5.ˆ2);
%set up array of lensing object locations and
%masses (x,y,z,mass)

%set up an array of rays large enough to cover the
%target area. This rectangular array is a suitable
%approximation for an isotropically emitting

masses=[
20.0000 4.3334 -0.5146 0.0001
20.0000 4.2860 0.2038 0.0007
20.0000 4.2442 -0.0532 0.0005
20.0000 4.7654 0.7264 0.0002
20.0000 4.7766 -0.0858 0.0008
20.0000 4.3825 0.7482 0.0008
20.0000 5.0801 -0.6292 0.0002
20.0000 4.5315 0.1704 0.0008
20.0000 5.0130 -0.4282 0.0003
20.0000 5.0609 0.2037 0.0004
20.0000 4.9703 -0.5343 0.0003
20.0000 5.5696 0.0963 0.0009
20.0000 5.4713 -0.7395 0.0007
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6 Walters and Forbes

20.0000 4.3961 0.5765 0.0002
20.0000 4.4599 -0.4150 0.0001
20.0000 5.3170 0.2771 0.0009];

[n,~]=size(masses); %number of lensing masses
%pre-allocate space for storing first order
%corrections
yrs=zeros(size(y));
zrs=yrs;
%calculate first order deviations due to each mass
for i=1:n;

xn=masses(i,1);
yn=masses(i,2);
zn=masses(i,3);
mn=masses(i,4);

Rn =sqrt(xnˆ2 + ynˆ2 + znˆ2);
Bn = -(c1*xn+c3*yn+c5*zn);
Kn = Rnˆ2 - Bn.ˆ2;
Rf = sqrt(xfˆ2+c1.ˆ2*Rnˆ2+2*xf*c1.*Bn);
F = 1/Rn-c1./Rf-(2*Rn)./Kn+(2*Rf)./(c1.*Kn)

-(2*xf*Bn)./(c1.*Kn*Rn)-(xf*Bn)./(c1*Rnˆ3);

yrs=yrs+mn/2*(yn-c3*xn./c1).*F;
zrs=zrs+mn/2*(zn-c5*xn./c1).*F;

end

%final locations equal straight line plus sum of
%corrections
yy=c3*xf./c1+yrs;
zz=c5*xf./c1+zrs;
%sort the data points into two columns for y and z
%for plotting
data=reshape(cat(3,yy,zz),[gy*gz,2,1]);
%for display, only keep the points falling within
%the desired target area
datanew=[];
for k=1:gy*gz

if data(k,1)>yt0
if data(k,1)<yt2

if data(k,2)>zt0
if data(k,2)<zt2

datanew=cat(1,datanew,data(k,:));
end

end
end

end
end
% plot the data as a coloured density plot
figure(1)
clf
smoothhist2D(datanew,5,[900, 900],0,'image');
set(gca,'YDir','normal');
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