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ABSTRACT. A theoretical model is formulated to investigate the influence of random
variations in strength of the weak layer on slab avalanche release. An equation for slab
stability is derived which accounts for stress redistribution between strong and weak
regions. The model is first used to re-derive results on shear fractures (shear bands) in a
homogeneous slab. It is then applied to the case of a slab with randomly varying peak
strength of the weak layer. It is demonstrated that such variation may have a dramatic
knock-down effect on the failure strength of a slope. The nature of the critical flaw is
studied and precursors to failure are investigated.

1. INTRODUCTION

It is commonly agreed that dry-slab avalanche release is
triggered by shear failure of a thin weak layer underlying a
thick cohesive slab (Schweizer, 1999). Several authors (e.g.
McClung, 1979; Bader and Salm, 1990) have invoked frac-
ture-mechanics concepts to understand the failure process.
They consider the existence of an extended flaw (termed a
shear band by McClung) which is, in fact, very similar to a
Griffith crack in linear elastic fracture mechanics. As in
fracture mechanics, the stability of the system depends on
the extension and geometry of the critical flaw.

Recently, the concept of a critical crack has been criti-
cized by several authors (e.g. Arndt and Nattermann, 2001).
It has been pointed out that, unless the nucleation problem
is addressed and/or the size of pre-existing cracks can be de-
termined experimentally, one simply replaces one unknown
quantity (the failure stress) by another (the size of the crit-
ical crack). Arndt and Nattermann (2001) also demon-
strated that random variations in material strength may
trigger athermal crack nucleation and may therefore play a
crucial role in failure of bulk materials.

Large and apparently random variations in the shear
strength of weak layers have been reported by Conway and
Abrahamson (1988). In their study they assess the implica-
tions for slow-slope stability by evaluating the probability of
finding deficit zones where the strength of the weak layer falls
below the acting (gravitational) stress. A problem of this ap-
proach is that the overlying slabmay effect a stress redistribu-
tion such that a deficit zone is supported and ‘‘anchored’’ by
surrounding stronger regions, and the situation may be
further complicated by the presence and interactions of mul-
tiple deficit zones. In general, slope failure should therefore
be considered as a collective process which involvesbothmul-
tiple local failure of the weak layer and concomitant stress re-
distribution to adjacent regions. To deal with such collective
phenomena in slab avalanche release is the main rationale of
the model which we formulate in the present paper.

2. FORMULATIONOF THEMODEL

2.1. Stress redistribution in a thin slab

We consider the situation shown in Figure 1: a weak layer is
running along the plane y ¼ d0 in a snowpack of thickness d.
For simplicity we assume the elastic constants (shear modu-
lus G,Young’s modulus E) of the snow above and below the
weak layer to be the same. Following the lines of Palmer and
Rice (1973) and McClung (1979), we consider a quasi-one-
dimensional model: we assume the system to be homoge-
neous in the z direction, such that the displacement across
the weak layer can be written as a function uðxÞ of the x co-
ordinate only.The nature of the failure depends on the angle
� between the u and x directions: for � ¼ 0 we have mode II
failure (shear failure along the weak layer propagating up-
slope or downslope) and for � ¼ �=2mode III failure (shear
failure propagating sideways across slope).The extension of
the slope is assumed much larger than any other character-
istic length in the system such that wemay neglect boundary
effects. In generalization of previous models, we allow for
random spatial variations of the shear strength of the weak
layer as a function of the x coordinate.

Owing to the material inhomogeneity, J-integral meth-
ods as used by Palmer and Rice (1973) for analyzing shear
band propagation do not work in the present case. Instead
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Fig. 1. Snowpack geometry considered in the model.
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we have to explicitly consider the stress distribution which
arises from a general distribution of slip uðxÞ. This can be
done using a dislocation representation of the internal
stresses (Weertman,1996; Arndt and Nattermann, 2001). In
particular, the internal shear stress acting at location x on
the weak layer can be written as

�intðxÞ ¼
Z

�ðx� x0Þrx0uðx0Þ dx0 : ð1Þ

Here �ðxÞ is the shear stress created at the point ðx; d0Þ by a
dislocation of unit strength located at ð0; d0Þ, andrxuðxÞ is
the dislocation density associated with the inhomogeneous
distribution uðxÞ of slip in the plane y ¼ d0 of the weak
layer.

To evaluate the internal stresses, we have to work out the
stress field of a dislocation running in the z direction on the
plane y ¼ d0. The dislocation is contained in a layer with
elastic moduli E;G sandwiched between media with
E;G � 1 for y < 0 (the bedrock) and E;G � 0 for y > d
(the open air). The stress field depends on the dislocation
character, which in turn is governed by the angle � between
the u and x directions. For � ¼ �=2 (mode III failure) the
crack dislocations have screw character, and we can use
results given byWang (1999) to write �ðxÞ as

�ðxÞ ¼ Gx

2�
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We nowmake an important approximation: we assume that
the snowpack is thin in the sense that variations in u occur
on a characteristic length scale which significantly exceeds d
and d0. We may then expand the slowly varying function
rx0uðx0Þ in a Taylor series around x0 ¼ x: rx0uðx0Þ
¼ rxuðxÞ þ ðx� x0ÞrxxuðxÞ þ . . . Inserting into Equa-
tion (2) and retaining only the lowest-order non-vanishing
term yields after some lengthy algebraic manipulations

�intðxÞ � Iuxx ; ð3Þ

where the stress redistribution factor

I ¼
Z

x�ðxÞ dx ¼ 2ðd� d0ÞG ð4Þ

turns out to be proportional to the thickness of the slab
above the weak layer but does not depend on the thickness
of the underlying snowpack.

For other values of � (mode II or mixed-mode fracture)
the shear stress along the weak layer canbe calculated using
the stress fields of edge or mixed dislocations. The final
result is again of the form of Equations (3) and (4).The only
difference is that I multiplies with a scalar pre-factor of the
order of unity which depends on the angle � and on the
value of Poisson’s ratio.

2.2. Equation for slab stability

The dependence of the shear strength of the weak layer on
the shear displacement is characterized by a hardening^
softening curve as shown schematically in Figure 2 (see,
e.g., McClung, 1979). The shear strength increases initially
towards a peak value �m and then drops towards an asymp-
totic value �1. In general, the strength^displacement curve
�sðu; xÞ may be position-dependent. In our simulations in
section 4, we account for such position dependence in terms
of random variations of the peak shear strength.

For the slab to be stable, the displacement field uðxÞ
must fulfil the inequality

Iuxx þ �ext � �sðu; xÞ � 0 ; ð5Þ
i.e. the locally acting (external and internal) stress must not
exceed the local shear strength. Equation (5) is constitutive
for our model. We consider rate-independent behavior, i.e.
once condition (5) is violated for some x, the displacement
uðxÞ at the unstable locations increases quasi-instantan-
eously until a new stable configuration is reached. If no
such configuration exists, u increases indefinitely and the
slab fails.

3. FAILUREOFA HOMOGENEOUS SLAB BY SHEAR
BAND PROPAGATION

We first consider the failure of a homogeneous slab (no
strength variations) by formation and propagation of a
shear band as investigated by McClung (1979). A localized
shear band is characterized by a displacement field uðxÞ
which at x ! �1 starts from a value u0 on the left stable
branch of the �sðuÞ curve, goes through a maximum u1

which without loss of generality we assume at x ¼ 0, and
then reverts to u0 for x ! 1. The displacement field of a
critical (marginally stable) shear band satisfies the equation

Iuxx þ �ext � �sðuÞ ¼ 0 : ð6Þ
By analogy, this differential equation can be envisaged as
describing the undamped motion of a particle of mass I in
a potential V ¼

R
½�ext � �sðuÞ� du. It follows that the

solution must satisfy the ‘‘energy conservation’’ criterion
V ðu0Þ ¼ V ðu1Þ; and hence u0 and u1 must fulfil the relationZ u1

u0

ð�ext � �sðuÞÞ du ¼ 0 : ð7Þ

Solutions can be found for any value of the external shear
stress in the range �1 � �ext � �m. A geometrical illustra-
tion is given in Figure 2: areas I and II enclosed by the line
� ¼ �ext above and below the �sðuÞ curve must be equal.

Approximate analytical relations can be derived if the

Fig. 2. Shear strength vs displacement across weak layer,

and ‘‘equal-area’’ condition fulfilled by a shear band

(schematically).
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length of the shear band is large in comparison with that of
the end region over which the strength of the weak layer
drops to the residual value �1. Outside the end region the
displacement profile is

uðxÞ ¼ ðL� xÞ2ð�ext � �1Þ
2I

: ð8Þ

Hence, u1 ¼ L2ð�ext � �1Þ=ð2IÞ.The equal-area condition
(7) can be written in the approximate form

u1ð�ext � �1Þ �
Z u�

u0

½�ext � �sðuÞ� du ; ð9Þ

where u� is the displacement where the descending branch
of the stress^strain characteristics assumes the value
� ¼ �ext. Since a ‘‘long’’ shear band requires �ext � �1 to be
small, the integral on the righthand side is approximately
equal to the area between the curve �sðuÞ and the line
� ¼ �1 � �ext.We define the characteristic displacement �u
by Z

ð�sðuÞ � �1Þ du ¼ ð�m � �1Þ�u ð10Þ

and, using Equations (8) and (9), we finally obtain the ap-
proximate relation

d� d0

4G

Lð�ext � �1Þ
d� d0

� �2
¼ ð�m � �1Þ�u ð11Þ

for a marginally stable shear band. A band of length L is
stable up to the corresponding external stress. Slope failure
then occurs if either the length of the band or the external
stress is increased by an infinitesimal amount. The relation
(11) has been previously derived by McClung (1979) from a
quite different line of reasoning. The only difference is that
here we consider mode III failure, whereas McClung (1979)
considers shear failure in mode II. This leads to a different
combination of elastic moduli on the lefthand side of Equa-
tion (11) (McClung obtains 2E instead of 4G).

Formally, the above calculations are very similar to
those carried out by Zbib and Aifantis (1988) who used a
second-order gradient approximation to the internal stress
field to describe strain localization during shear band for-
mation in a strain-softening material. Although we address
a different problem, namely the ‘‘forward’’ extension of a
shear band along the shear plane, themathematical formal-
ism is identical to that used by Zbib and Aifantis.The exer-
cise of re-deriving relations obtained previously by other
methods (see Palmer and Rice,1973; McClung,1979) serves
us mainly to demonstrate that the ‘‘gradient’’ approach to
internal stresses can indeed be applied to the problem at
hand.We now proceed to the case which is in the focus of
the present work, i.e. failure of a slope where the weak layer
exhibits random variations in strength.

4. FAILUREOFA SLABWITHRANDOMSTRENGTH
VARIATIONS OF THEWEAK LAYER

4.1. Simulation method

When there are random spatial variations in the strength of
the weak layer, no analytical solutions are available and one
has to resort to computer simulations. To obtain reliable
statistics, it is desirable to simulate huge ensembles of statis-
tically equivalent systems. To improve computational effi-
ciency, we use a lattice automaton technique where we
allow the space coordinate to take only discrete values xi

with constant spacing �x. Accordingly, we replace uxx in
Equation (5) by the discrete second-order gradient. Further-
morewe approximate the strength^displacement character-
istics by a piecewise linear curve,

�sðuÞ ¼
�1 þ ð�m� �1Þ½1� u=ð2�uÞ�; u � 2�u

�1; u > 2�u :

�
ð12Þ

Randomness is introduced by considering the peak strength
�m as a random function of space.We chose �x to be equal
to the characteristic correlation length � of the strength
variations, such that we may envisage the peak strengths at
the different ‘‘sites’’ xi as statistically independent random
variables.

In the following, it is convenient to shift the zero of the
stress axis to �1 and define non-dimensional space, dis-
placement and stress variables via

X ¼ x

�
; U ¼ u

2�u
; T ¼ ð� � �1Þ�2

2�uðd� d0ÞG : ð13Þ

In these variables, the stability condition for the ‘‘site’’ Xi

reads

½Uiþ1 þ Ui�1 � 2Ui� þ TEXT � TiðUiÞ � 0;

TiðUiÞ ¼
T i
Mð1� UiÞ; Ui � 1

0 ; Ui > 1.

�
ð14Þ

The peak strengths Ti
M are assumed to beWeibull-distribu-

ted with the cumulative distribution function

P ðTMÞ ¼ 1� exp �ðTM= �T Þ�
h i

: ð15Þ

This distribution is characterized by the parameters �T and
�. In the following, we use instead the mean value hTMi and
relative variance �M=hTMi of the peak strengths, which are
related to theWeibull parameters by hTMi ¼ �T�ð1þ 1=�Þ
and �M=hTMi ¼ �ð1þ 1=�Þ=½�ð1þ 2=�Þ�2 � 1, where
�ðxÞ denotes the gamma function. We have verified that
the results remain qualitatively unchanged if other types of
distribution (log-normal or box-shaped) are used.

A simulation is carried out as follows:Values of the aver-
age peak strength and peak strength variation are chosen,
and random peak strengths Ti

M are assigned to all sites ac-
cording to the correspondingWeibull distribution.Then the
external stress TEXT is increased from zero in small steps
�T (this mimics slow loading as for instance by snowfall)
until sites become unstable as the stress exceeds the local
shear strength. The displacement at all unstable sites is in-
creased by a small amount �U.Then, new internal stresses
are computed for all sites and it is checked again where the
sum of the external and internal stresses exceeds the local
strength.The displacement at the now unstable sites is again
increased, and so on. This is repeated until the system has
reached a new stable configuration.Then the external stress
is increased again and so on until the system has failed com-
pletely (Ui >1 for all sites). The corresponding critical stress

is denoted by TC. The procedure is repeated for different
values of �U and �T to ensure that the results do not de-
pend on step size.

Typical values and ranges of the physical parameters of
our system are compiled inTable 1. From these values, we
find a typical range of the non-dimensional peak shear
strength 1 < TM <10. In the following we use, unless other-
wise noted, the typical values TM ¼ 5 and �M=hTMi ¼ 1
for the average peak shear strength and peak strength
variation.
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4.2. Critical conditions for slope failure

Due to randomness of the local strength, the critical stress
for failure of a slope of finite size is itself a random variable.
The simulations indicate that the probability distribution of
critical stresses is approximately Gaussian.The average fail-
ure stress decreases approximately in inverse proportion
with the logarithm of system size XS. This is plausible since
large systems (large slopes) have an enhanced probability to
contain very weak configurations which may fail at low
stress. However, the size dependence is not strong and, in
view of the fact that the range of physical system sizes is re-
stricted (XS ¼ 1000 corresponds for � ¼ 1m to a slope of
1km width), in the subsequent simulations we adopt a uni-
form system size ofXS ¼ 400.

The average failure stress increases linearly with the
average peak strength of the weak layer (insert of Fig. 3).
This figure also demonstrates that the average slope failure
stress falls significantly below the average peak strength of
the weak layer unless the strength distribution is very nar-
row. This effect is pronounced even at small values of
�M=hTMi: already a relative scatter of the peak strengths of

the order of 20% may decrease the slope failure stress by a
factor of two. This indicates the importance of localized
weak configurations for triggering failure. However, as we
shall see in the next section, such configurations need not
necessarily conform to the idea of point-like flaws or linearly
extended shear bands.

4.3. Nature of the critical flaw

To investigate the nature of the critical flaw, we define a
damage function DðxÞ which is unity at those sites where
the strength of the weak layer has dropped to its residual
value, and zero everywhere else. In our simulations we find
that just before failure the distribution of damage is rather
irregular (insert of Fig. 4). Instead of a single point-like flaw
or an extended damaged area representing a shear band, one
observes a ‘‘bar-code’’ pattern of irregular damage clusters
which vaguely resembles a randomized Cantor set.To statis-
tically characterize this pattern, we investigate the damage
autocorrelation function CðXÞ ¼ hDðX0ÞDðX þX0Þi. The
average is evaluated over all values ofX0 and, to obtain reli-
able statistics, we further average over an ensemble of many
systems. Up to a characteristic damage correlation length
XC � 25 we observe a power-law decay CðXÞ / X�m,
where m � 0.46. This implies that, below XC, the damage
distribution can be described as a random fractal set with

Table 1.Typical values and ranges of the physical parameters entering the model

Parameter Typical value Range Source

Slab depth (d� d0) 0.5m 0.3^1m Schweizer (1999)
Shear modulus G 0.5MPa 0.1^5MPa Schweizer (1999)
Ratio shear modulus/peak strength (slow loading) 100 20^200 Schweizer (1999)
Ratio peak strength/residual strength 1.5 1.25^2 Schweizer (1999)
Ratio peak-strength variance/average peak strength 1 0.6^2 Conway and Abrahamson (1988)
Correlation length � of strength variations 1m 0.2^1.3m Conway and Abrahamson (1988)
Displacement to failure u0 4mm 1^10mm McClung (1979)

Fig. 3. Dependence of slope failure stress on the average peak

strength and peak-strength variation of the weak layer. Square

data points: critical stresses for average peak strength

hTMi ¼ 5 and different values of the peak-strength variation

�M=hTMi. Insert: dependence of failure stress on peak

strength for two different values of the relative peak-strength

variation. Each data point represents an average over an en-

semble of 100 systems; the error bars represent the variance of

the respective failure stress distributions.

Fig. 4. Data points: two-point correlation function

CðXÞ ¼ hDðX0ÞDðX þX0Þi of the damage pattern

(average over final configurations of 1000 simulations); full

line: power-law decayCðXÞ / X�0:46. Insert: distribution

of damage at failure for one system.
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fractal dimensionD ¼ ð1�mÞ ¼ 0:54. AboveXC there is a
crossover to a Poissonian random pattern with fractal di-
mension 1. Investigation of systems of different sizes ranging
between 100 � XS � 6400 indicates that the correlation
lengthXC does not depend significantly on system size.

4.4. Precursors to failure

In the presence of random strength variations, local failures
may occur even before the system fails globally. In the simu-
lations, we monitor such precursor activity by studying the
displacement increments which occur after each stress in-
crement. The insert in Figure 5 shows the increments in
mean displacement which have been observed during a
single simulation where the applied stress was increased in
steps�T ¼ 0.02. One sees that the displacement increases in
irregular bursts. Suchbursts occur because the failure of one
site may, through local stress redistribution, trigger the fail-
ure of others. (In other physical systems the term ‘‘ava-
lanches’’ has become commonplace for this type of
collective behavior. Here we prefer the term‘‘bursts’’ for the
obvious reason that we are talking about those precursor
events which do not yet trigger an avalanche.) In real sys-
tems, such precursor events may be detectable through
acoustic emission measurements and, hence, be used to gain
experimental information about the internal stability of a
slope.

Figure 5 shows the susceptibility h�Ui=�T averaged
over an ensemble of 104 systems. It is seen that the suscept-
ibility increases as the critical stress is approached, but it
does not exhibit any divergence towards failure. It is also in-
structive to calculate the fraction of failed sites. By analogy
with equilibrium thermodynamics, this fraction may be
considered an ‘‘order parameter’’ characterizing the failure
process. This order parameter increases towards a finite
value 51 as one approaches the critical stress from below,
and then discontinuously jumps to unity. Hence, the behav-
ior of the system (discontinuity of the order parameter, non-
singular behavior of the susceptibility) is reminiscent of a
first-order phase transition.

5. DISCUSSIONAND CONCLUSIONS

In our model of slab failure the weak layer is modelled as a
softening interface. Randomness is introduced by discretiz-
ing space and assigning random peak strength values to the
different ‘‘sites’’. Stress redistribution between strong and
weak regions is expressed in terms of the (discrete) second-
order gradient of the displacement, which makes the model
very similar to fibre bundle models with local load sharing
(Harlowand Phoenix,1991). As in suchmodels, we observe a
first-order-like transition at failure.

From our model, the following main conclusions are
drawn:

Fluctuations in the peak strength of the weak layer have
a strong knock-down effect on slope stability, as stability
is governed by the probability of occurrence of localized
weak configurations.

The critical flaw which leads to slope failure is neither a
linearly extended shear band nor a point-like deficit.
Rather it falls ‘‘in between’’ these two extremes: prior to
slope failure, the distribution of failed ‘‘sites’’can, up to a

characteristic correlation length, be envisaged as a frac-
tal set of dimensionD � 0:5.

As the load increases, failure is preceded by small pre-
cursor events, whichmay be detectable by acoustic emis-
sion as proposed, for example, by Sommerfeld and
Gubler (1983). The precursor activity increases towards
failure, but this increase is unspecific: since the suscep-
tibility of the system does not diverge at the critical
stress, it is difficult to pinpoint the failure stress from
measurements of the precursor activity. (The situation
maybe comparedwith an attempt to determine the boil-
ing point of a liquid from measurements of the density
decrease prior to boiling.)

The present model relies on several strong idealizations
which may affect the validity of our conclusions. (i) We de-
scribe stress redistribution in terms of a local load-sharing
approximation. This is feasible as long as the correlation
length � of strength variations is larger than the slab thick-
ness. If ðd� d0Þ > �, the stress redistribution effectively
leads to an averaging of the fluctuations over a region of
the order of ðd� d0Þ. Hence, for thick slabs our model tends
to overestimate the impact of fluctuations. (ii) Snow is a
rate-dependent material, and the assumption of rate-inde-
pendent behavior should be relaxed in future investigations.
(iii) In its present form the model is quasi-one-dimensional.
The assumption of homogeneity in one spatial direction is
not very realistic, and, unfortunately, in statistical me-
chanics dimensionality matters. In the regime of large fluc-
tuations, the behavior of the present one-dimensional model
is governed by single very strong sites which may act as an-
choring points for the whole slope. In two dimensions this is
different since failure may bypass these sites, and ultimately
the slope may avalanche, leaving the odd ‘‘super-strong’’
zone standing. A more detailed study of this issue is post-
poned to future investigations.
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Fig. 5. Average slope susceptibility (mean displacement incre-

ment per unit stress increment, average over 104 simulations)

as a function of distance from critical stress. Insert: displace-

ment increments in a single simulation with step size

�T ¼ 0.02.
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