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FURTHER ELEMENTARY TECHNIQUES USING THE
MIRACLE OCTAD GENERATOR

by R. T. CURTIS

(Received 20th July 1987)

Introduction

In this paper we describe various techniques, some of which are already used by
devotees of the art, which relate certain maximal subgroups of the Mathieu group M24,
as seen in the MOG, to matrix groups over finite fields. We hope to bring out the
wealth of algebraic structure underlying the device and to enable the reader to move
freely between these matrices and permutations. Perhaps the MOG was mis-named as
simply an "octad generator"; in this paper we intend to show that it is in reality a
natural diagram of the binary Golay code.

There are two versions of the MOG in print: the author's original version which
appears in [5,6,7,8], and what is, in effect, the mirror-image of this which is used in
[1,3,4,10]. Certain subgroups "look better" in each system and so it is worthwhile
having both arrangements available. We shall indicate which we are referring to at any
point by appending the subscripts M and M' respectively.

The octads in each case are, of course, those listed in [9].
N.B. To go from M to M', or vice versa, take the mirror-image or equivalently

(modulo M24) interchange the last two columns.

Mnemonic for obtaining a MOG arrangement of the 24 letters (John Conway)

(1) Insert the first twelve members of the Galois field of order 23 in a 4 x 6 array as
shown in Fig. 1.

(2) Negate the non-squares (Fig. 2).
(3) Fill in the remainder of the 24-point projective line letting the linear fractional

map

y: x ^ - l / x = ( o o 0)(l 22)(2 11)(3 15)(4 17)(5 9)

(6 19)(7 13)(8 20)(10 16)(12 21)(14 18)

correspond to the permutation indicated in Fig. 3.
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(4) Obtain
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A.I. We take the three fixed points as those indicated by X's in Fig. 5 and the
remaining five points of the left-hand brick as the line at infinity, z = 0. The 16-point
affine plane is co-ordinated with x-axis horizontal (left to right) and y-axis vertical
(descending) so that the projective point (001)' appears in the top lefthand position.
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FIGURE 5
The 21-point projective plane as it appears in the MOG

Notes:

(i) The 21 octads containing the three fixed points have convenient names as lines
y = mx + b.

e.g. y =

X

X X

X

X

X

X

X

(ii) A pleasing construction of the Golay code and, hence, of M24 can be furnished
straight from here.
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A.2. Identification of permutations of M2l with matrices (modulo the centre of SL3(4))

A matrix is determined (up to multiplication by a scalar matrix) by its action on the
triangle of reference ((100)', (010)', (001)') and the unit point (111)'. Thus

. 1 1 Land

M'

• 1 P
.. . U

o fp I _ the elementary abelian 24 fixing each, a, p e ur 4 > - p o m t Qn t h e l m e a t mf-mj t y

Again

1 . , and

I — TJ;/i6L2(4) I = the A5 acting on the line at infinity fixing (001)'.

Adjoining

•

•

•

•

•

*

• M*-[; i ]•we obtain M21 = L3(4).

A.3. The automorphisms of M2I, MU:S3

(i) The field automorphism of L3(4) corresponds to

•

1 1

•

1 1 X
in M,d.24-

M'

(ii) The diagonal automorphism of L3(4) may be taken as

t-t
M'

These, together with M2U generate the maximal subgroup M21: S3 of M1A.
Note that the graph automorphism of L3(4), which interchanges points and lines,

cannot be realised here.
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B. The stabilizer of an octad (24: A% = 24: L4(2))

I

I

FIGURE 6

Label points in the complementary 16-ad as 4-dimensional vectors over GF2 to give
the 16-point affine plane. The stabilizer of an octad is now the semi-direct product of
the elementary abelian group of translations generated by addition of a vector by the
matrix group L4(2). This semi-direct product may be written as 5 x 5 matrices in the
standard way. We have the following identification:

B.2. Identification of permutations with matrices in L5(2)

<e , I )

M

1 . . .

. 1 . .

. . 1 .

. . . 1

and similarly

M
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1

-j Y ' - e 4̂> = the elementary abelian group of order 16
U- J J fixing every point of the octad.
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The subgroup fixing the zero vector acts as A 8 on the 8 points of the octad and as L4(2)
on the 15 non-zero vectors. Thus the MOG furnishes the isomorphism:

Y
Z- Z* Z-2

(a)

1 1 11 X

( O ,

M

. . . 1

. 1 . .

1 . . 1

. . 1 .

i i . .

. l . .

. . i i

. . . l

t-t

\y
- - l

l . .

. l .

. 1

Plainly a Sylow 2-subgroup of M24 may be taken as the non-singular upper triangular
matrices in this identification.

B.3. A related maximal subgroup—the trio group

It will be noted that the elements a, /}, y act identically on the three bricks and, with
the labelling

0 0

1
2
4

0
3
6
5

may be seen to generate PSL2(1) with a: x-*x + l, fi: x->2x, y:x-* — l/x. As was pointed
out in [2] the permutation (oo 0)(l 3) (2 6) (4 5) and its 7 images under L2(7),
together with the identity permutation, form an elementary abelian group of order 23. If
we place an element of this group in each of the three bricks but with the restriction
that the product of the three be the identity, we obtain an elementary abelian group of
order 26. This, together with the above-mentioned L2(7) and the S3 bodily permuting
the bricks, gives the maximal trio group of shape 26: (S3 x L2(7)).

B.4. The centralizer of an involution

The centralizer of a central (18.28) involution, which we may take to be (eu\), will
consist of all non-singular matrices of the form

1 J
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It has shape 2.23 + 3: L3(2) where the two elementary abelian groups of order 16 (21 + 3)
consist of matrices of the form

and U respectively.

The L3(2) may be taken to be those matrices of the form

1

MeL3(2)

Clearly the upper uni-triangular matrices, give a Sylow 2-subgroup of M24.

C. The sextet stabilizer, the hexacode and the Sylow 2-subgroup of M24

(M or M' are equally good here; we choose M' to be consistent with [4]).

C.I. The stabilizer of a decomposition into 6 mutually complementary tetrads [9] or
a sextet [2,6] is a maximal subgroup of shape 2 6 :3S 6 , and an example is the subgroup
preserving the columns of the MOG. The permutations in the normal subgroup 2b fix
all the columns and have a four-group action on them. We denote these actions:

(and note that 1 + co + co = 0,
in the obvious sense).

The elements of the 26 now become 6-dimensional vectors over GF4 and clearly form a
3-dimensional subspace, We take as basis:

•

•
1 1
1 1

1 1
1 1

M'

1 1
1 1

•

•
1 1
1 1

M'
( O O l l l l )

e
( 1 1 0 0 1 1)

e

• I

M'
(U U 0 1 0 1 )

e
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As can be readily verified from their expressions as 6-dimensional vectors over GFA,
45 of the involutions of the elementary abelian 26 have cycle shape 18>28 while the
remaining 18 have cycle shape 212. These 18 fall into 6 blocks of size three under
multiplication by co; that is they consist of the non-trivial elements of 6 disjoint four-
groups which, of course, correspond to 1-dimensional subspaces over GF^. A set of
generators for the six 1-spaces is:

As usual the most pleasing outcome occurs as our S6 realizes both its 6-point actions:
one on the six tetrads of the sextet, the other on these six four-groups. Thus the
stabilizer of a four-group remains transitive on the tetrads and vice versa.

C.2. Identification of permutations with elements of PEL3(4)

Now the subgroup 3 • S6, which consists of permutations preserving the columns and
fixing the top row of the MOG, acts as linear transformations (together with the field
automorphism) of this space. In particular we see:

M'

0

and

wv—
f \ \ S —

—X *

M*

0
1

u u

1
n
l

co 0 co 1
co co 0 0

(a)

Further the elements:

l . l '

. l l

. . l
—

(b) Ic)
M'

1 1 .

. 1 .

. . 1

clearly generate a copy of the

(d)
dihedral group D8.
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We also observe that

R. T. CURTIS

X
•
1 1

•

1 1
~ ((O<-KO), the field automorphism of

Jc)
It should be noted that (a,b} = 3-A6, the triple cover of A6.

C.3. The Sylow 2-subgroup of M2 4

Now the vector space together with the upper uni-triangular matrices over GF2

«ft,c,d> above) and the field automorphism (a), clearly generate a subgroup of shape
26: (D8 x C2) which must be a Sylow 2-subgroup of M24. Indeed we see from the above
that

"1 a
1

b
c
1

a "
P
y

l

a,b,ce GF2 = Syl2(M24),

and the correspondence with permutations can be read off.
It should be noted that a Sylow 2-subgroup of M24 consists precisely of those

permutations preserving the octad, trio, sextet and pairing indicated in Fig. 7.

M o r M'

FIGURE 7
The Sylow 2-subgroup of M24.
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