ON THE TENSOR PRODUCT OF QUATERNION ALGEBRAS OF CHARACTERISTIC TWO

by P. MAMMONE

(Received 13 May, 1986)

1. Introduction. The purpose of this note is to generalize to fields of characteristic two the results obtained in [4]. We obtain necessary and sufficient conditions involving quadratic forms for certain tensor products of quaternion algebras to be division algebras.

We apply this to show, as in [4], that the Albert criterion does not generalize to tensor products of more than two quaternion algebras.

More precisely, let k be a field of characteristic two, $a \in k$ and $b \in k^{\times} (= k - \{0\})$; we denote by $[a, b)_k$ the quaternion k-algebra generated by two elements e_1 and e_2 subject to the relations:

$$\mathcal{P}(e_1) := e_1^2 + e_1 = a,$$

 $e_2^2 = b,$
 $e_2e_1 = e_1e_2 + e_2.$

Let us also denote by [a, b] the quadratic form $aX^2 + XY + bY^2$. To the tensor product of quaternion algebras

$$T = [a_1, b_1)_k \otimes \ldots \otimes [a_n, b_n)_k,$$

we associate the quadratic form

$$Q_T = [1, a_1 + \ldots + a_n] \stackrel{n}{\underset{i=1}{\overset{n}{\perp}}} \langle b_i \rangle [1, a_i].$$

In fact, for n = 1 and 2, it is well known that T has zero divisors if and only if Q_T is isotropic, see [1, p. 29 and p. 131]. In § 3, we show that this assertion is false for $n \ge 3$. A similar question was first proposed by D. W. Lewis over fields of characteristic different from two, see [3] and [4]. Note that Q_T is, as in [3] and [4], the (alternating) sum of the reduced norms of the quaternion algebras $[a_i, b_i)$ minus the (n - 1) obvious hyperbolic planes.

2. Generic extensions of division algebras. Let $X_1, \ldots, X_{n-1}, Y_1, \ldots, Y_{n-1}, Z$ be independent indeterminates over k (with $n \ge 3$) and let also

 $F = k(X_1, \ldots, X_{n-1}, Y_1, \ldots, Y_{n-1}, Z).$

For $f \in k(X_1, ..., X_{n-1})$ and $g \in k(X_1, ..., X_{n-1}, Z)$, we define

$$T_f := [X_1, Y_1)_F \otimes \ldots \otimes [X_{n-1}, Y_{n-1})_F \otimes [f, Z)_F$$

and

$$T'_g := [X_1, Y_1)_F \otimes \ldots \otimes [X_{n-1}, Y_{n-1})_F \otimes [Z, g)_F.$$

Glasgow Math. J. 30 (1988) 111-113.

THEOREM A. (i) T_f is a division algebra if and only if

$$f \notin \mathcal{P}(k(\mathcal{P}^{-1}(X_1),\ldots,\mathcal{P}^{-1}(X_{n-1}))).$$

(ii) T'_g is a division algebra if and only if g is not represented by the quadratic form [1, Z] over $k(X_1, \ldots, X_{n-1}, Z)$.

THEOREM B. (i) Q_T is anisotropic over F if and only if the quadratic form $[1, X_1 + \ldots + X_{n-1} + f]$ is anisotropic over $k(X_1, \ldots, X_{n-1})$ and $f \notin \mathcal{P}(k(X_1, \ldots, X_{n-1}))$.

(ii) $Q_{T'_{s}}$ is anisotropic over F if and only if the quadratic form

 $[1, X_1 + \ldots + X_{n-1} + Z] \perp \langle g \rangle [1, Z]$

is anisotropic over $k(X_1, \ldots, X_{n-1}, Z)$.

The proofs will follow by repeated use of the following results.

LEMMA A. Let A be a division algebra over k, $c \in k$ and X an indeterminate over k: then we have:

(i) $A \otimes_k [c, X)_{k(x)}$ is a division algebra if and only if $A \otimes_k k(\mathcal{P}^{-1}(c))$ is a division algebra;

(ii) $A \otimes_k [X, c)_{k(x)}$ is a division algebra if and only if $A \otimes_k k(\sqrt{c})$ is a division algebra.

Proof. (i) If $A \otimes_k k(\mathcal{P}^{-1}(c))$ is not a division algebra, we easily see that

$$\mathcal{P}^{-1}(c) \otimes 1 + 1 \otimes \mathcal{P}^{-1}(c)$$

is a zero divisor of $A \otimes_k [c, X)_{k(x)}$. Now suppose that $D := A \otimes_k k$ $(\mathcal{P}^{-1}(c))$ is a division algebra. We first observe that the quaternion algebra $[c, X)_{k(x)}$ can be written in the form $k(\mathcal{P}^{-1}(c))(X; \sigma)$, where σ is the non-trivial k-automorphism of $k(\mathcal{P}^{-1}(c))$.

Since D is a division algebra, we can extend σ to D in such a way that $\sigma_{|A} = 1_A$. But then we remark that $A \otimes_k [c, X)_{k(x)}$ is nothing else than $D(X; \sigma)$.

(ii) If $A \otimes_k k(\sqrt{c})$ is not a division algebra, we easily see that $\sqrt{c} \otimes 1 + 1 \otimes \sqrt{c}$ is a zero divisor of $A \otimes_k [X, c)_{k(x)}$. Suppose now that $D' := A \otimes_k k(\sqrt{c})$ is a division algebra. Let e be the basis element of $[X, c)_{k(x)}$ such that $e^2 + e = x$ then, if we put $t = c^{-1}\sqrt{c}e$, we can verify the following relations: $t^2 = c^{-1}X \in k(x)$ and $t\sqrt{c} = \sqrt{c}t + 1$. This shows that we can write the quaternion algebra $[X, c)_{k(x)}$ in the form $k(\sqrt{c})(t; \delta)$, where δ is the derivation defined by $\delta(\sqrt{c}) = 1$. Since D' is a division algebra, we can extend δ to D' so that $\delta_{|A} = 0$. But then, as in the previous case, $A \otimes_k [X, c)_{k(x)}$ is nothing else than $D(t; \delta)$.

LEMMA B. Let Q_1 and Q_2 be two quadratic forms over k, and X an indeterminate over k. Then $Q_1 \perp \langle x \rangle Q_2$ is anisotropic over k(x) if and only if Q_1 and Q_2 are anisotropic over k.

Proof. We take first a representation of Q_1 and Q_2 with respect to the symplectic

basis and then proceed, as for the case of characteristic different from two (see [2, p. 273]), by a degree argument. Details are left to the reader.

Proof of Theorem A. (i) By induction and Lemma A(i), we see that T_f is a division algebra if and only if the quaternion algebra [f, Z) is a division algebra over $k(\mathcal{P}^{-1}(X_1), \ldots, \mathcal{P}^{-1}(X_{n-1}), Z)$. But this condition is equivalent to the following (see the introduction): $[1, f] \perp \langle Z \rangle [1, f]$ is an anisotropic quadratic form over $k(\mathcal{P}^{-1}(X_1), \ldots, \mathcal{P}^{-1}(X_{n-1}), Z)$. Applying now Lemma B for X = Z, we see that this condition holds if and only if [1, f] is an anisotropic quadratic form over $k(\mathcal{P}^{-1}(X_1), \ldots, \mathcal{P}^{-1}(X_{n-1}))$, i.e. $f \notin \mathcal{P}(k(\mathcal{P}^{-1}(X_1), \ldots, \mathcal{P}^{-1}(X_{n-1})))$. (ii) By induction and Lemma A(ii), we see that T'_g is a division algebra if and

(ii) By induction and Lemma A(ii), we see that T'_g is a division algebra if and only if the quaternion algebra [Z, g) is a division algebra over $k(X_1, \ldots, X_{n-1}, Z, \sqrt{Y_1}, \ldots, \sqrt{Y_{n-1}})$. This last condition is clearly equivalent to the following: g is not represented by the quadratic form [1, Z] over

$$k(X_1, \ldots, X_{n-1}, Z, \sqrt{Y_1}, \ldots, \sqrt{Y_{n-1}}),$$

and so, if and only if g is not represented by [1, Z] over $k(X_1, \ldots, X_{n-1}, Z)$.

Proof of Theorem B. Use induction and Lemma B.

REMARK. The quadratic form $[1, X_1 + \ldots + X_{n-1} + f]$ is isotropic over $k(X_1, \ldots, X_{n-1})$ if and only if $X_1 + \ldots + X_{n-1} + f \in \mathcal{P}(k(X_1, \ldots, X_{n-1}))$. Since $X_1 + \ldots + X_{n-1} \in \mathcal{P}(k(\mathcal{P}^{-1}(X_1), \ldots, \mathcal{P}^{-1}(X_{n-1})))$, this last condition implies that $f \in \mathcal{P}(k(\mathcal{P}^{-1}(X_1), \ldots, \mathcal{P}^{-1}(X_{n-1})))$. This shows that if T_f is a division algebra then Q_{T_f} is anisotropic.

3. The counterexamples. In the introduction we said that the equivalence, T is a division algebra if and only if Q_T is anisotropic, holds if T is a quaternion algebra or a tensor product of two quaternion algebras. We now provide counterexamples to both implications for $n \ge 3$. Applying Theorems A and B, we can see that

(1) for $f = X_1 + \ldots + X_{n-1}$, T_f is not a division algebra and Q_T is anisotropic;

(2) for $g = X_1 + \ldots + X_n + Z$, T'_g is a division algebra and $Q_{T'_g}$ is isotropic.

REFERENCES

1. R. Baeza, *Quadratic forms over semilocal rings*, Lecture Notes in Mathematics. 655 (Springer, 1978).

2. T. Y. Lam, The algebraic theory of quadratic forms, (Benjamin, 1973).

3. D. W. Lewis, A note on Clifford algebras and central division algebras with involution, *Glasgow Math. J.* 26 (1985), 171-176.

4. P. Mammone and J. P. Tignol, Clifford division algebras and anisotropic quadratic forms: two counterexamples, *Glasgow Math. J.* **28** (1986), 227–228.

Université de Mons-Hainaut B-7000 Mons