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1. Introduction. The purpose of this note is to generalize to fields of characteristic
two the results obtained in [4]. We obtain necessary and sufficient conditions involving
quadratic forms for certain tensor products of quaternion algebras to be division algebras.

We apply this to show, as in [4], that the Albert criterion does not generalize to
tensor products of more than two quaternion algebras.

More precisely, let A: be a field of characteristic two, a e k and b ekx (= k — {0}); we
denote by [a, b)k the quaternion A>algebra generated by two elements ex and e2 subject to
the relations:

e2ex = exe2 + e2.

Let us also denote by [a, b] the quadratic form aX2 + XY + bY2. To the tensor product of
quaternion algebras

T = [aubx)k®...®[an,bn)k,

we associate the quadratic form

QT = [l,ax + ...+an]± <6,->[l,«/]-

In fact, for n = 1 and 2, it is well known that T has zero divisors if and only if QT is
isotropic, see [1, p. 29 and p. 131]. In § 3, we show that this assertion is false for n s= 3. A
similar question was first proposed by D. W. Lewis over fields of characteristic different
from two, see [3] and [4]. Note that QT is, as in [3] and [4], the (alternating) sum of the
reduced norms of the quaternion algebras [a,, &,-) minus the (n — 1) obvious hyperbolic
planes.

2. Generic extensions of division algebras. Let Xu . . . , Xn_x, Yx,. . . , Yn-U Z be
independent indeterminates over k (with n > 3) and let also

F = k(Xu...,Xn-u y , , . . . , Y n _ 1 , Z ) .

F o r / e k(Xx,..., Xn_x) and g e k(Xx, . . . , * „ _ „ Z), we define

Tf :=[XX, YX)F ® . . . ® [*„_„ Yn_x)F (8) [f, Z)F

and

T'g := [Xu YX)F ® . . . ® [XH-u Yn_,)F ® [Z, g)F.
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THEOREM A. (i) Tf is a division algebra if and only if

(ii) T'g is a division algebra if and only if g is not represented by the quadratic form
[1, Z] over k(Xu . . . , Xn_u Z).

THEOREM B. (i) QT is anisotropic over F if and only if the quadratic form
[l,Xl + ... +Xn_! +f] is anisotropic over k(Xu ..., Xn_J and ft &(k(Xu ..., *„_,)) .

(ii) QTs is anisotropic over F if and only if the quadratic form

is anisotropic over k(Xlt . . . , Xn_,, Z).

The proofs will follow by repeated use of the following results.

LEMMA A. Let A be a division algebra over k, c e k and X an indeterminate over k:
then we have:

(i) A <8>k [c, X)kix) is a division algebra if and only if A <B)k ^ ( ^ " ' ( c ) ) is a division
algebra;

(ii) A ®k [X, c)k(x) is a division algebra if and only if A ®k &(Vc) is a division
algebra.

Proof, (i) If A ®k ^(^"'(c)) is not a division algebra, we easily see that

is a zero divisor of A <S>k [c, X)k(x). Now suppose that D: = A®kk
(^-1(c)) is a division algebra. We first observe that the quaternion algebra [c, X)k^ can
be written in the form k{^~x{c)){X; o), where o is the non-trivial ^-automorphism of

Since D is a division algebra, we can extend a to D in such a way that o\A = 1A. But
then we remark that A <%)k [c, X)k(x) is nothing else than D(X; o).

(ii) If A <2)k k(yjc) is not a division algebra, we easily see that Vc <8> 1 + 1 <E> Vc is a
zero divisor of A <8>k [X, c)k(x). Suppose now that D' : = A <S)kk(^c) is a division algebra.
Let e be the basis element of [X, c)k(x) such that e2 + e = x then, if we put t = c~Wc e, we
can verify the following relations: t2 = c~xX e k(x) and fVc = Vc t + 1. This shows that we
can write the quaternion algebra [X, c)k(x) in the form k{^/c){t\ 6), where 6 is the
derivation defined by d(\/c) = 1. Since D' is a division algebra, we can extend 5 to D' so
that 6\A = 0- But then, as in the previous case, A <S>k [X, c)*w is nothing else than
D(t;6).

LEMMA B. Let Qx and Q2 be two quadratic forms over k, and X an indeterminate
over k. Then Q^l {x)Q2is anisotropic over k{x) if and only if Qx and Q2 are anisotropic
over k.

Proof. We take first a representation of Q^ and Q2 with respect to the symplectic
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basis and then proceed, as for the case of characteristic different from two (see [2, p.
273]), by a degree argument. Details are left to the reader.

Proof of Theorem A. (i) By induction and Lemma A(i), we see that 7} is a division
algebra if and only if the quaternion algebra [/, Z) is a division algebra over
k(&~\Xx), . . . , &~l(Xn-i), Z). But this condition is equivalent to the following (see
the introduction): [1,/] 1 (Z)[\,f) is an anisotropic quadratic form over
k(&~\Xx), . . . , ^~\Xn_l), Z). Applying now Lemma B for X = Z, we see that this
condition holds if and only if [1,/] is an anisotropic quadratic form over

(ii) By induction and Lemma A(ii), we see that T'g is a division algebra if and
only if the quaternion algebra [Z, g) is a division algebra over
k(Xu . . . , Xn_u Z, VYi, . . . , VY~i). This last condition is clearly equivalent to the
following: g is not represented by the quadratic form [1, Z] over

. . . , Xn-i, Z,

and so, if and only if g is not represented by [1, Z] over k(Xx,.. . , Xn_x, Z).

Proof of Theorem B. Use induction and Lemma B.

REMARK. The quadratic form [1, Xi +...+Xn_1+f] is isotropic over
k(Xu . . . , Xn_x) if and only if X, + . . . + Xn_x +f e 9(k(Xlt. . . , *„_,)). Since
Xx + . . . +Xn_i e ^(ki^'^X^, . . ., 9>~l(Xn^i)), this last condition implies that
/ e S>(^(^)~1(Ar

1), • • • , ^~\Xn_x)). This shows that if 7} is a division algebra then QTf is
anisotropic.

3. The counterexamples. In the introduction we said that the equivalence, T is a
division algebra if and only if QT is anisotropic, holds if T is a quaternion algebra or a
tensor product of two quaternion algebras. We now provide counterexamples to both
implications for n 3=3. Applying Theorems A and B, we can see that

(1) for / = Xx +. . . + Xn-U 7} is not a division algebra and QTf is anisotropic;
(2) for g = Xx + . . . + Xn + Z, T'g is a division algebra and QT^ is isotropic.
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